Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 53/54 (1909)

Heft: 1

Artikel: Der neue Bahnhof der S.B.B. Puidoux-Chexbres: erbaut von den

Architekten Taillens & Dubois in Lausanne

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-28074

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Dann ergibt sich

aber eine erforderliche

Mauerstärke von 6 m.

Da sie im Gotthard-

tunnel nur 1/10 der

unbedingt erforder-

lichen Stärke beträgt,

so kommen wir zum

Resultat, dass das

Gotthardtunnelgewöl-

be weit davon ent-

fernt wäre, standfest zu sein. Ein Tunnel

von 6 m Mauerwerk-

stärke aber ist ein Unding. Die nächste

Folge unserer vor-

gehenden Betrachtung

muss die Frage sein,

ob der Gebirgsdruck

sich auch wirklich nach der Lehre vom

Gebirgsdruck auf ein

Tunnelmauerwerk

«Ein Gestein kann als Gewölbestein nur verwendet werden bei mittlerer Tunneltiefe = höchstens 2/3 der aus der Gesteinsfestigkeit berechneten Gesteinssäule, die eben ihren Fuss zerquetscht."

Vorstehender Lehre gemäss muss jedes Tunnelgewölbe druckfest konstruiert werden um die Schwerlast der ganzen Ueberlagerung auszuhalten. Die grösste Tiefe eines haltbaren Tunnels soll sich ergeben, wenn jene Last noch etwas kleiner ist als die rückwirkende Festigkeit der Wölbsteine. Im Gotthardtunnel soll nun bei einer Last von 1000 bis

1500 m der Gneiss-Granit als Wölbstein noch vollständig genügend sein. Es ist schwer, dieser Berechnung zu folgen; der Vor-Wortlaut der schriften für die Wahl eines tauglichen Wölbsteinmaterialsist für vorliegenden Zweck ganz unklar. Wir sehen also nicht, ob Herr Heim das Gewölbe des bestehenden Gotthardtunnels, das doch aus Gneiss-Granit konstruiert ist, auch für vollständig genügend hält. Dem Sinn nach sollte man denken: ja. Nun ist aber das Gotthardgewölbe nur ein einfaches Verklei-

dungsgewölbe (Abb. 1), das nur eine sehr geringe Last zu tragen vermöchte und wir müssen somit im Zweifel sein, dass Herr Heim das Gewölbe als druckfest ansieht. Wir haben demnach die Aufgabe, selbst zu untersuchen, wie sich die Bedingungen für ein nach der Heimschen Lehre standfestes Gewölbe berechnen lassen.

Der Widerstand eines Gewölbes gegen Zerstörung durch Belastung ist - abgesehen von der Gewölbeform -

1. Der Spannweite des Gewölbes; 2. der Mauerstärke; 3. der Festigkeit - nicht des Mauersteines - sondern des Konkretes von Mauerstein und Mörtel, d. h. des Mauerwerks; 4. der Belastung.

Eine Tunnelröhre ist genügend standfest, wenn der spez. Druck auf das Mauerwerk nicht grösser wird als die

zulässige Beanspruchung der Mauerwerksgattung. Von diesen zweifellos richtigen statischen Bedingungen weicht die vorerwähnte Forderung Heims für die Tauglichkeit eines Gesteins gründlich ab.

Unter Annahme des vollen Gebirgsdruckes von 1500 m Ueberlage-

Abb. 1. rung mit 2,6 spezifischem Gewicht und von Bruchsteinmauerwerk, wie im Gotthardtunnel, führt die statische Berechnung des Gewölbes zu folgenden Resultaten: Auf den cm² des Bruchstein-Widerlagers von 0,6 m Stärke fällt ein Druck von $\frac{1500 \text{ m} \times 2600 \text{ kg} \times 9,2 \text{ m}}{2000 \text{ m}}$ $2 \times 0.6 \ m \times 10,000 \ cm^2$

(siehe Abb. 1). Nun ist für die zulässige Belastung eines Bruchsteinmauerwerks wie im Gotthard als ein Maximum 300 kg anzurechnen.

(Es würde hier zu weit führen, für diese Angabe die Nachweise beizufügen. In einem späteren Kapitel werden wir darüber Ausführliches mitteilen. Wir wollen aber erwähnen, dass, wenn auch ein sauber polierter Würfel aus Gneiss-Granit, bei Einspannung zwischen Platten mit Kugelgelenken in der Festigkeitsanstalt eine Bruchfestigkeit von 1700 kg ergiebt, schon ein weniger sauber bearbeiteter derselben Qualität, nur zwischen

Bleiplatten gefasst, 500 bis 700 kg Bruchfestigkeit aufweist; ferner, dass ein Zementmörtel mit Normalsand und bei Normalbehandlung in der Festigkeitsanstalt nach 10 Monaten 500 bis 700 kg Bruchfestigkeit besitzt, während ein im Tunnel zubereiteter Mörtel vom Maurer mit der Kelle im Mauerwerk verstrichen, nach 10 Monaten nicht annähernd die Hälfte dieser Festigkeit erlangen kann. Da aber im Tunnel-Bruchsteinmauerwerk, in Anbetracht der dicken Mörtelfugen, der Mörtel ein wesentlicher Bestandteil des Mauerwerkes ist, so erblicken wir in unserer Annahme von 300 kg zulässiger Beanspruchung schon geradezu eine übertrieben hohe Ziffer.)

