Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 53/54 (1909)

Heft: 7

Artikel: Das Gebäude der Toggenburger Bank in St. Gallen: erbaut von den

Architekten Curjel & Moser

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-28197

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Das Gebäude der Toggenburger Bank in St. Gallen. — Das Problem des Baues langer, tiefliegender Alpentunnels und die Erfahrungen beim Baue des Simplontunnels. — Seebach-Wettingen, Technische und wirtschaftliche Ergebnisse der elektrischen Traktionsversuche. — Bestimmung des Profils einer Seilbahn, auf der unter Mitberücksichtigung des Gewichtes des Drahtseiles gleichförmige Bewegung möglich sein soll. — Miscellanea: Nationaldenkmal in Schwyz. Ausstellung bemalter Wohnräume in München. Observatorium auf dem Montblanc. Die Rialtobrücke. Schutz des Pariser

Stadtbildes. Musterwohnhäuser an der internat, Kunstausstellung in Rom 1911. Motorbootrennen auf dem Bodensee. Büste von Karl Schäfer. — Nekrologie: Hans Bally. — Konkurrenzen: Kantonale Sparkasse iu Genf, Nationaldenkmal in Schwyz. Schulhaus in Arbon. Gewinnung von Wasserkräften am Walchensee. — Vereinsnachrichten: Schweizerischer Ingenieur- und Architekten-Verein. Gesellschaft ehemaliger Studierender: XL. Adressverzeichnis. Stellenvermittlung.

Tafel IX: Das Gebäude der Toggenburger Bank in St. Gallen.

Band 54.

Nachdruck von Text oder Abbildungen ist nur unter genauer Quellenangabe gestattet.

Nr. 7.

Das Gebäude der Toggenburger Bank in St. Gallen.

Erbaut von den Architekten Curjel & Moser.
(Mit Tafel IX.)

Da, wo die direkte Zugangsstrasse zum Personenbahnhof St. Gallen aus der innern Stadt die Hauptverkehrsader, die Leonhardsstrasse, schneidet, und die Zoll-

hausstrasse in schräger Richtung abzweigt, sind im vergangenen Jahre zwei Bauten erstellt worden, die gewissermassen den Eingang zu dem neuen Quartier darstellen, das dort durch die neuen Anlagen des Aufnahmegebäudes der Schweizer. Bundesbahnen und des eidgen. Postund Telegraphen-Gebäudes in Bälde erstehen soll. Ohne viel Geräusch ist durch diese Neubauten begonnen worden, dem Quartier einen modernen und originellen Charakter zu verleihen. Es sind das die beiden Gebäude der "Toggenburger Bank " und jenes der "Eidgenössischen Bank", die je die nordöstliche, bezw. die nordwestliche Ecke der Strassenkreuzung

einnehmen. Da die Abzweigung der Zollhausstrasse unter ziemlich spitzem Winkel erfolgt, ergab sich nur für das erstere ein rechtwinkliger Bauplatz, für das letztere dagegen ein solcher mit spitzem Winkel. Um so verdienstvoller ist es, dass die Architekten Lösungen gefunden haben, die ungeachtet der

ganz verschiedenen Aufgaben dem Gesamteindruck doch eine ruhige Einheitlichkeit sichern.

Wir beginnen heute mit der Darstellung des Baues der Toggenburger Bank, der auf Grund eines engern Wettbewerbes den Architekten *Curjel & Moser* in Karlsruhe und St. Gallen übertragen war, und den diese von Mitte 1907 bis Mitte Oktober 1908 ausgeführt haben. Am 1. No-

vember 1908 konnte das Gebäude seiner Bestimmung übergeben werden.

Unter den zahlreichen in letzter Zeit in der Stadt St. Gallen entstandenen Geschäftshäusern tritt es durch seine bis in alle Einzelheiten durchgeführte strenge Architektur besonders hervor als eine neue Schöpfung, an die sich das Publikum, das dem Werke zunächst skeptisch gegenüberstand, nur allmählich gewöhnt.

