Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 53/54 (1909)

Heft: 10

Artikel: Die Gmündertobel-Brücke beu Teufen im Kanton Appenzell

Autor: Mörsch, E.

DOI: https://doi.org/10.5169/seals-28109

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die Gmündertobel-Brücke bei Teufen im Kanton Appenzell.

122

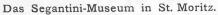
Von Prof. E. Mörsch, Ingenieur.

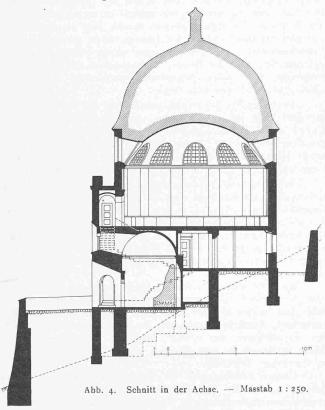
(Schluss.)

Statische Berechnung des grossen Bogens.

Die zur Berechnung dienende theoretische Spannweite ist l=79,64~m und der theoretische Pfeil f=25,50~m. Die Berechnung erfolgt nach der Elastizitätstheorie in Anlehnung an die vom Verfasser in der Schw. Bauzeitung, Band XLVII, S. 83 u. ff. veröffentlichten Methode.

Hienach ist der Bogenachse die Form einer Stützlinie für die ständige Last zu geben, was nur mittels Versuchsrechnungen möglich ist. Die erste Versuchsrechnung, die zu einer angenäherten Form geführt hat, wird hier nicht wiedergegeben, vielmehr wird nur die zweite, definitive Formberechnung vorgeführt. Die Gewichte, die zur Einrechnung der Stützlinienform benutzt werden, beziehen sich also auf die angenäherte Form, nachdem aber nur eine sehr geringe Abweichung der definitiven Form von der





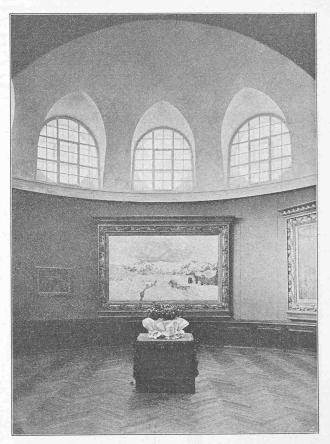


Abb. 7. Gemäldesaal im Segantini-Museum. Blick vom Eingang aus.

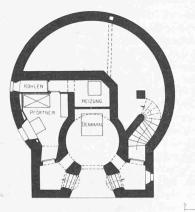
angenäherten sich ergibt, können die Gewichte als richtig angenommen werden.

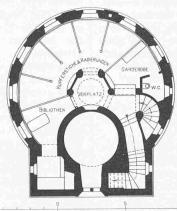
Mit Rücksicht auf die aus Abbildung 3 (S. 82) und Abbildung 27 (S. 124) ersichtliche Einteilung des Bogens in einzelne Lamellen erhält man die folgenden:

Lamellengewichte und Säulenlasten in t: 1)

o-i = 73,i	7 - 8 = 56,5	12—13 = 87,0
1-2 = 78,0	Säule 8 = 61,8	13-14 = 96,5
2-3 = 77,6	8-9=60,5	Säule 14 = 98,1
3-4 = 90,5	9-10 = 65,8	14-15 = 111,8
Säule $4 = 26,8$	Säule 10 = 70,0	15-16 = 121,8
4-5 = 48,5	10-11 = 71,1	Säule 16 = 116,8
5-6 = 50,8	11-12 = 77,5	16-17 = 132,7
Säule 6 = 55,7	Säule 12 = 82,0	17-A = 85,5
6-7 = 53.7		for the second second

 Es wird hier auf die detaillierten Angaben der Gewichtsberechnung verzichtet.





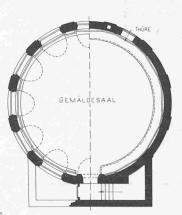
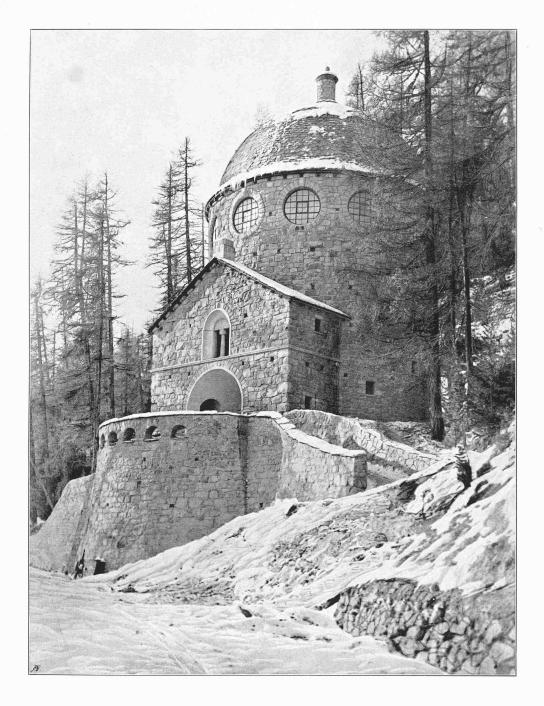


Abb. 1 bis 3. Grundriss vom Erdgeschoss, Zwischengeschoss und Obergeschoss. — Masstab 1:250.



Das Segantini-Museum in St. Moritz.

Erbaut von Nicol. Hartmann & Cie., Arch. in St. Moritz.

Seite / page

122(3)

leer / vide / blank

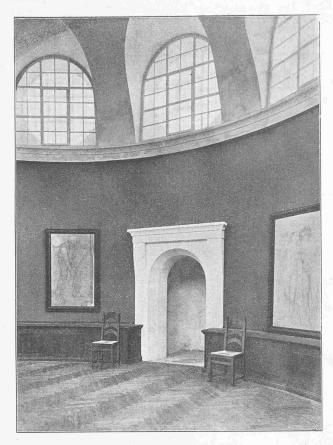


Abb. 8. Gemäldesaal im Segantini-Museum. Blick gegen den Eingang.

Der untere Stirnbogen des Gewölbes liegt in einer Ebene, die 1:54,66 geneigt ist. Der Querschnitt des Gewölbes ist aber immer ein Rechteck, sodass die Radialfugen an der Gewölbestirn senkrecht auf den Mantellinien der Gewölbeleibung stehen.

Momente der Lamellengewichte vom Scheitel her in Bezug auf die einzelnen Schnitte (Lamellenmomente). (Siehe Abbildung 27 auf Seite 124.)

