Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 51/52 (1908)

Heft: 22

Artikel: Basler Familienhäuser

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-27528

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Basler Familienhäuser. — Entwicklung und Beschaffenheit der Triebmotoren elektr. Eisenbahnfahrzeuge. — Transportable elektro-hydraulische Nietmaschine. — Vom Lötschbergtunnel. — Miscellanea: Reparaturen an Schiffkesseln mittels Azetylen-Sauerstoff-Schweissung. Bahnhof- u. Postgebäude in St. Gallen. Oesterreich. Motorlastwagen-Konkurrenz. Eidgen.

Polytechnikum. Prüfungsausschuss des schweiz. Geometerkonkordates. Rheinschiffahrt von Basel bis zum Bodensee. Schweiz. Zentralstelle für Ausstellungswesen. Gordon-Bennet-Wettfliegen 1909. Schweiz. Luftschiffahrt. Heissdampflokomotiven. Schulhausbauten in Zürich. — Literatur. — Nekrologie: J. Stöcklin. — Vereinsnachrichten: Zürcher I.- u. A.-V. Stellenvermittlung.

Bd. 52.

Nachdruck von Text oder Abbildungen ist nur unter der Bedingung genauester Quellenangabe gestattet.

Nr. 22

Basler Familienhäuser.

III.

Wie Architekt Fritz Stehlin sind auch die Architekten La Roche, Stähelin & Co. bestrebt, einheimische Baugewohnheiten bei ihren Neubauten zu verwerten.

Das ist in besonders glücklicher Weise bei dem 1903 vollendeten *Hause Missionsstrasse 23* geschehen, das sich in

seinem Aeussern völlig den alten, gemütlichen Basler Bürgerhäusern des vorigen Jahrhunderts anschliesst (Abbild. 32). Die Grundrissanlage (Abb. 33, 34, 35) erscheint einfach und klar, die Anordnung der Räume, deren Lage nach der Strasse, Himmelsrichtung oder dem Garten, ebenso wie ihre Abmessungen bestimmten Wünschen des Bauherrn entsprechen, durchaus zweckmässig. Küche und Dienstenzimmer haben einen besondern Vorplatz, der durch eine Treppe mit dem Keller und durch einen rückwärtigen Ausgang mit dem Garten in Verbindung steht. Die obern Geschosse enthalten die Schlaf- und Kinderzimmer.

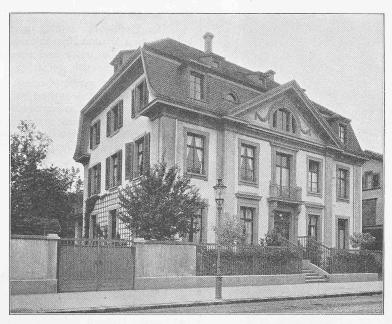
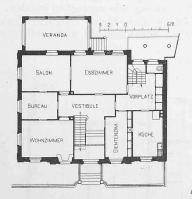


Abb. 32. Haus Missionsstrasse 23. Erbaut von *La Roche, Stähelin & Cie.*, Architekten in Basel.

Die Ausstattung des Innern wurde einfach bürgerlich gehalten, entbehrt aber gleichwohl nicht einer gewissen ruhigen ansprechenden Vornehmheit, die wohl hauptsächlich der Benützung naturfarbenen Eichenholzes für die Schreinerarbeiten des Erdgeschosses und den leichten Stuckverzierungen an den Zimmerdecken zuzuschreiben ist.

Durch die Stellung des schon früher auf der nördlichen Ecke des Bauplatzes erbauten Hauses wurde es möglich, die verlangten Räume um eine mittlere Halle zu gruppieren in der, durch ein Oberlicht gut beleuchtet, die Treppe emporführt (Abb. 38, 39). Der Haupteingang neben dem eine Garderobe und ein Dienstenzimmer angeordnet sind, befindet sich auf der Ostseite an der Burgunderstrasse. Zwei Wohnzimmer und das durch eine verglaste, heizbare Veranda


erweiterte Esszimmer, alle drei Räume durch weite Türen miteinander verbunden, nehmen die Südseite des Erdgeschosses ein, während die nach Westen schauende Küche vom Esszimmer durch einen auch vom Garten aus zugänglichen Office-Raum getrennt ist. Ein weiterer Eingang führt vom Garten aus nach dem Keller.