Zu dem in Erdgeschoss, Zwischengeschoss, drei Obergeschosse und den ausgebauten Dachstock gegliederten Bau ist vom Sockel bis zur Fensterbank des ersten Obergeschosses dunkelbrauner, geschliffener und polierter Castionegranit verwendet worden, ohne jegliche Profilierung oder Pfeiler mit nur schwach ausladendem Gesimse abgedeckt. Die obern Geschosse, in St. Margretherstein ausgeführt, sind in Pfeiler aufgelöst. Ueberraschend ist die erreichte Wirkung. Die Untergeschosse bilden ein Horizontalband bezw. den Sokkel, in dunkelbrauner Farbe, darüber als Kontrast die vertikalen hellen Pfeiler des Obergeschosses (Tafel IX). Erhöht ist die Farbstimmung des Unterbaues noch durch sorgfältig abgewogene Goldornamentik am Eierstab des Gesimses und beim Portal. Bei diesem erfolgt der Uebergang von der runden Ecke zum viereckigen Eingang durch aufeinander gelegte Platten, die von zwei kräftigen Säulen gestützt sind

Abb. 5. Der Haupteingang.

(Abbildung 5). Die Kapitäle der Säulen sind mit einem Goldband herausgehoben. Die Haupteingangstüre ist ganz in Durano-Metall geschmiedet und verglast. Diese *runde Ecke* erhielt als wirksamen Abschluss der über Dach geführten Pfeiler eine kleine Kuppel mit stumpfem Kupferdach. Das Hauptdach ist ungeteilt, nur durchbrochen von den Dachfenstern und ist mit braun engobierten Ziegeln eingedeckt. In konstruktiver Hinsicht

darf noch auf die Schwierigkeit der Fundation und einer sichern Entwässerung der Keller hingewiesen werden. Die Fundation besteht aus einer gut ausdrainierten, armierten Platte. Die Wasserdichtung wurde teilweise durch Bitumenputz, teilweise durch verschiedene Jute-Lagen in Goudron und Asphalt gelegt, erreicht.

Entsprechend dem Aeussern ist das Innere durchge-

bildet (Abbildung 6 bis 13, Seite 90 bis 94). Das Hauptgewicht ist auf gute

Raumverhältnisse bei einfacher Linienführung gelegt. Gegen die Leonhardstrasse sind vermietbare Ladenlokale angeordnet; ebenso dienen das dritte Obergeschoss und der Dachstock der Stickerei - Industrie. Die Banktreppe setzt sich vom Erdgeschoss aus zu einem hübsch ausgestatteten Vorraum des

Untergeschosses fort (Abbildung 6), an diesen schliessen sich ein Zimmer und drei Zellen für die Abonnenten (Abbildung 7), ein Archiv und der gepanzerte Safe- mit anschliessendem Tresorraum an. Die übrigen Un-

tergeschossräumlichkeiten, ausgenommen der Raum für Zentralheizung und Kohlen, dienen als Keller und Lagerräume für die Läden und die Stickerei.

Im Erdgeschoss betritt man vom Haupteingang aus zuerst einen kleinen, mit hellgrauem Marmor verkleideten Vorraum, der mit einer Achtelswendung zur Schalterhalle (Abb. 8) überleitet. Links vom Eingang ist eine Nische gegen den Schalterraum geöffnet, als Schreibund Leseraum für die Klienten.

Den Abschluss der Halle gegen den Kassaraum bildet eine halbhohe Wand mit vier Schaltern, letztere in Glas und Metall ausgeführt. Im Kassaraum sind zwei Tresorräume für den Tagesbedarf eingebaut. Schalterhalle und Kassaraum sind zweigeschossig; im Zwischengeschoss sind die Aktenlager und eine Garderobe, erstere durch eine kleine Treppe mit dem Kassaraum verbunden. Die Banktreppe ist vierarmig und mündet im ersten Obergeschoss auf einen grossen Vorplatz (Abbildung 10, S. 92), um den sich folgende Räume gruppieren: Sitzungssaal für den Verwaltungsrat, Konferenzzimmer, Direktionszim-

mer (Abbildung 11, Seite 93), in der Ecke das Prokuristenzimmer (Abbildung 12, Seite 93). Die Buchhaltung nimmt die ganze Länge der Westfassade ein mit einer durchgehenden Schalterwand gegen den Vorraum und einem Reservezimmer gegen den Hof, sowie den erforderlichen Toiletträumlichkeiten für Angestellte und Direktion.