Schnitt	Moment in mt			ys in m
Scheitel C		=	0	0
I	$0 + 0 \cdot 2,525 + 73 \cdot \frac{2,525}{2}$	=	92,2	0,075
2	$92,2 + 73 \cdot 2,525 + 78 \cdot \frac{2,525}{2}$	-	375,0	0,306
3	$375,0 + 151 \cdot 2,25 + 78 \cdot \frac{2,25}{2}$	=	802,6	0,653
4	$802,6 + 229 \cdot 2,25 + 91 \cdot 1,125$	=	1420,3	1,155
5	$1420,3 + 320 \cdot 2,25 + 27 \cdot 2,05 + 48 \cdot 1,1$	25 =	= 2250,7	1,831
6	$2250,7 + 395 \cdot 2,25 + 51 \cdot 1,125$	=	3196,9	2,601
7	$3196,9 + 502 \cdot 2,25 + 54 \cdot 1,125$	=	4387,2	3,570
8	$4387.2 + 556 \cdot 2.25 + 56 \cdot 1.125$	_	5701,2	4,639
9	$5701,2 + 674 \cdot 2,25 + 60 \cdot 1,125$	=	7285,2	5,928
10	$7285,2 + 734 \cdot 2,25 + 66 \cdot 1,125$	=	9010,0	7,332
. 11	$9010,0 + 870 \cdot 2,25 + 71 \cdot 1,125$	=	11047,4	8,990
I 2	$11047,4 + 941 \cdot 2,25 + 77 \cdot 1,125$	=	13251,3	10,783
12	$13251,3 + 1100 \cdot 2,25 + 87 \cdot 1,125$	_	15824,2	12,877
14	$15824,2 + 1187 \cdot 2,25 + 96 \cdot 1,125$	_	18603,0	15,138
15	$18603,0 + 1381 \cdot 2,25 + 112 \cdot 1,125$	_	21836,3	17,769
16	21836,3 +1493 · 2,25 +122 · 1,125		25332,8	20,615
17	25332,8 +1731 · 2,05 +133 · 1,025		29017,7	23,614
Kämpler A	29017,7 + 1864 · 1,22 + 85 · 0,52		31336,0	25,500

In vorstehender Tabelle ist jedes folgende Moment mit Benutzung des vorhergehenden berechnet; da das unmittelbar berechnete Moment in Bezug auf den Kämpfer mit dem Wert in der Tabelle übereinstimmt, so ist damit

auch die Richtigkeit der Momente auf alle übrigen Schnitte nachgewiesen. Aus dem Moment in Bezug auf den Kämpfer wird mit Division durch $f=25,50\,$ m der Horizontalschub H_s erhalten und wenn man mit diesem wieder in die einzelnen Lamellenmomente dividiert, so ergeben sich die Ordinaten y_s der Stützlinie, bezogen auf die Horizontale durch die Scheitelmitte;

$$H_s = \frac{31336,0}{25,5} = 1228,86 \ t.$$

Als elastische Elemente werden die Bogenstücke zwischen den Säulen angenommen und zwar mit Pücksicht auf die Ermittlung der Einflusslinien, die zwischen je zwei Säulen gerade verlaufen. Man erhält dann an den Eckpunkten genaue Einflussordinaten.

Elastische Gewichte und deren Schwerpunkt in m.

$w_y = w \cdot y$	$y = y_0 - y_s$	w · ys	y_s	70	$J = \frac{1}{12} b h^3$	h	ь	S	No.
+28,242	+ 5,359	0,3953	0,075	5,27	0,9596	1,21	6,50	5,06	I
+21,132	+ 4,781	2,8863	0,653	4,42	1,0359	1,24	6,52	4,58	II
+14,880	+ 3,603	7,5620	1,831	4,13	1,1482		6,57	100 5	III
+ 6,770	+ 1,865	12,9591	3,570	3,63	1,3593	1,35	6,63	4,94	IV
- 1,575	- 0,494	18,9103	5,928	3,19	1,6376	1,43	6,72	5,25	V
- 9,672	- 3,556	24,4528	8,990	2,72	2,0788	1,54	6,83	5,65	VI
- 17,044	- 7,443	29,4883	12,877	2,29	2,7541	1,68	6,97	6,30	VII
-23,066	-12,335	33,2280	17,769	1,87	3,7727	τ,85	7,15	7,06	VIII
-19,668	<u>-17,561</u>	25,7544	22,995	1,12	5,1928	2,04	7,34	5,83	IX
-71,024			-, -,-						112
+71,025		155,6365		28,64		_	-	-	$\Sigma =$

Der Abstand des Schwerpunktes der elastischen Gewichte unter der Mitte der Scheitelfuge wird

$$y_0 = \frac{155,6365}{28,64} = 5,434 m.$$

Durch diesen Schwerpunkt wird ein neues Koordinatensystem gelegt und auf dieses werden die Ordinaten y der elastischen Gewichte bezogen. Alsdann gelten für die in

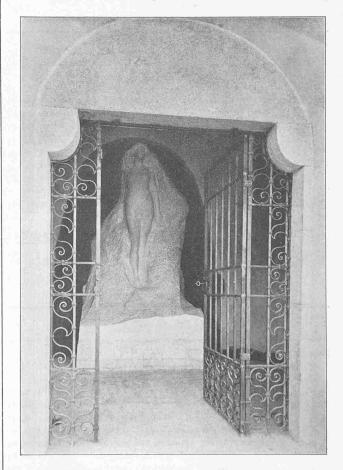
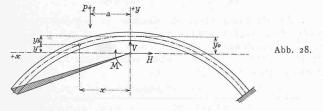


Abb. 6. Leonardo Bistolfis Grabdenkmal für Segantini.

starrer Verbindung mit dem linken Kämpferquerschnitt zu denkenden, statisch unbestimmten Auflegerreaktionen, und für den Fall einer Einzelbelastung P=1 in a die Ausdrücke:

$$H = \frac{-\frac{l|_{2}}{-\sum\limits_{x}^{2}w_{y}\left(a-x\right)}}{\sum\limits_{y}\cdot w_{y}+\sum\limits_{x}^{s}}, \ V = \frac{-\frac{l|_{2}}{-\sum\limits_{x}^{2}w_{x}\left(a-x\right)}}{\sum\limits_{x}\cdot w_{x}}, \ M = \frac{-\frac{l|_{2}}{\sum\limits_{x}^{2}w\left(a-x\right)}}{\sum\limits_{x}^{2}w}$$



Die Berechnung der Einflussordinaten wird zahlenmässig durchgeführt, da die graphische Lösung nicht die erforderliche Genauigkeit bietet. Zunächst werden in der

folgenden Tabelle die von der Belastung unabhängigen Nenner der Ausdrücke berechnet. Die Zähler sind jeweils die statischen Momente der elastischen Gewichte rechts von der Last in Bezug auf die Wirkungsgerade der Last. Wenn man daher die wandernde Einzellast P = 1 von rechts beginnend nacheinander die Stellungen über den Säulen einnehmen lässt, so können die statischen Momente der elastischen Gewichte w_y , w_x

 Σw

und w, ähnlich wie die Lamellenmomente, jedesmal unter Benutzung des vorhergehenden berechnet werden.

(Siehe Tabelle der Momente der Lamellengewichte S. 123.)

Berechnung der Nenner.

No.	าบ	y	$w_y = w \cdot y$	$y \cdot w_y = \\ = w \cdot y^2$	x	$w_{x} = \\ = w \cdot x$	$x \cdot w_X = \\ = w \cdot x^2$	$w \cdot x \cdot y$	$\frac{s}{F}$
I	5,27	+ 5,359	+28,242	151,34	2,52	13,307	33,60	+ 71,31	0,64
II	4,42	+ 4,781	+21,132	101,03	7,30	32,266	235,54	+ 154,26	0,57
III	4,13	+ 3,603	+14,880	53,61	11,80	48,734	575,06	+ 175,58	0,56
IV	3,63	+ 1,865	+ 6,770	12,63	16,30	59,169	964,45	+ 110,35	0,55
V	3,19	- 0,494	— 1,575	0,78	20,80	66,352	1380,12	- 32,76	0,55
VI	2,72	- 3,556	9,672	34,39	25,30	68,816	1741,04	_ 244,70	0,54
VII	2,29	- 7,443	-17,044	126,86	29,80	68,242	2033,61	- 507,91	0,54
VIII	1,87	-12,335	-23,066	284,52	34,30	64,141	2200,03	— 791,16	0,53
IX	1,12	-17,561	-19,668	345,39	38,18	42,767	1633,07	— 751 , 02	0,39
$\sum_{0}^{l _2}$	28,64	-	_	1110,55	_	463,794	10796,52	_1816,05	4,87

Nenner:
$$\Sigma w \cdot y^2 + \frac{s}{F} = 2 (1110,55 + 4,87) = \underline{2230,84}$$

 $\Sigma w \cdot x^2 = 2 \cdot 10796,52 = 21593,04$

 $= 2 \cdot 28,64 = 57,28$

Einflussordinaten von H.