Der Einteilung des Erdgeschosses entsprechend enthält das erste Obergeschoss ein kleines Bücherzimmer, ein Wohnzimmer und drei Schlafzimmer mit Bad und Nebenräumen. Im Dachstock sind Gastund Dienstenzimmer untergebracht.

Der kleine Garten, der zum Teil als Vor-

garten das Haus an beiden Strassen fast ganz umgibt, ist in architektonischen Formen gehalten, wobei nieder geschnittene Buchshecken Rasen und Beete einfassen. So wurde versucht, Garten und Haus als ein zusammengehöriges Ganzes zu gestalten.

Das heimelige Wohnhaus, Gellertstrasse 14, an der Ecke



Abb. 33, 34 und 35. Grundrisse vom Erdgeschoss und den zwei Obergeschossen. - 1:400.

Das Wohnhaus Burgunderstrasse 32 ist an die von den Architekten La Roche, Stähelin & Co. 1902 vollendeten beiden schmalen Einfamilienhäuser (Abb. 37, S. 289), von den gleichen Architekten 1903 angebaut worden, nach einem Entwurf des damals in München studierenden Sohnes des Bauherrn, Herrn Architekt Robert Grüninger, der dann nach Vollendung seiner Studien auch die Ausführung leitete. Der Münchener Einfluss ist denn auch in der Fassadengestaltung unverkennbar (Abb. 36, S. 288).

der Grellingerstrasse, ist 1903 an das schon bestehende Nachbarhaus gegen Osten angebaut worden. Die Strassenfassaden, die unsere Abbildung 40 (S. 290) zeigt, sind durch einen kräftigen turmartig ausgebauten Erker betont und verputzt mit Haustein-Architekturteilen hochgeführt; dagegen ist die Gartenfassade (Abb. 41, S. 292) von einem im obersten Geschoss in Fachwerk erstellten Turm überragt und durch Terrassen und Veranden nach dem Garten zu geöffnet, derart, dass dieser Teil des Hauses in bewusstem Gegen-

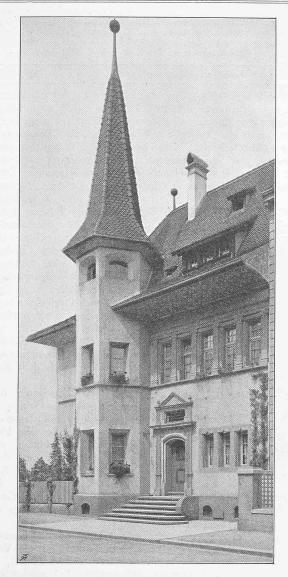


Abb. 36. Wohnhaus Burgunderstrasse 32 in Basel. Erbaut von *La Roche, Stähelin & Cie.*, Architekten in Basel.

satz zu den abgeschlossenern strengern Strassenfronten einen ungemeinen heitern und doch vornehm behäbigen Anblick gewährt.

Die Grundrisse (Abb. 42, 43, 44, S. 290) zeigen, dass im Erdgeschoss an der Nordseite zu beiden Seiten des

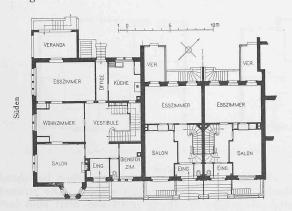


Abb. 38. Häusergruppe an der Burgunderstrasse. Grundriss des Erdgeschosses. — Masstab 1:400.