Der Sitzungssaal, als vornehmster Raum, hat Hoch-

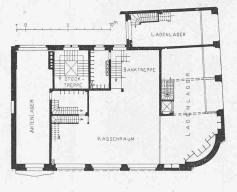
täfer in Eichenholz mit reichen Intarsien und gewölbter

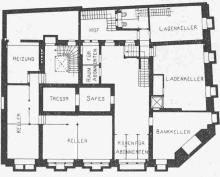
[Bd. LIV Nr. 7.

Kassettendecke, sorgfältig mit etwas Gold herausgehoben. Aehnlich, etwas einfacher, sind das

Konferenzzimmer und der Direktionsraum ausgestattet. Das Prokuristenzimmer, sowie der Raum für Buchhaltung sind mit gebeiztem Tannenholz getäfelt.

Die gesamte Einrichtung, wie Teppiche, Leuchtkörper, Möbel usw., sind nach besondern Zeichnungen der Architekten fast ausschliesslich von


und Handwerkern angefertigt und durchgehends dem Charakter des ganzen Baues entspre-


St. Galler Firmen

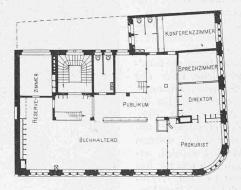


Abb. 6. Vorraum zu den Safes und Schreibkabinen im Untergeschoss.

chend einfach gehalten. — Mit der Bauleitung hatte die Firma Herrn Fritz Keller von Zürich beauftragt, der seine Aufgabe mit grosser Gewissenhaftigkeit durchführte.

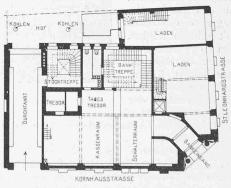
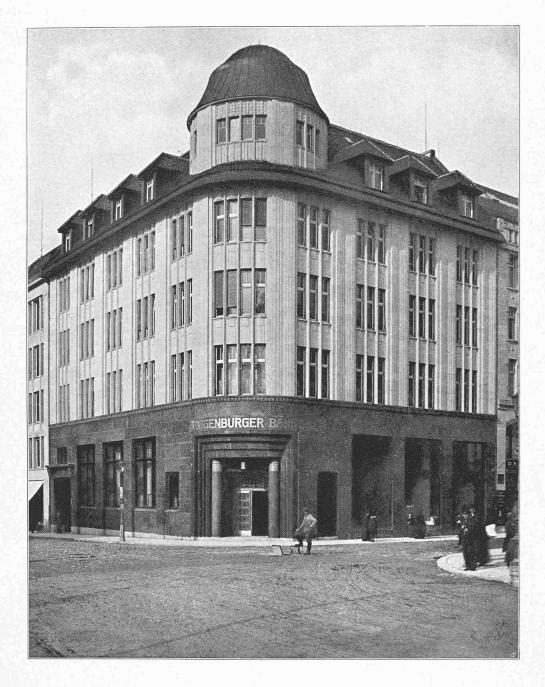



Abb. 1 bis 4. Grundrisse vom Untergeschoss, Erdgeschoss, Zwischengeschoss und I. Stock. Masstab I: 400.

DAS GEBÄUDE DER TOGGENBURGERBANK IN ST. GALLEN

Erbaut von den Architekten Curjel & Moser
GESAMTANSICHT VON DER LEONHARDSTRASSE AUS

Seite / page

90(3)

leer / vide / blank

Das Problem des Baues langer, tiefliegender Alpentunnels und die Erfahrungen beim Baue des Simplontunnels.

von Karl Brandau.

(Fortsetzung.)

Aehnliche Erwägungen, wie wir sie für den ersten Wassereinbruch bei Km. 4,4 anstellten, lassen uns das gekühlte Felsmassiv als $6\ km$ breit und 10 km lang ansehen,

seine Grundfläche daher = 6000 X 10000 = 60 000 000 m^2 . Die mittlere Gesteinstiefe mit 2000 m angenommen, ergibt sich ein Kubikinhalt von 120000 Millionen m³. Aus der Fläche dringen $\frac{60000000}{3600 \times 33} \times 4 = 2000$ Sekunden - Kalorien empor (Leitungskoeffizient = 4 Kal.; geotherm. Tiefenstufe = 33 m). Aus dem Verlaufe der Isothermen in Abbildung 22 ist erkenntlich1) dass der grössere Teil der geleiteten Wärme vom Gestein weiter geleitet wird; das Wasser übernimmt höchstens den vierten Teil derselben = 500 Std. Kal. Mit 40C tritt das Wasser von 300 l/Sek. in das Gebirge und könnte also im Tunnel nur mit $4 + \frac{500}{300} \infty$ 6 ° C austreten, während es tatsächlich mit 45° C austritt. Derart hat es $(45-6) \times 300 = 11700$ Sek. Kal. aufgenommen, die nicht von fortgeleiteter Wärme herrühren. Auch in diesem Falle findet sich keine andere Erklärung, als dass aufsteigende Wasser die grossen Wärmemengen herauftrugen. Die Gesteinstemperaturen müssen wir als stationär ansehen, also kann das Felsmassiv keine Wärme

abgeben.