<i>P</i> = 1 in	$\sum_{a}^{-\ell _2} w_y \ (a-x)$						
Kämpfer red	hts = o	o					
16'	$-19,668 \cdot 1,635 = -32,154$	7 0,014					
14'	$=$ 32,157 $=$ 19,668 \cdot 4,50 $=$ 23,066 \cdot 2,25 $=$ 172,56	0,077					
12'	$-172,561-42,734\cdot4,50-17,044\cdot2,25 = -403,21$	3 0,181					
10'	$-403,213-59,778\cdot4,50-9,672\cdot2,25=-693,979$	6 0,311					
8'	$-693,976-69,450\cdot 4,50-1,575\cdot 2,25=-1010,04$	7 0,453					
6'	$-1010,047 - 71,025 \cdot 4,50 + 6,770 \cdot 2,25 = -1314,42$	7 0,590					
4	$-1314,427 - 64,255 \cdot 4,50 + 14,880 \cdot 2,25 = -1570,09$	4 0,704					
2 '	$-1570,094 - 49,375 \cdot 4,50 + 21,132 \cdot 2,25 = -1744,73$	4 0,783					
Scheitel	$-1744,734 - 28,243 \cdot 5,05 + 28,242 \cdot 2,525 = -1816,04$	5 0,815					

Die unterstrichene Zahl 1816,045 ist identisch mit \mathcal{L}_{wxy} , die schon in der vorhergehenden Tabelle berechnet ist.

Einflussordinaten von V.

<i>P</i> = I in	$\sum_{a}^{-l _2} v x \ (a-x)$								
Kämpfer recl	alts = 0	О							
16'	$42,767 \cdot 1,635 = 69,924$	0,003							
14'	$69,924 + 42,767 \cdot 4,5 + 64,141 \cdot 2,25 = 406,693$	0,019							
12'	$406,693 + 106,908 \cdot 4,5 + 68,242 \cdot 2,25 = 1041,324$	0,048							
10'	$1041,324 + 175,150 \cdot 4,5 + 68,816 \cdot 2,25 = 1984,335$	0,092							
8 ′	$1984,335 + 243,966 \cdot 4,5 + 66,352 \cdot 2,25 = 3231,474$	0,150							
6'	$3231,474 + 310,318 \cdot 4,5 + 59,169 \cdot 2,25 = 4761,035$	0,220							
4	$4761,035 + 369,487 \cdot 4.5 + 48,734 \cdot 2,25 = 6533.379$	0,303							
2 '	$6533,379 + 418,221 \cdot 4,5 + 32,266 \cdot 2,25 = 8487,973$	0,393							
Scheitel	$8487,973 + 450,487 \cdot 5,05 + 13,307 \cdot 2,525 = 10796,532$	0,500							

Die Ordinaten der Einflusslinie von V auf der linken Hälfte ergeben sich durch Subtraktion derjenigen entspre-

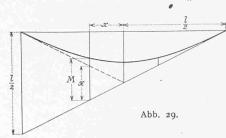
chender Punkte auf der linken Seite von 1,000. Die unterstrichene Zahl 10796,532 ist identisch mit $\overset{``}{\Sigma}w\cdot x^2$ und übereinstimmend mit der in der frühern Tabelle ermittelten Zahl. Finflussordinaten von M

Abb. 27.

		7777					
P = I in	$\sum_{i} \tau_{ij} (a_i - x)$						
Kämpfer rechts	= 0	0					
16'	$1,12 \cdot 1,635 = 1,831$	0,032					
14'	$1,831 + 1,12 \cdot 4,5 + 1,87 \cdot 2,25 = 11,079$	0,193					
I 2 '	$11,079 + 2,99 \cdot 4,5 + 2,29 \cdot 2,25 = 29,687$	0,518					
10'	$29,687 + 5,28 \cdot 4,5 + 2,72 \cdot 2,25 = 59,567$	1,040					
8'	$59,567 + 8,00 \cdot 4,5 + 3,19 \cdot 2,25 = 102,745$	1,794					
6'	$102,745 + 11,19 \cdot 4,5 + 3,63 \cdot 2,25 = 161,268$	2,815					
4	$161,268 + 14,82 \cdot 4,5 + 4,13 \cdot 2,25 = 237,251$	4,142					
2 '	$237,251 + 18,95 \cdot 4,5 + 4,42 \cdot 2,25 = 332,472$	5,804					
Scheitel	$332,472 + 23,37 \cdot 5,05 + 5,27 \cdot 2,525 = 463,798$	8,097					

Die unterstrichene Zahl ist identisch mit Σ

Die Einflussordinaten M der linken Hälfte erhält man aus denjenigen der symmetrischen Punkte der rechten Hälfte durch Vermehrung um x, also:



Einflussordinaten M der linken Hälfte.

P = I in	M	P = I in	M
Kämpfer links	39,82	8	20,344
16	36,582	6	16,865
14	32,243	4	13,692
12	28,068	2	10,854
10	24,090	Scheitel	8,097

Die bei ständiger Last zu den Kräften der mittlern Stützlinie noch hinzutretende Ergänzungskraft H_{ϵ} , die von der Deformation durch die Normalkräfte herrührt, wird

$$H_{e} = \frac{-H_{s} \sum \frac{s}{F}}{\sum w \cdot y^{2} + \sum \frac{s \cos^{2} \varphi}{F}} = \frac{-1228,86 \cdot 9,74}{2230,84} = -5,4 t,$$
where der Nenner gerade so gross wie derienige für

wobei der Nenner gerade so gross wie derjenige für ${\cal H}$ gewählt werden konnte.

Für einen Temperaturunterschied von $\tau = \pm 20^{\circ}$ C. wird mit $\alpha = 0,000012$ und E = 20000000 t/m^2

$$H_{\tau} = \pm \frac{E \cdot a \cdot \tau \cdot l}{\sum w \cdot y^2 + \sum \frac{s}{F}} = \pm \frac{2 \cdot 000 \cdot 000 \cdot 0000 \cdot 0000 \cdot 12 \cdot 20 \cdot 79,64}{2230,84} = \pm 17,2 \ t.$$

Die Berechnung der Einflussordinaten der Kernmomente erfolgt nach der Formel

$$M_k = M_o + M - H \cdot y_k - V \cdot x_k$$

wobei die für eine wandernde Einzellast $P=\mathfrak{1}$ eintretenden Werte der Reihe nach einzusetzen sind.

Einflussordinaten der Kernmomente im Scheitel.

$$x_o = x_u = 0$$
, $y_o = 5,63 m$ und $y_u = 5,23$,

also, da für Einzellasten $P=\mathbf{1}$ auf der rechten Hälfte $M_o=o$ ist:

$$M_k = M - Hy_k$$
.