Haupteingangs ein Dienstenzimmer und die Küche angeordnet wurden, die durch einen Gang unter dem Treppenpodest mit dem Esszimmer, mit geräumiger, gedeckter Veranda in bequemer Verbindung steht. Die grössten Abmessungen hat das daran anschliessende Wohnzimmer erhalten, dessen breite Fenstergruppe über die vorgelagerte geräumige Gartenterrasse hinweg einen vollen Einblick in den Garten bietet; bedeutend kleiner ist das daneben gelegene Empfangszimmer. Das Treppenhaus erhält direktes Oberlicht, das auch durch die zurückgeschobene Treppe zum Dachstock nicht beeinträchtigt wird. Die Einteilung des Obergeschosses entspricht der des Erdgeschosses vollkommen mit der Ausnahme, dass der über dem Wohnzimmer gelegene Raum durch eine Zwischenwand in zwei Zimmer geteilt wurde und das über dem Empfangszimmer gelegene Zimmer einen besondern Vorplatz erhielt, der sich gegen den mittlern Vorraum derart durch eine Türe abschliessen lässt, dass dann ein für sich abgeschlossenes Appartement mit Nebenzimmer, Bad und Klosett entsteht.

Der Dachstock enthält ausser den Dienstenzimmern und Räumen für den Haushalt noch drei Zimmer; der Keller ist durch das Gartentor und eine äussere Treppe auch von aussen aus zugänglich gemacht.

Der mässig grosse Garten besteht aus einem rechteckigen Rasenplatz, umgeben von geradlinigen Wegen und abgeschlossen von Gartenhäuschen und Pergola. Ein geschlossener Bretterzaun verhindert den Einblick von der Strasse; dafür erweitert der Ausblick auf die umliegenden Gärten mit ihren schönen alten Bäumen den Gartenraum.

Entwicklung und Beschaffenheit der Triebmotoren und Triebwerke elektrischer Eisenbahnfahrzeuge.

Von Dr. W. Kummer, Ingenieur.

(Schluss.)

Anwendungsgebiet der beschriebenen Bauarten.

Nachdem wir bisher die drei wichtigsten Bauarten der elektromechanischen Ausrüstung der Triebfahrzeuge elektrischer Bahnen auf Grund ihrer Entwicklungsgeschichte vorgeführt haben, wollen wir versuchen, eine Systematik aufzustellen, die jeder der drei Bauarten das ihr angemessene Anwendungsgebiet zuteilt. Für die Lösung dieser Aufgabe stehen uns ein theoretischer und ein empirischer Weg zur Benutzung offen. Für den theoretischen Weg bedürfen wir eines gesetzmässigen Zusammenhanges zwischen den unabhängigen Variablen der die Fahrzeugausrüstung betreffenden Traktionsprobleme und der auf Grund der Erfahrung vorliegenden Konstruktionskonstanten, dessen Aufstellung wir versuchen werden. Die empirische Lösung ist in der Weise möglich, dass auf Grund einer möglichst zuverlässigen und vollständigen

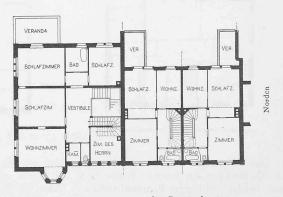


Abb. 39. Häusergruppe an der Burgunderstrasse. Grundriss des ersten Stocks. — Masstab 1:400.

Statistik die besondere Eignung einer jeden Bauart für besondere Verhältnisse auf Grund von als brauchbar befundenen Ausführungen nachgewiesen wird.

variablen Grös-

sen in Zusammenhang zu bringen mit Konstruk-

tionskonstanten,

die auf Grund

von Erfahrungs-

zahlen aufstellbar

sein könnten. Als

wichtigste derar-

tige Konstante

dürfte wohl die-

jenige gelten, die die Hauptdimen-

sionen der Trieb-

motoren in Abhängigkeit

von

Triebmotoren zu

verrichtenden

Kraftäusserung

darstellt. Nach

der Theorie der

elektrischen Maschinen besteht in der Tat eine

solche Beziehung

und zwar zwi-

schen dem nor-

malen Drehmo-

ment eines Elek-

tromotors und

demjenigen Teile

des Volumens sei-

ner rotierenden

Bestandteile, wel-

cher für die elek-

tromagnetische

Energieumwandlung in Betracht

kommt. Als nor-

males Drehmo-

ment - mit dem

der

von

den

Für die theoretische Erörterung müssen wir zunächst feststellen, dass die unabhängigen Variablen, die hier in Betracht kommen, die Geschwindigkeit und die Zugkraft bezogen auf die Triebachse der motorisch ausgerüsteten Fahrzeuge sind. Die Grösse der auf eine Triebachse entfallenden Zugkraft ist nun durch die Verhältnisse der Adhäsion und der Gewichtsbelastung einer Fahrzeugsachse nach oben hin be-

grenzt; da im allgemeinen der Achsdruck mit 15 Tonnen im Maximum festgelegt ist 1) und ein Adhäsionskoeffizient von 1/5 ebenfalls einen Extremwert im gleichen Sinne darstellt, so dürfte eine Zugkraft von