Nach Schmidt und Königsberger sollen dagegen die Wasser vom Gesteine die hohe Wärme abgenommen haben. Wir prüfen kurz, wie dieser Vorgang gewesen sein müsste.

Von den Quellen mit 300 l/Sek., 40 C Anfangstemperatur beim Eintritt ins Felsmassiv und 450 C Austrittstemperatur sollen 300 \times (45 — 4) = 12300 Sek. Kal. dem Gestein entführt werden. Im Laufe der ungezählten Jahre

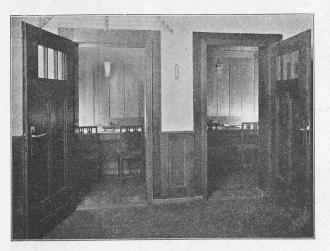


Abb. 7. Schreibkabinen für Abonnenten der Safes.

ging der gleiche Wärmeentzug vor sich und es kann nicht

bezweifelt werden, dass die heutige Wärmeverteilung in dem gekühlten Felsmassiv eine stationäre geworden ist. Ursprünglich, vor Eintritt der Abkühlung, soll das Gestein auf Tunnelhöhe 55°C gehabt haben; an der Oberfläche hatte es 5°C. Seine mittlere Temperatur betrug $\frac{5+55}{2}=30$ °C. Das Gestein hat eine Wärmekapazität von 550 Kal. im m^3 und somit betrug der Gesamtwärme-Gehalt des Gesteinsmassiv 120 000 Millionen \times 550 \times 30 = 1980 000 000 Millionen Kal.

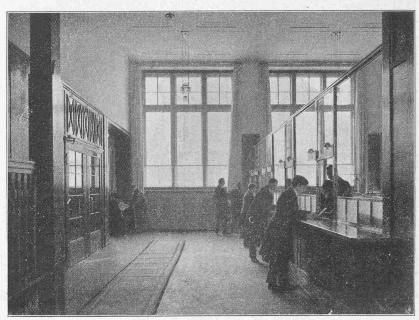


Abb. 8. Der Schalterraum im Erdgeschoss.

Entnehmen wir aus der Abbildung 22 nach dem Verlaufe der Isothermen den Teil des Wärmegehaltes im Felsmassiv, den das Wasser bis heute entzogen hat, so sehen wir folgendes: Die ursprüngliche Isotherme an der Einbruchstelle betrug 50 °C (heute ist an deren Stelle die Isotherme von 45 °C getreten). An den Grenzen des abgekühlten Massivs und an der Bergoberfläche sind die Isothermen unverändert. Vermindert ist die Temperatur längs der Wasser führenden Schicht im Mittel um $\frac{\circ + 5}{2} = \infty \, 3$ °C, an den Grenzen um o ° und die mittlere Abkühlung beträgt

$$nur \frac{\frac{3}{\frac{5}{2} + 5} + o}{\frac{2}{2}} = \frac{1}{18} der ursprünglichen.$$

Die dem Felsmassiv durch das Wasser entzogene Wärmemenge ist daher $^{1}/_{18} \times 1\,980\,000\,000$ Mill. gleich rund 110 000 000 Millionen Kalorien.

Unter Voraussetzung eines kontinuierlich erfolgten Wärmeentzuges von 12 300 Sek. Kalorien, entsprechend 380 000 Millionen Kalorien im Jahre müsste die von uns beobachtete Abkühlung des Felsmassivs innerhalb 110 000 380 = 300 Jahren vollzogen worden sein. Würden wir Annahmen gemacht haben, die zu einer Zeitdauer für die Abkühlung von 1000 Jahren und darüber geführt hätten, so könnte das an den Folgerungen aus obigem Resultate nichts ändern:

Der Wärmezustand in dem abgekühlten Gestein muss stationär geworden sein;

Eine weitere Gesteins-Abkühlung tritt nicht mehr ein; Es besteht kein Wärmezustrom vom Gestein zur Wassereinbruchstelle mehr;

Die grossen vom Wasser in den Tunnel geführten Wärmemengen sind von aufsteigenden Thermalwassern zugebracht.