Einflussordinaten der Kernmomente im Kämpfer.

P = I in	M_{ku}	$-V \cdot x_u$	$-H \cdot y_u$	M	$-H\cdot y_o$	$-V \cdot x_o$	M_{ko}
K. rechts	0	0	0	0	0	0	0
16'	+0,19	— O,I2	+ 0,28	+ 0,03	+ 0,28	- O,I2	+0,19
14'	+ 1,00	- 0,75	+ 1,56	+ 0,19	+ 1,53	— 0,76	+ 0,96
12	+ 2,29	- 1,90	+ 3,67	+ 0,52	+ 3,60	- 1,93	+ 2,19
10'	+3,72	- 3,64	+ 6,32	+ 1,04	+ 6,18	- 3,69	+3,52
8'	+ 5,05	- 5,93	+ 9,19	+ 1,79	+ 9,00	- 6,02	+ 4,77
6'	+6,10	- 8,69	+11,97	+ 2,82	+11,73	- 8,83	+ 5,72
4	+ 6,45	-11,97	+14,28	+ 4,14	+14,00	- 12,16	+ 5,98
2 '	+6,15	-15,53	+15,88	+ 5,80	+15.57	- I 5,77	+ 5,60
Scheitel C	+ 4,87	-19,76	+16,53	+ 8,10	+16,20	-20,06	+ 4,24
2	+ 2,74	-23,99	+15,88	+10,85	+15,57	-24,35	+ 2,07
4	+0,42	-27,55	+14,28	+13.69	+14,00	-27,96	-0,27
6	— I,99	-30,83	+11,97	+16,87	+11,73	-31,29	- 2,69
8	- 4,06	-33,59	+ 9,19	+20,34	+ 9,00	-34,10	- 4,76
10	- 5,47	-35,88	+ 6,32	+24,09	+ 6,18	-36,43	- 6,16
12	- 5,88	-37,62	+ 3,67	+28,07	+ 3,60	-38,19	- 6,52
14	- 4,97	-38,77	+ 1,56	+32,24	+ 1,53	-39,36	- 5,59
16	- 2,54	-39,40	+ 0,28		+ 0,28	-40,00	- 3,14
K. links	+0,30	-39,52	0	+39,82	0	-40,12	- 0,30

Die Gmündertobel-Brücke bei Teufen im Kanton Appenzell.

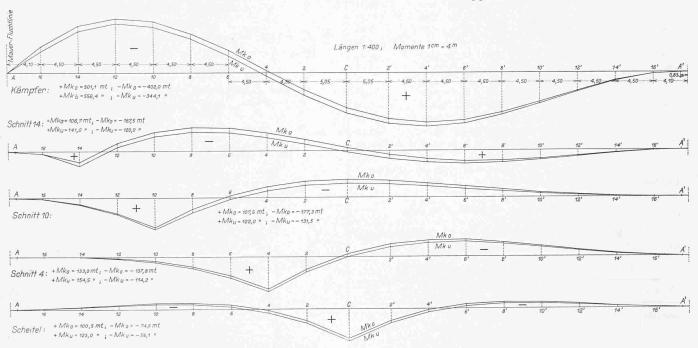


Abb. 30. Statische Berechnung des grossen Bogens. — Einflusslinien der Kernmomente.

P = I in	M_{ku}	$-H \cdot y_{ku}$	M	$-H \cdot y_{ko}$	M_{ko}
Kämpfer rechts	0	0	0	0	0
16'	- 0,04	- 0,07	+ 0,03	0,08	— o,o5
14'	— 0,2I	- 0,40	+0,19	- 0,43	- 0,24
12'	- 0,42	- 0,94	+0,52	- I,O2	— 0,50
10'	— o,58	— 1,62	+ 1,04	- 1,75	- 0,71
8′	- o,57	- 2,36	+ 1,79	- 2,55	- 0,76
6′	- 0,26	- 3,08	+ 2,82	- 3,32	— 0,50
4 '	+ 0,47	- 3,67	+ 4,14	- 3,96	+0,18
2 '	+ 1,71	- 4,09	+ 5,80	- 4,40	+ 1,40
Scheitel C	+3,85	- 4,25	+ 8,10	- 4,58	+ 3,52

Für den linken Kämpferquerschnitt ist M_o ebenfalls = o, ferner:

$$y_o = -19,87 m$$
 $x_o = 40,12 m$
 $y_u = -20,27 m$ $x_u = 39,52 m$.

An den Kämpfern erhalten die Einflusslinien der Kernmomente mit Rücksicht auf die indirekte Lastübertragung die aus Abbildung 30 ersichtliche Form.

Für Schnitt 14 ist:

$$y_o = -9,51 m$$
 $x_o = 32,27 m$
 $y_u = -9,89 m$ $x_u = 31,83 m$.

Einflussordinaten der Kernmomente im Schnitt 14 (Fortsetz. S. 126).

<i>P</i> = 1 in	M_{ku}	Mo	$-V \cdot x_u$	$-H\cdot y_u$	M	$-H \cdot y_0$	$-V \cdot x_o$	M_o	M_{ko}
Kämpf. rec	hts o		0	0	0	0	0		0
16'	+0,07		- 0,10	0,14	0,03	0,13	- 0,10		+0,06
14'	+0,34		— o,61	0,76	0,19	0,73	— o,61		+0,31
I 2 '	+0,78		- I,53	1,79	0,52	1,72	- 1,55		+0,69
10'	+1,18		- 2,93	3,07	1,04	2,95	- 2,97		+1,02
8 '	+1,50		- 4,77	4,48	1,79	4,30	- 4,84		+1,25
6'	+1,65		- 7,00	5,83	2,82	5,61	- 7,10		+1,33
4'	+1,45		- 9,64	6,95	4,14	6,69	- 9,78		+1,05
2 '	+1,03		-12,51	7,74	5,80	7,44	—12,68		+0,56

Einflussordinaten der Kernmomente im Schnitt 14.

P = 1 in	M_{ku}	M_o	$-V \cdot x_u$	$-H \cdot y_u$	M	$-H\cdot y_o$	$-V \cdot x_o$	M_o	M_{ko}
Scheitel C	+0,23	-	-15,92	8,05	8,10	7,74	-16,13		-0,29
2	-o,73		-19,32	7,74	10,85	7,44	- 19,59		-1,30
4	-1,55		-22,19	6,95	13,69	6,69	-22,49		-2,1I
6	-2,13		-24,83	5,83	16,87	5,61	-25,17	1.0	-2,69
8	-2,24		-27,06		20,34	4,30	-27,43		-2,79
10	-1,74		-28,90	3,07	24,09	2,95	-29,30		-2,26
12	-0,44		-30,30	1,79	28,07	1,72	-30,72		-o,93
14	+1,77		-31,23	0,76	32,24	0,73	-31,66		+1,31
16	+0,27	-4,72	-31,73	0,14	36,58	0,13	-32,17	-4,28	+0,26
Kämpf, link	S O	-7,99	-31,83	0	39,82	0	-32,27	-7,55	0

Für Schnitt 10 ist:

$$y_o = -1,70 m$$
 $x_o = 23,19 m$
 $y_u = -2,10 m$ $x_u = 22,91 m$.

Einflussordinaten der Kernmomente im Schnitt 10.