 $\frac{15000}{} = 3000 kg$ den höchsten auf eine Triebachse entfallenden Wert darstellen, wie er nur etwa beim Anfahren vorkommen wird. Für die Fahrt selbst würde dabei ein erheblich kleinerer Wert der grössten Zugkraft in Betracht fallen und zwar nach Massgabe eines Adhäsionskoeffizienten von $\frac{1}{7}$ bis $\frac{1}{7}$,5 von rund 2150 bis 2000 kg für eine Triebachse. Jenachdem nun dieser normale Höchstwert von 2000 bis 2150 kg ausgenützt ist oder nicht, lassen sich die motorisch ausgerüs-

teten Fahrzeuge klassifizieren in die beiden Gruppen: Fahrzeuge mit grosser Zugkraft bezogen auf die Trieb-

achse und Fahrzeuge mit kleiner Zugkraft bezogen auf die Triebachse.

Es ist einleuchtend, dass die Klassifikation nur für Adhäsionsbahnen diese Bedeutung hat; wir haben jedoch bei der vorliegenden Systematik überhaupt nur Adhäsionsbahnen und zwar Vollbahnen im Sinne. Je nach der Wahl des Durchmessers der Triebräder und je nach der Wahl der Drehzahl der Triebachsen wird man weiter, und zwar sowohl für die Triebachsen mit grosser Zugkraft, als auch für diejenigen mit kleiner Zugkraft, von schnellaufenden und von langsam laufenden Triebfahrzeugen sprechen können. Es ergibt sich dann die folgende sehr einfache und vollständige Klassifikation elektrischer Triebfahrzeuge auf Grund der unabhängigen Variablen: Triebachsen-Zugkraft und Geschwindigkeit:

1. Triebfahrzeuge für kleine Geschwindigkeiten und kleine Triebachsen-Zugkräfte;

1) Für Hauptbahnen mit besonders schweren Schienen können auch Achsdrücke von 17 und 18 Tonnen in Betracht kommen.

Triebfahrzeuge für grosse Geschwindigkeiten und kleine Triebachsen-Zugkräfte;

Triebfahrzeuge für kleine Geschwindigkeiten und grosse Triebachsen-Zugkräfte;

Triebfahrzeuge für grosse Geschwindigkeiten und grosse Triebachsen-Zugkräfte.

In Weiterverfolgung unserer Aufgabe haben wir nun die genannten

Basler Familienhäuser.

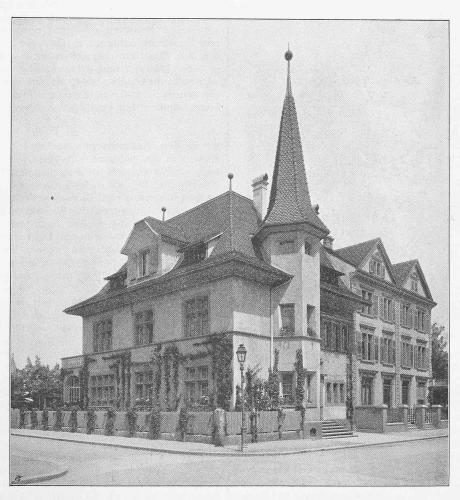


Abb. 37. Häusergruppe an der Burgunderstrasse in Basel. Erbaut von La Roche, Stähelin & Cie., Architekten in Basel.