¹⁾ Wie aus dem Folgenden hervorgeht, teilen wir nicht die Meinung, dass das Wasser kühlt. Um unsern Beweis zu führen, gehen wir auf die Meinung hier ein. Die unregelmässige Gestalt der zwischen zwei Isothermen von derselben Wärmehöhe (Königsbergersche und sekundär durch das Wasser beeinflusste) eingeschlossene Fläche lässt keine korrekte Berechnung der Abkühlung des Gesteins zu. Daher mussten wir uns mit einer Schätzung begnügen.

Uebrigens bestehen andere Umstände, welche sämtlich nur erklärbar werden, wenn man sich auf die Annahme des Zufliessens von Thermalwassern stützt, nämlich:

1. Das von Herrn Prof. Schmidt angegebene Einzugsgebiet an der Bergoberfläche für die Quellen von 330 l/Sek.

Das Gebäude der Toggenburger Bank in St. Gallen.

Erbaut von den Architekten Curjel & Moser.

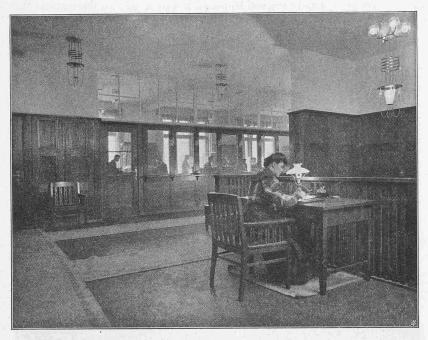


Abb. 10. Der Vorplatz im I. Stock.

ist weitaus unzureichend. Ein anderes Gebiet existiert nicht. (Siehe z. B. den Rapport des Herrn Schardt vom Jahre 1903, Seite 85 desselben.)

2. Neben Quellen von 45 bis 50° C sind Quellen von weniger als 30 °C in den Tunnel getreten. Es müssen also kalte Wasser von oben und aufsteigende thermale getrennt oder gemischt im Einbruch zusam-

3. Im Ansteigen der Kurve der beobachteten Gesteinstemperaturen, wie sie in Abbildung 22 dargestellt sind, kann kein Anzeichen von Abkühlung des Gesteins durch das Wasser, sondern nur das Gegenteil erblickt werden. Denn von etwa Km. 7 ab S.-P. bis Km. 9 ist die Gesteinstemperatur nahezu konstant. Von Km. 9 bis 9,14, d. h. auf 140 m steigt sie plötzlich von 41,5 auf 45° C. Da ist es, wo die ersten 200 l von 45 bis 46 °C einbrechen. Nun steigt die Temperatur der folgenden Quellen ständig bis auf 49,7 ° C bei Km. 9,8 und ganz streng dieser Steigung folgend, steigt auch die Gesteinstemperatur auf 49 bis 50 °. Wir erblicken darin eine Anheizung des Gesteines durch das Wasser.

men vorkommen.

4. Von Km. 7 der Nordseite bis zum Gebiete der heissen Quellen wurden ebenfalls heisse Wasser gelöst - die meisten derselben mit geringem Ertrage, von denen viele später versiegten. Auch diese sehen wir als von Thermen gespeist an. Allem Anscheine nach ist das ganze Gebirge von

vielen kleinen und grossen und darunter auch von wasserreichen Adern und Spalten durchquert. Nur durch Zufall hat der Tunnel auf den ersten Strecken von Km. 7 ab wenige dieser Wasseradern gelöst.

Aus der Beobachtung, dass im Stollen II sehr oft Quellen angeschlagen sind, die sich in ihrem Verhalten als unabhängig von allen im Stollen I angeschlagenen erwiesen haben (ein Beispiel dafür ist erwähnt im Rapport trimestriel, No. 24 vom 31, XII 1903), liegt es nahe, anzu-

nehmen, dass die Oeffnung solcher Wasserläufe nur gelegentlich, zufällig erfolgte und dass in der Umgebung des Tunnelrohres warme Wasser zirkulieren, deren Einwirkung auf den Wärmezustand des Gesteines zur Geltung kommt.