P = 1 in	Mku	$M_o = V \cdot x_u$	$-H \cdot y_u$	M	$-H \cdot y_0$	$-V \cdot x_o$	M_o	M_{ko}
Kämpf. rech	its o	0	0	0	0	0		0
16'	-0,01	- 0,07	0,03	0,03	0,02	- 0,07		-0,02
14'	-0,09	- 0,44	0,16	0,19	0,13	- 0,44		—o, I 2
12'	-0,20	- 1,10	0,38	0,52	0,31	- 1,11		-o,28
10'	-0,42	- 2,11	0,65	1,04	0,53	- 2,13		-o,55
8′	-0,70	- 3,44	0,95	1,79	0,77	- 3,48		-0,92
6'	-0,99	- 5,04	1,23	2,82	1,00	- 5,10		-1,28
4	-1,33	- 6,94	1,47	4,14	1,19	- 7,03		-1,70
2 '	-1,56	- 9,00	1,64	5,80	1,32	- 9,11		-1,99
Scheltel C	-1,66	-11,46	1,70	8,10	1,38	-11,60		-2,12
2	-1,42	-13,91	1,64	10,85	1,32	-14,08		-1,91
4	0,81	-15,9	7 1,47	13,69	1,19	-16,16		-1,28
6	+0,23	-17,8	7 1,23	16,87	1,00	-18,09		-0,22
8	+1,82	-19.47		20,34	0,77	-19,71		+1,40
10	+3,94	-20,80	0,65	24,09	0,53	-21,06		+3,56
12	+2,00-	- 4,64 21,8	0,38	28,07	0,31	-22,08	- 4,36	+1,94
14	+0,79-	- 9,14 22,47	0,16	32,24	0,13	-22,75	— 8,86	+0,76
16	+0,13-	-13,64 -22,8	4 0,03	36,58	0,02	-23,12	-13,36	+0,12
Kämpf, link	s o -	-16,91 22,9	0 1	39,82	0	-23,19	-16,63	0

Für Schnitt 4 ist:

$$y_o = +4,50 m$$
 $x_o = x_u = x = 9,55$

 $y_u = +4,06 m.$

Die Kernpunkte werden hier der Einfachheit wegen in einem vertikalen Schnitt angenommen.

Einflussordinaten der Kernmomente im Schnitt 4.

P = 1 in	M_{ku}	M_o	$-H \cdot y_u$	$-V \cdot x$	M	$-H \cdot y_o$	M_o	M_{ko}
Kämpf, rechts	0		0	0	0	0		0
16'	-0,06		-0,06	-0,03	0,03	-0,06		—o,o6
14'	-0,30		0,31	-o,18	0,19	-o,35		-0.34
I 2 '	-0,67		-o,73	-0,46	0,52	о,81		-0,75
10'	-1,10		-1,26	_o,88	1,04	-1,40	111-11	-1,24
8'	- I,47	1 + -	-1,83	-1,43	1,79	2,03		-1,67
6'	-1,67		-2,39	-2,10	2,82	-2,65		-1,93
4	— т,6o	2	- 2,85	-2,89	4,14	-3,16		-1,91
2 '	-1,12		-3,17	-3,75	.5,80	-3,52		-1,47
Scheitel C	+0,02		-3,30	-4,78	8,10	3,66		-0,34
2	+1,88		-3,17	— 5,80	10.85	-3,52		+1,53
4	+4,18		-2,85	-6,66	13,69	-3,16		+3,87
6	+2,53	- 4,50	-2,39	-7,45	16,87	-2,65	- 4,50	+2,27
8	+1,39	- 9,00	-1,83	-8,12	20,34	-2,03	- 9,00	+1,19
. 10	+0,66	-13,50	-1,26	-8,67	24,09	-1,40	-13,50	+0,52
12	+0,25	-18,00	-0,73	-9,09	28,07	-o,81	-18,00	+0,18
14	+0,05	-22,50	-0,31	-9,38	32,24	-0,35	-22,50	+0,01
16	+0,00	-27,00	-0,16	-9,52	36,58	-0,06	-27,00	+0,00
Kämpf, links	0	-30,27		-9,55	39,82	0	-30,27	0

Auf Grund der ausgerechneten Ordinatenwerte wurden die Einflusslinien der Kernmomente aufgezeichnet (Abb. 30). Eine Vergleichsberechnung zeigte, dass bei den verschiedenen Formen der Einflusslinien die durchgehende Belastung

durch Menschengedränge von 450 kg/m² grössere Kernmomente ergibt, als der Lastwagen von 20 t in Verbindung mit Menschengedränge vorn und hinten.

Die Belastung von 450 kg/m^2 ergibt bei 6,90 m Breite zwischen den Geländern $p = 0.45 \cdot 6.9 = 3.1 t/m$.

Die Inhalte der Einflussflächen wurden aus der Zeichnung als Summe der Trapeze und Dreiecke ermittelt und zwar erhielt man folgende Grenzwerte der

Kernmomente von Verkehrslasten:

Kämpfer:

$$-M_{ko} = -402,0 \text{ mt} + M_{ko} = +501,1 \text{ mt}$$

$$-M_{ku} = -344,1 \text{ , } + M_{ku} = +556,4 \text{ , }$$
Schnitt 14:

$$-M_{ko} = -167,5 \text{ mt} + M_{ko} = +106,7 \text{ mt}$$

$$-M_{ku} = -120,0 \text{ , } + M_{ku} = +141,0 \text{ , }$$
Schnitt 10:

$$-M_{ko} = -177,3 \text{ mt} + M_{ko} = +107,3 \text{ mt}$$

$$-M_{ku} = -131,5 \text{ , } + M_{ku} = +122,0 \text{ , }$$
Schnitt 4:

$$-M_{ko} = -137,8 \text{ mt} + M_{ko} = +133,0 \text{ mt}$$

$$-M_{ku} = -114,2 \text{ , } + M_{ku} = +154,5 \text{ , }$$
Scheitel:

$$-M_{ko} = -74,6 \text{ mt} + M_{ko} = +100,5 \text{ mt}$$

$$-M_{ku} = -56,1 \text{ , } + M_{ku} = +123,0 \text{ , }$$
Berechnung der Randspannungen.

Kämpfer:

$$F = 743 \cdot 213 = 158259 \ cm^{2};$$

$$W = \frac{1}{6} \cdot 743 \cdot 213^{2} = 5618000 \ cm^{3};$$

$$N_{s} = \sqrt[3]{1949^{2} + 1229^{2}} = 2305 \ t = 2305000 \ kg.$$
a) Vom Eigengewicht:
$$\sigma_{o} = \frac{N_{s}}{F} - \frac{H_{e} \cdot y_{u}}{W} = \frac{2305000}{158259} - \frac{5400 \cdot 2027}{5618000} = 12,7 \ kg/cm^{2}$$

$$\sigma_{u} = \frac{N_{s}}{F} + \frac{H_{e} \cdot y_{o}}{W} = \frac{2305000}{158259} + \frac{5400 \cdot 1987}{5618000} = 16,5 \ kg/cm^{2}.$$
b) Von Verkehrsbelastung:
$$\sigma_{o} = + \frac{55640000}{5618000} = + 9,9 \ kg/cm^{2}$$

$$\sigma_{u} = + \frac{40200000}{5618000} = + 7.2 \text{ kg/cm}^{2}$$

$$\sigma_{o} = -\frac{34410000}{5618000} = - 6.1 \text{ kg/cm}^{2}$$

$$\sigma_{u} = -\frac{50110000}{5618000} = - 8.9 \text{ kg/cm}^{2}.$$

c) Von Temperaturänderung
$$\tau = \pm 20^{\circ}$$
 C.:

$$\sigma_{o} = \pm \frac{17200 \cdot 2027}{5618000} = \pm 6.2 \ kg/cm^{2}$$

$$\sigma_{u} = \pm \frac{17200 \cdot 1987}{5618000} = \pm 6.0 \ kg/cm^{2}.$$

Schnitt 14:

$$F = 705 \cdot 175 = 123400 \text{ cm}^2;$$

 $W = \frac{1}{6} \cdot 705 \cdot 175^2 = 3618000 \text{ cm}^3;$

 $N_s = 1851000 \ kg$ aus dem Kräfteplan abgemessen.

