Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 51/52 (1908)

Heft: 5

Inhaltsverzeichnis

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Untersuchung des 200 PS Dieselmotors mit Schwungraddynamo in der elektrischen Zentrale der L. v. Rollschen Eisenwerke, Giesserei Bern. — Das "Savoy-Klubhaus" in St. Moritz. — Wettbewerb für ein Sekundarschulhaus auf dem Heiligenberg in Winterthur. — Die Valle Maggia-Bahn. — Miscellanea: Elektrizitätswerk Bündner Oberland. Neues Hoftheater in Weimar. Hölzerner Dachbinder von 52 m Spannweite. Villa Albani in Rom. Kosten des neuen Gaswerks für Innsbruck. Vergrösserung der Sorbonne

in Paris. Wirtschaftlicher Vortragskurs. Patent-Anspruchsrecht Angestellter in technischen Unternehmungen. Eidg. Kunstkommission. Deutsches Telefunkensystem drahtloser Telegraphie. Oesterreichischer Ingenieur- und Architekten-Verein. Neues Rathaus in Bozen. — Konkurrenzen: Strassenbrücke in St. Imier. — Vereinsnachrichten: Zürcher Ingenieur- und Architekten-Verein. Gesellschaft ehemaliger Studierender der eidg. polytechnischen Schule in Zürich: Stellenvermittlung.

Bd. 51.

Nachdruck von Text oder Abbildungen ist nur unter der Bedingung genauester Quellenangabe gestattet.

Nr. 5.

Untersuchung des 200 PS Dieselmotors mit Schwungraddynamo in der elektrischen Zentrale der L. v. Rollschen Eisenwerke, Giesserei Bern.

Von Gustav Weber, Prof. am Technikum Winterthur.

Zum Betrieb der *Giesserei Bern* wurde im Januar 1906 zu den vorhandenen zwei Generatorgasmotoren von je 100 *PS* ein Dieselmotor von *Gebrüder Sulzer* in

Winterthur von 200 PS und 187 Touren aufgestellt, der mit einem Drehstromgenerator der A.-G. Brown, Boveri & Cie. direkt gekuppelt ist. Die Aufstellung ergibt sich aus dem Grundriss der Maschinenanlage (Abb. 2, S. 56).

Der Generator leistet bei 187 Touren und 50 Perioden 200 Volt bei 480 Amp. und cos $\varphi = 0.8$, bezw. 200 Volt bei 390 Amp. und cos $\varphi = 1$. Sein Wirkungsgrad ist bei cos $\varphi = 1$ einschliesslich Erregung aber ausschliesslich Reibung und Ventilation: bei $^{1}/_{1}$ Last = $92.5^{0}/_{0}$, bei $^{3}/_{4}$ Last = $91.0^{0}/_{0}$, bei $^{1}/_{2}$ Last = $88.0^{0}/_{0}$ und bei $^{1}/_{4}$ Last = $80.0^{0}/_{0}$. Für Reibung und Ventilation wurde $1^{0}/_{0}$ der Normalleistung gerechnet, was sicher nicht zu hoch gegriffen ist.

Der Gesamtwirkungsgrad des Generators einschliesslich Reibung und Ventilation, wie er für die Leistung des Dieselmotors in Betracht kommt, ergibt sich darnach zu: bei ¹/₁ Last = 91,5 °/₀, bei ³/₄ Last = 90,0 °/₀, bei ¹/₂ Last = 86,5 °/₀ und bei ¹/₄ Last = 77,5 °/₀. Die in den Abbildungen 3 und 4 auf S. 55 dargestellten Kurven geben die Wir-

kungsgrade sowohl ohne als mit Reibung und Ventilation; es sind darin als Abszissen ausserdem die eingestellten Belastungen eingezeichnet. Dabei bezeichnen die römischen Ziffern die Hauptversuche, während mit dem Index a die unmittelbar nach den Hauptversuchen vorgenommenen Kühlwassermessungen bezeichnet sind.