Aus unserer Annahme über den Vorgang der Bildung von Thermen und der Entsendung der thermalen Wasser in weitabliegende Gebiete folgt, dass im Gebiete über den Hohlräumen, in denen Thermalwasser entstehen können, die verfügbare fortzuleitende Wärmemenge gegen den normalen Zustand eine Verminderung erfahren würde — die Isotherme würde eine niedere. Die entzogene Wärme aber würde dafür an einzelne Gebiete im Gebirge in abnormaler Menge ausgegeben.

Wir werden nach diesen Betrachtungen in der Ansicht bestärkt, dass die Wirkung von fliessendem Wasser im Gestein unter einer Menge von zufälligen Umständen zusammenkommt, die durch eine Formel für die Berechnung der Wirkung nicht erfasst werden können. Dann ist es aber auch unerfindlich, wie die Berechnung der Wärmezustände im Simplon mit Hülfe der Königsbergerschen Formel zu einer Uebereinstimmung mit den im Simplon beobachteten Umständen geführt haben kann.

Nach den Betrachtungen und Berechnungen der Herren Thoma und Königsberger soll der Einfluss kalter und warmer Wasser meist übertrieben oder vielmehr nicht richtig in Rechnung gezogen werden, er soll überhaupt gering sein. Von einer Besprechung dieser Ausführung müssen wir absehen. Wir glauben, durch unsere Berech-

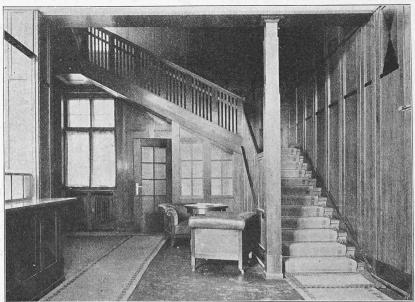


Abb. 9. Die Banktreppe im Schaltraum vom Erdgeschoss in den I. Stock.

nungen nachgewiesen zu haben, wie viel Wärme die Wasser im Simplon aufgenommen haben würden, wenn die Theorie und die Formeln zu Recht beständen. Wir haben gesehen, dass diese Voraussetzung nicht zutreffen kann, weil die

Das Gebäude der Toggenburger Bank in St. Gallen.

Wasser weit grössere Wärmemengen in den Tunnel werfen. Das führte zur Ueberzeugung, dass sich den von oben kommenden Niederschlagsmengen von unten aufsteigende warme Wasser beigesellen. Es ist klar, dass Zuflüsse von lediglich kalten Oberflächenwassern die Temperatur des Gesteins intensiver abgekühlt und die Abkühlung auf grössere

Entfernung von der Einbruchstelle bewirkt haben würden.

Der Gehalt der von uns als thermale bezeichneten Wasser an gelösten mineralischen Substanzen gibt uns keinen Anhalt, um die Richtigkeit unserer Behauptung durch weitere Gründe zu belegen. Wenn die Wasser ihre Wärme in einer Tiefe von mehr als 3000 m unter der Tunnelsohle erlangt haben, so haben sie auch Temperaturen von über 1500 gehabt. Dabei ist der kohlensaure Kalk vollkommen und der Gips zum grössten Teil niedergeschlagen - ähnlich wie viele andere Mineralsalze. Beim Aufstieg fanden die Wasser in verschiedenen Gesteinen die Gelegenheit, sich von neuem, aber in verschiedenem Mass wieder anzureichern.

Erfahrungen, welche der Simplontunnelbau bezügl. der Arbeitsbedingungen bei hohen Gesteintemperaturen und heissen Wassern geliefert hat.

Es erwies sich möglich, bei 55° Gesteinstemperatur normale Arbeitsbedingungen zu schaffen. Die Leistungen

im Stollen, im Vollausbruch und in der Mauerung entsprachen in jeder Hinsicht den Anforderungen, die im Vertrage gestellt waren. Man kann voraussehen, dass auch bei noch höhern Gesteinstemperaturen gleiche Erfolge in der Zukunft erzielt werden können. Die erforderlichen Mittel zur Kühlhaltung der Arbeitsräume sind leicht vorauszusehen und ebenso leicht anwendbar wie im Simplontunnel.