a) Vom Eigengewicht:

$$\sigma_o = \frac{N_s}{F} - \frac{H_e \cdot y_u}{W} = \frac{1851000}{123400} - \frac{5400 \cdot 989}{3618000} = 13,5 \text{ kg/cm}^2$$

$$\sigma_u = \frac{N_s}{F} + \frac{H_e \cdot y_o}{W} = \frac{1851000}{123400} + \frac{5400 \cdot 951}{3618000} = 16,4 \text{ kg/cm}^2.$$
b) Von Verkehrsbelastung:

b) Von Verkehrsbelastung:

$$\sigma_{o} = + \frac{14100000}{3618000} = + 3.9 \text{ kg/cm}^{2}$$

$$\sigma_{u} = + \frac{16750000}{3618000} = + 4.6 \text{ kg/cm}^{2}$$

$$\sigma_{o} = - \frac{120000000}{3618000} = - 3.3 \text{ kg/cm}^{2}$$

$$\sigma_{u} = - \frac{10670000}{3618000} = - 2.9 \text{ kg/cm}^{2}$$

c) Von Temperaturänderung:

$$\sigma_o = \pm \frac{17200 \cdot 989}{3618000} = \pm 4.8 \ kg/cm^2$$
 $\sigma_u = \pm \frac{17200 \cdot 951}{3618000} = \pm 4.6 \ kg/cm^2$.

$$F = 677 \cdot 148 = 100\,200 \, cm^2;$$

$$W = \frac{1}{6} \cdot 677 \cdot 148^2 = 2471000 \text{ cm}^3;$$

 $N_s=1506000~kg$ aus dem Kräfteplan abgemessen.

a) Vom Eigengewicht:

$$\sigma_{o} = \frac{N_{s}}{f^{2}} - \frac{H_{e} \cdot y_{u}}{W} = \frac{1506000}{100200} - \frac{5400 \cdot 210}{2471000} = 14,5 \ kg/cm^{2}$$

$$\sigma_{u} = \frac{N_{s}}{F} + \frac{H_{e} \cdot y_{o}}{W} = \frac{1506000}{100200} + \frac{5400 \cdot 170}{2471000} = 15,4 \ kg/cm^{2}.$$

b) Von Verkehrsbelastung:

on Verkehrsbelastung:

$$\sigma_o = + \frac{12200000}{2471000} = + 4.9 \ kg/cm^2$$

$$\sigma_n = + \frac{17730000}{2471000} = + 7.2 \ kg/cm^2$$

$$\sigma_o = - \frac{13150000}{2471000} = - 5.3 \ kg/cm^2$$

$$\sigma_n = - \frac{10730000}{2471000} = - 4.3 \ kg/cm^2$$

c) Von Temperaturänderung:

$$\sigma_o - \pm \frac{17200 \cdot 210}{2471000} = \pm 1,4 \text{ kg/cm}^2$$
 $\sigma_n - \pm \frac{17200 \cdot 170}{2471000} = \pm 1,2 \text{ kg/cm}^2$.

$$F = 654 \cdot 125 = 81750 \text{ cm}^2$$
;

$$F = 654 \cdot 125 = 81750 \text{ cm}^2;$$

 $W = \frac{1}{6} \cdot 654 \cdot 125^2 = 1703000 \text{ cm}^3;$

 $N_s=$ 1270000 kg aus dem Kräfteplan abgemessen.

$$\sigma_{o} = \frac{N_{s}}{F} + \frac{H_{e} \cdot y_{u}}{W} = \frac{1270000}{81750} + \frac{5400 \cdot 406}{1703000} = 16,9 \ kg/cm^{2}$$

$$\sigma_{n} = \frac{N_{s}}{F} - \frac{H_{e} \cdot y_{o}}{W} = \frac{1270000}{81750} - \frac{5400 \cdot 450}{1703000} = 14,2 \ kg/cm^{2}.$$

b) Von Verkehrsbelastung:

on Verkenrsbelasting:

$$\sigma_o = + \frac{15450000}{1703000} = + 9,1 \ kg/cm^2$$

$$\sigma_u = + \frac{13780000}{1703000} = + 8,1 \ kg/cm^2$$

$$\sigma_o = - \frac{11420000}{1703000} = - 6,7 \ kg/cm^2$$

$$\sigma_u = - \frac{13300000}{1703000} = - 7,8 \ kg/cm^2$$

c) Von Temperaturänderung:

$$\sigma_o = \pm \frac{17200 \cdot 406}{1703000} = \pm 4.0 \ kg/cm^2$$
 $\sigma_u = \pm \frac{17200 \cdot 450}{1703000} = \pm 4.6 \ kg/cm^2$.

F = 650 · 120 = 78 000 cm²;

$$W = \frac{1}{6} \cdot 650 \cdot 120^{2} = 1560000 \text{ cm}^{3};$$

$$N_{s} = H_{s} = 1229000 \text{ kg}.$$

a) Vom Eigengewicht:

$$\sigma_{o} = \frac{H_{s}}{F} + \frac{H_{e} \cdot y_{u}}{W} = \frac{1229000}{78000} + \frac{5400 \cdot 523}{1560000} = 17,6 \text{ kg/cm}^{2}$$

$$\sigma_{u} = \frac{H_{s}}{F} - \frac{H_{e} \cdot y_{o}}{W} = \frac{1229000}{78000} - \frac{5400 \cdot 563}{1560000} = 13,9 \text{ kg/cm}^{2}.$$

b) Von Verkehrsbelastung:

$$\sigma_o = + \frac{12300000}{1560000} = + 7,9 \ kg/cm^2$$
 $\sigma_n = + \frac{7460000}{1560000} = + 4,8 \ kg/cm^2$
 $\sigma_o = - \frac{5610000}{1560000} = - 3,6 \ kg/cm^2$
 $\sigma_u = - \frac{100500000}{1560000} = - 6,4 \ kg/cm^2$

c) Von Temperaturänderung:

$$\sigma_o = \pm \frac{17200 \cdot 523}{1560000} = \pm 5.8 \ kg/cm^2$$
 $\sigma_u = \pm \frac{17200 \cdot 563}{1560000} = \pm 6.2 \ kg/cm^2$.

Mit diesen Beanspruchungen, die unter Vernachlässigung der Bogenarmierung berechnet sind, ergeben sich die nachstehend zusammengestellten

Grenzwerte der Randspannungen.