Symbol D und für die Einheit mkg — müssen wir dabei diejenige Kraftäusserung eines Triebmotors definieren, die je nach den gerade in Geltung befindlichen sogenannten Normalien der Bahnmotoren der dauernden oder der sogenannten Stundenleistung entspricht und durch die als zulässig bezeichnete Temperaturerhöhung der Konstruktionsmaterialien an gewisse Grenzen gebunden ist. Das erwähnte, sogenannte aktive Volumen der rotierenden Motorbestandteile möge mit dem Symbol V bezeichnet und in cm³ ausgedrückt werden. Es lautet dann die Abhängigkeitsbeziehung zwischen D und V folgendermassen:

$$V = C \cdot D$$

worin C eine Konstante ist, die ihrerseits aus weitern, als konstant anzusehenden Teilen besteht; es kann nämlich gesetzt werden:

$$C = \frac{K}{B \cdot Q} \cdot Z$$

wodurch C in physikalischer Hinsicht analysiert, sowie die massgebenden elektrischen und magnetischen Grössen berücksichtigt werden. Mit der Zerlegung der Erfahrungskonstante C in weitere Einzelkonstante wird gewissermassen die Erfahrung selbst aufgelöst in Einzelerfahrungen; über

Basler Familienhäuser.

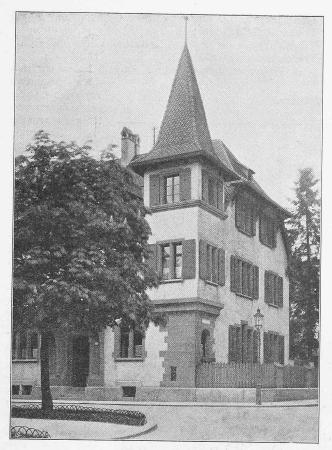


Abb. 40. Wohnhaus Gellertstrasse 14. Strassenfassaden. Erbaut von La Roche, Stähelin & Cie., Architekten in Basel.

diese Einzelerfahrungen und Einzelkonstanten genügt es auszusagen, dass für die gewählte Schreibweise K eine Konstruktionskonstante von der Grössenordnung \mathbf{I}, B eine magnetische Materialkonstante, die mit der magnetischen Induktion im aktiven Motoreisen identisch ist, Q eine elektrische Materialkonstante, die sich nach der zugelassenen

Stromstärke richtet und Z eine reine Zahl von der Grössenordnung 10 9 (beziehungsweise 10 8 \times 9.81) ist.

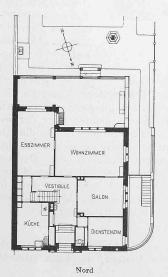


Abb. 42, 43 und 44. Grundrisse vom Erdgeschoss und den zwei Obergeschossen. — Masstab I: 400.

Nach den zur Zeit allgemeine Gültigkeit geniessenden Normen betreffend die Temperaturerhöhung von elektrischen Maschinen erhält man dann für die Elektromotoren derjenigen Grösse, wie sie im elektrischen *Vollbahnbetrieb* benötigt werden, Werte der Konstanten *C*, welche bei modernen

gekapselten Motoren von minimal 250 bis maximal 500 cm8/mkg variieren können, je nach der Wahl der Materialkonstanten B und Q und der Konstruktionskonstanten K. Als Bahnmotoren normaler Grösse kommen nun im Vollbahnbetrieb solche mit einem normalen Drehmoment von mindestens 100 und höchstens 1000 bis 1500 mkg in Betracht. Infolge des sehr einfachen Zusammenhanges zwischen dem normalen Drehmoment und dem aktiven Motorvolumen und somit ohne weiteres analogen Zusammenhanges zwischen dem normalen Drehmoment und dem totalen Motorvolumen oder dem Motorgewicht lassen sich nun bereits die verschiedenen Bauarten mit dem normalen Drehmoment in eine Beziehung bringen; es lässt sich nämlich zeigen, dass mit den Bauarten des Achsmotors und des Gestellmotors grössere Motoren und daher auch grössere normale Drehmomente verwendbar sind, als mit der Bauart des Vorgelegemotors. Zu diesem Zwecke schreiben wir für das aktive Motorvolumen den expliziten Ausdruck:

$$V == \frac{D^2 \pi}{4} \cdot b$$

wo D den Ankerdurchmesser und b die Eisenbreite des Ankers in cm bedeuten. Im Zusammenhang mit der Spurweite der elektrisch zu betreibenden Bahnen ist nun die Ankerbreite bei allen Motorbauarten gewissen Beschränkungen unterworfen; diese Beschränkungen sind für den Vorgelegemotor wegen des Raumbedarfs für das Vorgelege grösser, als für die andern Bauarten. Für normalspurige Bahnen mit Kollektormotoren kann eine grösste Eisenbreite der Motoranker von etwa 35 cm bei Vorgelegemotoren und von etwa 65 cm bei Achsmotoren und Gestellmoforen in Betracht kommen. Für normalspurige Bahnen mit Drehstrommotoren ohne Schleifringe oder mit Schleifringen ausserhalb des Fahrzeugrahmens 1) liegen diese Zahlen entsprechend höher. Hinsichtlich der Wahl des Ankerdurchmessers sind Beschränkungen vorhanden bei den Achsmotoren, für welche die Grösse des Durchmessers der Triebräder bestimmend auf den Ankerdurchmesser einwirkt, sowie bei den Vorgelegemotoren, bei denen der Ankerdurchmesser an das für die in Betracht kommenden Uebersetzungsverhältnisse und Räderdimensionen zulässige Mass des Abstandes zwischen der Motorachse und der Wagenachse gebunden ist; der Ankerdurchmesser der Vorgelegemotoren kann darum auch im allgemeinen weniger hoch angenommen werden, als bei Achsmotoren und Gestellmotoren. Die Bauart der Vorgelegemotoren ist daher sowohl hinsichtlich der Eisenbreite als auch hinsichtlich des Ankerdurchmessers auf die Motoren mit kleinerem Drehmoment beschränkt, während die Bauarten des Achsmotors und Gestellmotors für Motoren mit höherem Drehmoment besonders

geeignet sind.

Es liegt nun nahe, zu untersuchen, ob die Motorbauarten mit grossem Motordrehmoment etwa für die Fahrzeuge mit grosser Triebachsen - Zugkraft und anderseits die Motorbauart mit kleinerem Drehmoment etwa für die Fahrzeuge mit kleiner Triebachsen-Zugkraft besonders geeignet seien. Während ein solcher Zusammenhang zwischen Motordrehmoment und Triebachsen-Zugkraft für die Bauart der Gestellmotoren ohne weiteres zutrifft, bedarf er einer nähern Untersuchung für die Bauarten des Achsmotors und des Vorgelegemotors. In dieser Hinsicht ist zu beachten, dass

bei einem gegebenen Motordrehmoment die Triebachsen-Zugkraft abnimmt mit dem Durchmesser der Triebräder und zunimmt mit dem Uebersetzungsverhältnis (Motordrehzahl durch Triebraddrehzahl). Es wächst nun für die Bauart

¹⁾ Vergl. Grundriss von Abbildung 21 Seite 266.

Abb. 45. Wohnhaus Gellertstrasse 14. — Längsschnitt. — 1:200.

des Achsmotors mit dem Durchmesser der Triebräder auch der mögliche Durchmesser des Motorankers und wachsen daher auch das mögliche Motorvolumen sowie das Motordrehmoment und zwar quadratisch; dies hat zur Folge, dass beim Achsmotor dem grössern Motordrehmoment infolge der Vergrösserung von Triebraddurchmesser und Ankerdurchmesser auch eine grössere Triebachsen-Zugkraft entsprechen wird; die Bauart des Achsmotors ist daher

für Fahrzeuge mit grosser Triebachsen-Zugkraft wohl angebracht. Für die Vorgelegemotoren, die wir wegen der Beschränkung in der Ankerbreite und im Ankerdurchmesser als Motoren mit kleinem Drehmoment erklärten, müsste die Forderung der Erreichung einer hohen Triebachsen-Zugkraft zu bedeutenden Uebersetzungsverhältnissen führen; starke Uebersetzungs - Verhältnisse für die Erreichung hoher Zugkräfte bedingen jedoch aus Gründen der mechanischen Festigkeit Abmessungen der Zähne, die nicht nur, wie bereits berücksichtigt, die Motordimensionen selbst, sondern auch den Triebraddurchmesser ungünstig beeinflussen, sodass die Erreichung einer hohen Zugkraft gewissermassen wieder illusorisch wird. Ein angemessenes An-

wendungsgebiet finden daher die Vorgelegemotoren wirklich nur bei Fahrzeugen mit kleiner Triebachsen-Zugkraft.