Mögen also die Gesteinstemperaturen auch hohe werden, so können sie doch dem Tunnelbau nicht annähernd das Mass von Erschwernissen bringen, das Einbrüche von warmen Wassern im Gefolge haben. Das wird eine Betrachtung der Wirkung der warmen Wasser im Km. 9 bis 10 S.-P. erweisen. Herr Prof. Schmidt bezeichnete im bereits ewähnten Rektoratsprogramm, Seite 102, die warmen Wasser als im Grunde keine "unangenehmen" Ueberraschungen, da sie auch hier als Kühlapparat in der Felsmasse gewirkt haben.

Selbst wenn die Voraussetzung, von der Herr Schmidt ausgeht, richtig wäre, so ist entgegen seiner Ansicht der Zufluss warmer Wasser das verhängnisvollste Ereignis, das sich beim Tunnelbau ereignen kann. Vorausgesetzt, die ursprüngliche Gesteinstemperatur habe 55 ° betragen und dieselbe habe sich um 8 ° abgekühlt (nach Schmidt und Königsberger), so würde dem Stollen freilich weniger Wärme zuströmen, als aus dem ungekühlten Gestein. Dieses Weniger berechnet sich auf eine Stollenlänge von 1 km auf etwa 1000000-700000 = 300,000 h/kal. für Stollen I und II während der Epoche der Arbeitsausführung (die Rechnung und Begründung kann hier nicht wiedergegeben werden). Nun soll aber die Abkühlung durch 300 l/Sek.

Wasser erfolgt sein, das in den Tunnel mit 46 °C sich ergiesst. In Strahlen, Traufen und Tropfen fällt das Wasser auf die Stollensohle, verbreitet sich überall, füllt den lockeren Schutt und wird aufgehalten durch Aufstauungen, bis es nach längerem Laufe durch alle Arbeitsstellen in einem Kanale gefasst teilweise unschädlich gemacht werden kann.

Da die Arbeitsräume auf 25°C Temperatur erhalten werden sollen, so hat das Wasser 20°C über dieses Mass und dementsprechend könnte es $300 \times 3600 \times 20 = 21200000$ Kalorien an die Stollenluft übertragen. Zum guten Glück findet es nicht die Zeit, dieses ganze Wärmequantum auszugeben. Bis es in die Kanäle geleitet werden konnte, gab es nur 6 Kalorien von jedem Liter ab, oder zusammen 300×3600×6 = $6480000 \ h/kal.$, das will sagen 20 mal soviel, als ein Gestein abgegeben haben würde durch eine um eventuell 8º höhere Temperatur.

Während es nun der Stollen-Ventilation gelingt, innerhalb verhältnismässig kurzer Zeit die Stollenwände um die 8 °C ihrer eventuell höhern Temperatur zu kühlen und mittelst mässiger Vermehrung der Kühlmittel den Zustrom der 300000 Kalorien zu mindern, bleiben die von den heissen Zuflüssen geschaffenen Verhältnisse hartnäckig und ewig dieselben. Tag aus, tag ein geht von einem jeden Liter stündlich derselbe Tribut an die Tunnelräume. Das un-

Abb. 11. Zimmer des Direktors im I. Stock.

ermüdliche Wasser schleppt aus allen Richtungen, Kilometer weit rings um den Tunnel herum die aus dem Gebirge ausgesogenen Wärmeladungen heran, um sie in dem Tunnel abzuladen. Es kühlt also nicht nur die Tunnelumgebung, sondern Kilometer tiefe Strecken und überschwemmt den



Abb. 22. Prokuristenzimmer im I. Stock.

Tunnel mit seiner Wärmemenge. Der Grad der Temperatur könnte wenig Schaden anrichten, es ist die Wärmemenge, die unüberwindlich werden kann.

Die vom heissen Wasser gewärmten Tunnelwände

trotzen jedem Abkühlungsversuch, Dampfbildung und Verhinderung der Arbeit direkt im heissen Wasser, alles das zusammen ist die "unangenehme", die grausame Ueberraschung dieses Kühlapparates.

Durch das beim Simplontunnelbau betätigte Ventilations- und Kühlverfahren mit seiner Ausgestaltung der Einrichtungen und seiner Leistungsfähigkeit war es ermög-

bei noch längern Tunnels nicht unbedingt zu wiederholen brauchen und dass die Erscheinungen am Simplon nur durch lokale Verhältnisse (Vorhandensein heisser Quellen, starke Ueberlagerung) hervorgerufen sein können".