Schnitt	Eigenlast	Verkehr		Temperatur		Grenzwerte	
Schutt	kg/cm2	kg/cm ²	kg/cm2	kg/cm2	kg/cm ²	kg/cm ²	kg/cm2
Scheitel 5 50	+ 17,6	+ 7,9	- 3,6	+ 5,8	- 5,8	+ 31,3	+ 8,2
Scheitel { σ _n		+ 4,8	- 6,4	+6,2	- 6,2		
1 00		+ 9, t	- 6,7	+ 4,0	- 4,0	+ 30,0	+ 6,2
4 (σ,	+ 14,2	+8,1	7,8	+4,6	- 4,6	+ 26,9	+ 1,8
10 500	+ 14,5	+ 4,9	- 5,3	+ 1,4	- 1,4	+ 20,8	+7,8
10 { σ _n	+ 15,4	+7,2	- 4,3	+ 1,2	— I,2	+ 23,8	+ 9,9
IA S GO	+ 13,5	+ 3,9	- 3,3	+ 4,8	- 4,8	+ 22,2	+ 5,4
14 (o _n	+ 13,5 + 16,4	+ 4,6	- 2,9	+ 4,6	- 4,6	+ 25,6	+18,9
Vimner Son	+ 12,7	+ 9,9	— 6, I			+ 28,8	
Kämpfer $\begin{cases} \sigma_{o} \\ \sigma_{u} \end{cases}$	+ 12,7 + 16,5	+7,2	- 8,9	+6,0	6,0	+ 29,7	+ 1,6

Es tritt also nirgends Zug im Gewölbe auf und die Druckspannungen bleiben noch unter der sonst für Betongewölbe als zulässig angenommenen Grenze.

Berechnung der Einsenkung.

Zum Schluss soll noch die Berechnung der Einsenkung infolge ständiger Belastung vorgeführt werden.

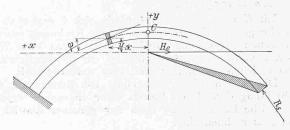


Abb. 31.

Denkt man sich das Bogenelement bei xy (Abb. 31) allein elastisch, den übrigen Bogen starr, so wird der Scheitel C infolge der Deformation dieses Elements eine Vertikalbewegung erleiden. Dabei darf der Bogen links eingespannt und rechts frei ausladend gedacht werden, denn die gesammte Verschiebung des rechten Kämpferquerschnitts wird ja Null.

Infolge des Biegungsmoments M_x erleiden die beiden benachbarten Querschnitte eine Drehung gegen einander um den Winkel $d\gamma = \frac{M_x}{EJ} \cdot ds$ und der Punkt C hebt sich um $d\gamma \cdot x = \frac{M_x}{E J} \cdot ds \cdot x.$

Infolge der Normalkraft Nx ergibt sich eine Zusammendrückung des Bogenelements um $\varDelta ds = \frac{N_x}{EF} \cdot ds$ und damit eine Senkung von C um $\Delta ds \cdot \sin \varphi = \frac{N_x}{EF} \cdot ds \cdot \sin \varphi$. Es ist also die Scheitelsenkung, wenn von der sehr kleinen Querkraft abgesehen wird

$$\delta = -\int_{\frac{E}{B}}^{l/2} \int_{-\infty}^{l/2} x \cdot ds + \int_{\frac{E}{B}}^{l/2} \int_{-\infty}^{l/2} \sin \varphi \cdot ds.$$

Auf diesen Ausdruck kommt man auch, wenn man das Gesetz der virtuellen Verschiebungen anwendet, auf den tatsächlichen Verschiebungszustand mit M_x und N_x und auf den Belastungszustand mit einer Einzellast P = 1 im Scheitel, wobei der Bogen als einerseits eingespannter, anderseits frei ausladender Balken betrachtet werden darf.

Für ständige Last ist bei der hier vorliegenden Stützlinienform $M_x = H_e \cdot y$ und

$$N_x = N_s - H_{\epsilon} \cdot \cos \varphi = \frac{H_s}{\cos \varphi} - H_{\epsilon} \cdot \cos \varphi, \text{ somit}$$

$$E \cdot \delta = -H_{\epsilon} \int_{\bullet}^{l/2} \frac{x \cdot y}{J} ds + H_s \left(\frac{\sin \varphi}{\cos \varphi} \cdot \frac{ds}{F} - H_{\epsilon} \right)_{\bullet}^{l/2} \sin \varphi \cdot \cos \varphi \cdot \frac{ds}{F}$$

Das erste Integral ist bereits berechnet, für die beiden andern erhält man folgendes:

Nr.	s F	$\sin \varphi$	$\cos \varphi$	$\frac{\sin\varphi}{\cos\varphi}\cdot\frac{s}{F}$	$\sin \varphi \cdot \cos \cdot \frac{s}{F}$
I	0,64	0,060	0,998	0,038	0,038
II	0,57	0,180	0,984	0,104	0,101
III	0,56	0,305	0,952	0,179	0,163
IV	0,55	0,410	0,911	0,247	0,205
V	0,55	0,511	0,860	0,327	0,242
VI	0,54	0,608	0,794	0,413	0,260
VII	0,54	0,693	0,721	0,519	0,270
VIII	0,53	0,770	0,638	0,640	0,260
IX	0.39	0,832	0,555	0,585	0,180
l 2 Σ				3,052	1,719

ferner ist
$$\int_{0}^{t/2} xy \cdot \frac{ds}{J} = -1816,05$$

$$H_{\epsilon} = 5,4 t, \quad H_{s} = 1228,86 t$$

 $H_{\epsilon} = 5,4 t, \quad H_{s} = 1228,86 t$ somit $E \delta = +5,4 \cdot 1816 + 1229 \cdot 3,052 - 5,4 \cdot 1,719$ $E \delta = 13548 t/m.$

Mit $E=2\,600\,000\ t/m^2$ würde sich $\delta=0,0052\ m$, also eine genaue Uebereinstimmung der Rechnung mit der gemessenen Einsenkung ergeben. Der etwas hohe Wert von $E=260\,000\ kg/cm^2$ ist aber bei der für den Gewölbebeton erzielten hohen Festigkeit sehr wahrscheinlich.

Dieses befriedigende Ergebnis von Berechnung und Beobachtung darf als ein Beweis dafür angesehen werden, dass solche Betongewölbe nach der genauen Elastizitätstheorie zu rechnen sind.

Vom Lötschbergtunnel.

Am 18. Februar d. J. erfolgte im bernischen Grossen Rat eine Interpellation, die sich auf verschiedene Punkte der Einbruchkatastrophe vom 24. Juli 1908 bezog und die vom bernischen Baudirektor, Reg.-Rat Könitzer, zugleich Delegierter des Verwaltungsrates der Berner Alpenbahn-Gesellschaft, in längerer Rede beantwortet wurde. Diese in der Tagespresse, vorab im «Bund» vom 18./19., 19./20. und 21. Februar, auszugsweise wiedergegebene amtliche Auskunft wirft verschiedene interessante Streiflichter auf die mit dem Einbruch in Zusammenhang stehenden Vorkommnisse und ermöglicht uns in Ergänzung unserer bisherigen Berichterstattung 1) noch durch folgendes zu ergänzen, das für unsere Leser von Interesse sein dürfte.