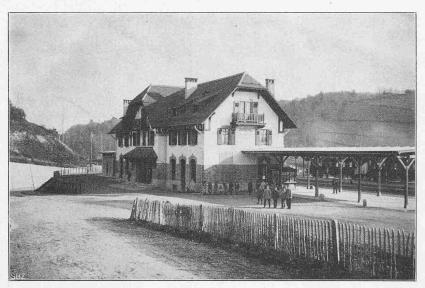
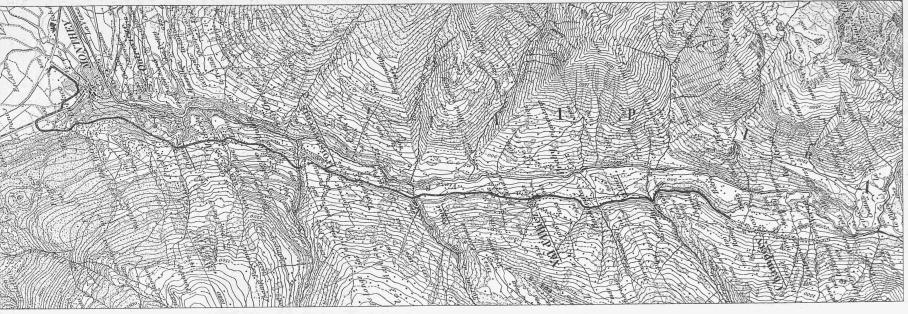
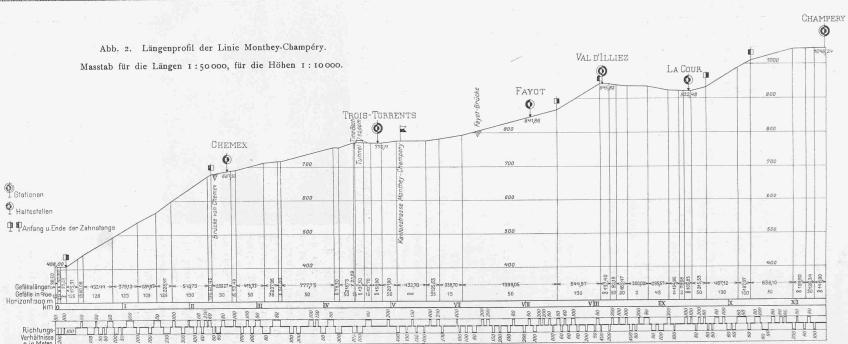


Abb. 3. Der neue Bahnhof der S. B. B. Puidoux-Chexbres. - Ansicht von der Vorderseite.

äussern könne. Wie schon gesagt, ist die praktische Erfahrung einem solchen Drucke noch nie begegnet (ausser in gewissem Grade in Spalten von plastischem erweichtem Trümmergestein oder in zu Bruch gegangenem Gebirge - nie im geschichteten Gebirge). Herr Prof. W. Ritter2) sagt dazu: "Die Annahme eines Druckes von hohen Ueberlagerungen führt zu unsinnigen Drucken, die in der Tiefe erfahrungsgemäss gar nicht bestehen". — Der Mont Cenis- und der Gotthard-Tunnel bestehen seit 30 bis 40 Jahren und ihr Bestehen beweist, dass heute noch kein Druck auf sie gekommen ist. Tunnels unter 10 oder 20 oder 30 m Ueberlagerung sind schon oft eingestürzt, weil die ungeschichtete Gesteinsüberlagerung mit ihrer Trümmer-Beschaffenheit auf ihnen lastete. Tunnels unter bedeutender Ueberlagerung sind noch nie eingestürzt. Wo sie schadhaft wurden, sind stets ganz andere Ursachen als der Gebirgsdruck erwiesen.

Der neue Bahnhof der S. B. B. Puidoux-Chexbres.


Erbaut von den Architekten Taillens & Dubois in Lausanne.


In den drei vorstehenden Abbildungen bringen wir das im Jahre 1908 von den Architekten Taillens & Dubois in Lausanne entworfene und ausgeführte kleine Aufnahmegebäude der Station Puidoux-Chexbres oberhalb Lausanne zur Darstellung.

Die Bilder sprechen für sich. Mit den einfachsten Mitteln sowohl hinsichtlich der gewählten Bauformen wie des verwendeten ortsüblichen Materials ist ein ländliches Bahnhofgebäude erstellt, das als solches ohne weiteres erkennbar, auch der Landschaft zur Zierde gereicht und sich zugleich den Bauten der Umgebung, ohne als ihresgleichen gelten zu wollen, unaufdringlich zugesellt.

Der erste Stock des Gebäudes enthält drei voneinander unabhängige Beamtenwohnungen, zu denen die beiden im Grundriss (Abbildung 1) ersichtlichen Treppen führen.

^{2) &}quot;Statik der Tunnelgewölbe" von Prof. W. Ritter. Berlin 1879. Verlag von Julius Springer.

8