Um zu einer Vorstellung von den scheinbar grösstmöglichen Erschwernissen durch heisse Zuflüsse zu gelangen, kann man sich höchstens auf die bekannten Beispiele

Das Gebäude der Toggenburger Bank in St. Gallen.

Erbaut von den Architekten Curjel & Moser.

Abb. 13. Leuchtkörper im Sitzungszimmer und im Vorplatz des I. Stocks.

licht, bei 55 °C Gesteinstemperatur normale Arbeitsleistung zu sichern. Nach den Einbrüchen des heissen Wassers wollte aber die programmgemässe Leistung mittelst der für solche Ueberbeanspruchung nicht geschaffenen Kühleinrichtung kaum noch gelingen. Zeitweise befand man sich vor einer von den Elementen aufoktroierten Situation; nur knapp wurde man mit den vorhandenen Einrichtungen wieder Herr der Lage.

Ein natürlicher "Kühlapparat", — nämlich die heissen Quellen — von wenig grösserem Umfang als der im Simplontunnel funktionierende, hätte gar leicht auf lange Zeit den Vortrieb lahmlegen können. Schon 300 Liter heissen Wassers, bei nur 20/00 Gefälle der Tunnelsohle statt bei 7 0/00 und ohne die Hilfsaktion eines zweiten Stollens hätten es schwer gemacht, sich von der "unangenehmen"

Ueberraschung zu erholen.

Die Grösse des Problems eines Tunnelbaues ist, wie man sieht, nicht so sehr abhängig vom Grade der zu erwartenden Gesteinstemperaturen; erst der Hinzutritt von warmem Wasser kann die Bekämpfung der Wärmemengen zu einem wirklich ernsten Problem machen. Demnach wird auch die Beantwortung der Frage, ob heisse Zuflüsse beim Tunnelbau in grossen Erdtiefen zu erwarten sind, stets von grösster Wichtigkeit sein. Leider wird, wie schon gesagt, eine zuverlässige Voraussage darüber stets in das Bereich der Unmöglichkeit fallen. Man kann hier höchstens vermuten. So liest man z. B. bei Mettler: "Der Splügen als ostschweizerischer Alpentunnel" folgende dem Werke Bernhardt's entnommene Vermutung: "Allerdings hört man von Sachverständigen die Ansicht äussern, dass sich die hohen Temperaturen auch

stützen. Die wesentliche Bedeutung für den Tunnelbau drückt sich in der Menge von Kalorien aus, welche über ein gewisses Niveau hinaus abgegeben werden können. Ein solches Niveau ist die zulässige Temperatur der Arbeitsräume von 25 bis 28 °C. Freilich ist zu berücksichtigen, dass die heissen Zuflüsse nur langsam ihre Wärme an die Umgebung abgeben. Je schneller es gelingt, sie zu fassen und kompakt abzuleiten, um so mehr bleibt die Erschwernis auf eine kurze Strecke beschränkt und um so weniger Kalorien gehen an den Arbeitsraum über. Am störendsten wird heisser Zufluss aus einer grossen Zahl Quellen, verteilt über lange Strecken. Im Simplon wurden insgesamt 360 bis 400 l/Sek. Wasser von 46 bis 50 °C gelöst, aber - auf einer sehr langen Strecke. Vielleicht ist dies Ereignis schon ein Höchstmass, das in den Erdtiefen, die in Bertracht stehen, vorkommt. Weder Massen kalter Zuflüsse, noch hohe Gesteinstemperaturen hatten in wirklich hohem Masse auf den Gang der Arbeiten störende Einwirkung - wohl aber der Zufluss der heissen Wasser. Zeitverluste und direkte wie indirekte ungeheure Kosten waren die Folge davon. Es ist wohl leicht zu kalkulieren, wie hoch die Kosten für einen Kubikmeter Ausbruch durch hohe Gesteinstemperaturen gesteigert werden. Dagegen wäre es ein kühnes Vermessen, annähernd die durch heisse Zuflüsse verursachten möglichen Kosten im Voraus veranschlagen zu wollen. Wenn ein Cerberus den Eingang zur Unterwelt bewacht, so war er in den heissen Zuflüssen gefunden worden.

Die Mittel zur Bewältigung heisser Zuflüsse sollten auch im best vorausbesagten langen tiefliegenden Tunnel