In Bezug auf das Experten-Gutachten betonte Herr Könitzer dass es «von der Gesellschaft bestellt und vorläufig auch bezahlt» worden sei-Die Expertenkommission hatte über alle Ursachen der Katastrophe einen eingehenden Bericht abzugeben, im übrigen die Arbeitsweise zu prüfen, für das weitere Vorgehen Vorschläge zu machen und die Vorschläge der Unter. nehmung zu begutachten. Ferner sollte die Arbeit der Experten «auch das nötige Material liefern», das vor dem vertraglich vorgesehenen Schiedsgericht die Rechte und Forderungen der Gesellschaft zu bekräftigen geeignet ist. «Nach Kenntnisnahme aller Aktenstücke kann aber schon jetzt mit Sicherheit gesagt werden, dass die verschiedenen Zeugenaussagen so widersprechend sind, dass es schwer halten wird, etwas Positives daraus herauszukonstruieren, um jemanden direkt zur Verantwortung heranziehen zu können.» Ueber das Gutachten sagte Herr Könitzer weiter, es sei ein wichtiges Aktenstück für den Prozess zwischen Gesellschaft und Unternehmung, und er «habe noch nie gehört, dass Gutachten, welche zu einem gerichtlichen Entscheide von einer Partei benützt werden sollen, vor der Fällung des Entscheides der breiten Oeffentlichkeit zum Ausschlachten und Kritisieren in der Presse übergeben worden sind. Ein solches Vorgehen hätte den Wert des Gutachtens für die ganze Angelegenheit bedeutend vermindert, weshalb seine Veröffentlichung vorläufig nicht gestattet werde. Diese amtlichen Mitteilungen bestätigen unsere auf Seite 296, Band LII, ausgesprochenen Vermutungen hinsichtlich des Charakters des vielbesprochenen Expertengutachtens. Immerhin möge noch erwähnt werden, was Herr Könitzer bezüglich der von den Experten in Vorschlag gebrachten Bauverfahren, die eine Fortsetzung des geraden Tracé ermöglichen sollten, u. a. mitgeteilt hat: «Es muss, um einen gesicherten Bau zu er-

möglichen, mit künstlichen Bausystemen gearbeitet werden; die einzig anwendbaren sind das Zementier- und das Gefrierverfahren. Das Erstere muss wegen zu vielem Wasserzufluss verworfen werden. Es bleibt nur noch das Gefrierverfahren. Dieses Verfahren muss, wenn absolute Sicherheit vorhanden sein soll, vom Gasternboden aus betrieben werden. Um in drei bis vier Jahren 300 bis 400 m fertig zu bringen, müssten 25 bis 30 Bohrtürme mit allen Einrichtungen erstellt werden, was im Gasterntal fast ein Ding der Unmöglichkeit ist. Zum Betrieb dieser Anlagen braucht es 2000 bis 3000 PS; die Mehrkosten dieser Strecke, vorausgesetzt, dass nur mit Wasser getränkte Moräne sich einstellen sollte, würden 15 bis 20 Millionen betragen.

Auch das Gutachten Rollier, das im Gegensatz zum offiziellen geologischen Gutachten Fellenberg-Kissling-Schardt sich dahin ausspricht, dass das Alluvium des Gasternbodens viel tiefer hinabreiche als «höchstens 60 bis 80 m» (vergl. Bd. LII, S. 67), kam zur Sprache. Laut Mitteilung des Herrn Könitzer sagte dort Dr. Rollier bezügl. der Verhältnisse unter dem Gasternboden, das Grundmoränematerial sei nicht so, dass man nicht durchkommen könne, es sei fest und ohne Wasser. Der Oberingenieur aber nahm die Gefahr eines Wassereinbruchs als bestehend an, weshalb das Gutachten Rollier der Unternehmung nicht mitgeteilt worden sei, um sie nicht zu vertrauensselig zu machen.

Miscellanea.

Rheinregulierung und Diepoldsauer Durchstich. Die nationalrätliche Kommission zur Vorberatung des vom Bundesrat mit Botschaft vom 20. Oktober 1908 für die Inangriffnahme der Arbeiten am «Diepoldsauer Durchstich» gestellten Kreditbegehrens tritt am 11. März in Bern zusammen.

Bekanntlich haben die eidgenössischen Räte die Behandlung des Begehrens in der Budgetberatung auf die Märzsession verschoben in Gewärtigung eines weitern, die letzte Eingabe der Regierung von St. Gallen beantwortenden Berichtes.¹) Ueber diesen, die erwähnte Botschaft ergänzenden Bericht des Bundesrates ist bis zur Stunde nichts mitgeteilt worden, was angesichts der ganz ausnahmsweisen Bedeutung der Angelegenheit sehr befremdlich erscheint.

In Kreisen der schweizerischen Technikerschaft tritt eine sehr begreifliche Erregung zu Tage, da man durch den Verlauf, den die Angelegenheit bisher genommen hat, in hohem Masse beunruhigt ist. Wir verweisen diesbezüglich auf die im Baslerischen und im Zürcher Ingenieur- und Architekten-Verein gefassten Resolutionen (Siehe unter «Vereinsnachrichten» in dieser Nummer) und die mehrfach in der Tagespresse laut gewordenen nur zu sehr begründeten Besorgnisse.

Dampfkessel-Reparatur durch autogene Schweissung. Ueber die Festigkeitseigenschaften durch autogene Schweissung verbundener Kesselteile hat J. Reischle Versuche angestellt, auf Grund deren er nach der «Z. f. D. & M.» zu folgenden Schlüssen gelangt: Die Sprödigkeit und Rissneigung von umgeschmolzenem Flusseisen ist bei einer Temperatur von ungefähr 200°C nicht grösser als die des ursprünglichen, gewalzten Materials. Die autogene Schweissung von Flusseisen lässt sich so gut durchführen, dass die Schweisstellen den durch die Zusammenziehung nach dem Erkalten auftretenden starken innern Spannungen dauernd Widerstand leisten; wahrscheinlich verlieren sich übrigens diese Spannungen im Laufe des Betriebes. Die Widerstandsfähigkeit der Schweissung wird dadurch erhöht, dass den erwähnten Zusammenziehungsspannungen die bei der Erwärmung des Kessels im Betriebe entstehenden Ausdehnungsspannungen teilweise oder ganz das Gleichgewicht halten.

Ausstellung bemalter Wohnräume. Der Malermeister-Verband München hat beschlossen, im kommenden Frühjahr eine Ausstellung für dekorative Raumausmalung zu veranstalten. Diese Ausstellung soll einen Ueberblick über die Arbeitsgebiete, die Bedeutung des Malergewerbes als Kunsthandwerk, die Stellung zur Raumkunst und die neuen Handwerkstechniken geben. Eine Menge von Räumen des ehemaligen Justizministeriums (Augustinerstock) sind dem Verband für diese Ausstellung unentgeltlich zur Verfügung gestellt worden. Durch die Ausmalung dieser Räume kann die Ausstellung im Sinne angewandter Raumkunst durchgeführt werden. Gleichzeitig soll die Zentralstelle der Materialien-Prüfungs-Kommission des Verbandes eine Ausstellung ihrer erprobten Materialien usw. veranstalten. Auch Vorträge mit Demonstrationen sind geplant.

Schiffahrt auf dem Oberrhein. Zur Förderung der Schiffahrt auf dem Oberrhein (Strassburg-Basel) nimmt die Basler Regierung in Aussicht, in erster Linie mit der «Rheinschiffahrts-Aktiengesellschaft vormals Fendel»

¹⁾ Bd. LII. S. 66, 81, 145, 156, 172, 200*, 243, 268, 282, 296; Bd. LIII. S. 30, 40, 105.

¹⁾ Siehe unsern ausführlichen Artikel Band LII, Seite 278 und ff. und die Notiz Band LIII, Seite 14.