Der Dieselmotor (Abb. 1) hat drei Zylinder, bezeichnet mit No. 168, 169, 170, von 380 mm Bohrung und 560 mm Hubhöhe und ermöglicht eine Tourenverstellung von im Maximum \pm 5%, er ist stehend und einseitig wirkend gebaut. Durch ein $GD^2 = 90000 (kg \cdot m^2)$ des Generators erreicht man einen Ungleichförmigkeitsgrad von $\frac{1}{250}$.

Bekanntlich arbeitet der Dieselmotor im Viertakt:

1. Arbeitshub. Der Kolben saugt Luft an.

2. Arbeitshub. Die angesaugte Luft wird auf rund 35 at komprimiert und dadurch über die Entzündungstemperatur des nunmehr einzuspritzenden Brennstoffes erwärmt.

3. Arbeitshub. Der durch auf 50 bis 60 at komprimierte Luft eingeblasene flüssige Brennstoff verbrennt im 1. Teil dieses Hubes, expandiert und leistet Arbeit.

4. Arbeitshub. Die Verbrennungsprodukte werden ausgestossen.

Zum Ingangsetzen des Motors dient Luft, die durch eine besondere Luftpumpe auf 30 bis 50 at komprimiert wird. Die gleiche Pumpe liefert auch die für den dritten Arbeitshub notwendige Einblaseluft für den Brennstoff.

Als Brennstoff werden die Rückstände aus galizischem

Rohpetrol von spezifischem Gewicht 0,87 und einem Heizwert von 10020 Kilogrammkalorien verwendet. Der Entzündungspunkt des Rohproduktes ist rund 160° C; es ist somit dieses Material nicht feuergefährlich. Sein Preis beträgt 840 Fr. für 10 t franko verzollt Bern.

Nachdem nunmehr der Motor ohne Störungen ein Jahr im Betrieb gestanden, sollten durch genaue Messungen der Brennmaterialverbrauch und der Verbrauch an Kühlwasser festgestellt werden. Dadurch, dass der Motor direkt mit dem Generator gekuppelt ist, erhält man einen sehr genauen Aufschluss über das Verhalten des Motors, was bei Riemenantrieb leider nicht möglich ist.

Die Versuche fanden am 6. Januar 1907 statt.

Ueber die Art der Messungen mögen folgende Angaben Aufschluss geben:

Die Belastung des Generators geschah durch einen Wasserwiderstand; durch drei Ampèremeter wurde eine möglichst gleiche Belastung der Phasen konstatiert.

Die Leistung wurde bestimmt mittelst zweier Präzi-

sionswattmeter von Siemens & Halske, die an die verkettete Spannung gelegt waren.

Ausser der Leistung wurden pro memoria gemessen: Die verkettete Spannung mittelst eines Weston Wechselstrompräzisionsvoltmeters und die Erregung (Strom und Spannung) mittelst ebensolcher Gleichstrominstrumente. Die Instrumente wurden in unmittelbarer Nähe des Generators aufgestellt, aber immerhin so, dass keine Beeinflussung irgendwelcher Art stattfand. Die Ablesungen erfolgten alle Minuten und wurden erst berücksichtigt, nachdem der stationäre Zustand eingetreten war. Die Wattmeter waren frisch geaicht und es wurden die Korrektionen aus den Aichkurven berücksichtigt.

Gleichzeitig mit den elektrischen Messungen wurde in bekannter Weise der Brennstoffverbrauch bestimmt. Zu diesem Zwecke wurde ein Gefäss, das mit der Rohrleitung durch einen Gummischlauch verbunden war, auf eine Waage gesetzt und durch Ablesungen innert gleicher Zeitintervalle die Gewichtsabnahme bestimmt. Je alle 5 Minuten

Abb. 1. Ansicht des 200 P.S. Dieselmotors in der «Giesserei Bern».