Hinsichtlich der Wechselbeziehungen zwischen den Motorbauarten und den Geschwindigkeitsanforderungen, welche an die elektrischen Fahrzeuge gestellt werden, kann an Hand einer allgemein an allen mechanischen Antrieben zu gewinnenden Erfahrung die Ausschaltung jeglicher Zahnradübersetzung für das Zusammentreffen grosser Geschwindigkeiten und Zugkräfte empfohlen werden, sowie die Ausschaltung auch der Triebstangen für die Anwendung von sehr grossen Geschwindigkeiten bei mittleren und grösseren Triebachsen-Zugkräften. Als unabhängige, frei wählbare Grösse zur Erreichung der in jedem einzelnen Fall gewünschten Fahrzeugsgeschwindigkeit verbleibt dann die Motordrehzahl.

Tabelle I.

Posi- tion	Anforderungen an die Fahrzeugsausrüstung	Erforderliches Motor- drehmoment	Erforderliche Motorbau a rt
I	Kleine Geschwindigkeit und kleine Zugkraft	klein	Vorgelegemotor mit grösserer Uebersetzung
2	Grosse Geschwindigkeit und kleine Zugkraft	klein	Vorgelegemotor mit kleinerer Uebersetzung
3	Kleine Geschwindigkeit und grosse Zugkraft	gross	Gestellmotor mit oder ohne Räderübersetzung
4	Grosse Geschwindigkeit und grosse Zugkraft	gross	Achsmotor u. Gestellmotor

Demgemäss wird sich nun für die auf Seite 289 gegebene Klassifikation der motorisch ausgerüsteten Fahrzeuge die folgende Gegenüberstellung der Fahrzeugscharaktere und der Motorbauarten ergeben:

Für die Gruppen motorisch ausgerüsteter Fahrzeuge mit kleiner Triebachsen-Zugkraft wird der Vorgelegemotor in Betracht kommen und zwar bei gegebener Motordrehzahl mit einer grösseren Uebersetzung für die kleineren Geschwindigkeiten und einer kleineren Uebersetzung für die grösseren Geschwindigkeiten. Als grössere Uebersetzungen werden dabei in Betracht kommen 5:1 bis 3:1 und als kleinere Uebersetzungen 3:1 bis 2:1. Für Fahr-

zeuge mit grosser Triebachsen-Zugkraft werden die Bauarten des Achsmotors und des Gestellmotors zu berücksichtigen sein, und zwar der Gestellmotor mit oder ohne Räderübersetzung für das Zusammentreffen grosser Zugkräfte mit kleinen Geschwindigkeiten und der Achsmotor sowie der Gestellmotor ohne Räderübersetzung für das Zusammentreffen grosser Zugskräfte mit grossen Geschwindigkeiten. In systematischer Zusammenstellung ergibt dies die nebenstehende Tabelle I.

Eine lung dieser Systematik Stunde 12,5 m pro Sekunde) und als obern Grenz-

wert der kleinen und untern Grenzwert der grossen Triebachsen-Zugkraft den genannten Wert von 2000 kg feststellen; als obere Grenze des kleinen und untere Grenze des grossen Motordrehmoments wäre dann etwa der Betrag 300 mkg brauchbar. Die zahlenmässige Zusammenstellung ergäbe dann:

Posi- tion	Anforderungen an die Fahrzeugausrüstung		Art der Ausrüstung	
	Zugkraît pro Trieb- achse in kg.	Fahrzeugsgeschwindig- keit in km pro Stde.	Motordrehmoment in mkg.	Motorbauart
I	Za < 2000	v < 45	D < 300	Vorgelegemotor mit 4: 1 oder mehr
2	Za < 2000	v > 45	D < 300	Vorgelegemotor mit 3: 1 oder weniger
3	Za > 2000	v < 45	D > 300	Gestellmotor
3 4	Za > 2000 $Za > 2000$	v > 45	D > 300	Achsmotor u. Gestellmotor ohne Räderübersetzung

Diese Systematik, die sich also, wie wir gesehen haben, wesentlich auf Ueberlegungen a priori stützt, würde nun im praktischen Eisenbahnbetrieb der folgenden Betriebsmittelzusammenstellung gleichkommen:

Posi- tion	Betriebsmittel		
1	Motorwagen für Strassenbahnen und Kleinbahnen		
2	Motorwagen für Vollbahnen und Personenzugslokomotiven		
3	Güterzugslokomotiven und Speziallokomotiven für Bergstrecken		
4	Schnellzugslokomotiven und Schnellbahnmotorwagen		

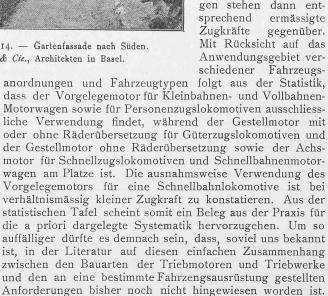
Basler Familienhäuser.

Die auf Seite 293 zusammengestellte statistische Uebersicht soll uns anderseits durch Ueberlegungen, die also gewissermassen a posteriori gewonnen worden sind, hinsichtlich der Eignung der Bauarten ebenfalls eine Systematik nahelegen; es wird vor allem interessant sein zu konstatieren, ob diese neue Systematik sich mit der a priori aufgestellten

deckt oder wesentlich von ihr abweicht. Wir ordnen die nachfolgenden statistischen Angaben über ausgeführte motorische Fahrzeugsausrüstungen hinsichtlich der Bauart und der Stromart und geben, soweit dies aus der Literatur möglich ist, alle für die vorliegende Beurteilung wichtigen Daten an. Die spezifischen Ziffern sind insbesondere die bereits erwähnte Konstante C, die das aktive Motorvolumen bezogen auf die Einheit des normalen Drehmoments bedeutet, sowie das in kg ausgedrückte Motorgewicht g pro Einheit desselben Drehmoments; für die Vorgelegemotoren ist es vielfach üblich, in diesem Gewichte das Gewicht der Zahnräder und Verschalung einzuschliessen, für welche Angabe wir das Symbol g' pro Einheit des normalen Drehmoments benutzen wollen. Der Unterschied von g und g' beträgt durchschnittlich etwa 10 %. Da, wo in der Literatur genaue Masse angegeben waren, konnte C genau berechnet werden; in einigen Fällen mussten jedoch an Stelle solcher Angaben

die Dimensionen aus den Fahrzeugsbildern mehr oder weniger genau geschätzt werden.

Die aufmerksame Betrachtung dieser Tafel hinsichtlich der Schlüsse, die daraus über die Eignung der drei Bauarten für die verschiedenartigen, an Fahrzeugausrüstungen gestellten Anforderungen hervorgehen und hinsicht lich der Stellung dieser Schlüsse zu der bereits a priori aufgestellte Systematik lehrt folgendes:


Die Vorgelegemotoren sind vorzugsweise für kleinere normale Drehmomente am Motor und Zugkräfte an der Triebachse, die Achsmotoren und Gestellmotoren vorzugssweise für grössere Drehmomente am Motor und Zugkräfte an der Triebachse verwendet worden. Ausnahmsweise ist für einzelne Gleichstrom- und Einphasen-Vorgelegemotoren sogar ein sehr grosses Drehmoment zugelassen worden (Nr. 7, 9, 10, 20); da jedoch, wie aus den Bemerkungen hervorgeht, diese Anlagen eher einen didaktisch-aquisitorischen, als einen endgültigen Charakter haben, sollen sie für die weitern Schlüsse nicht benützt werden. Sieht man also von diesen Beispielen ab, so scheint das Maximum des bei Vorgelegemotoren vorkommenden Drehmoments bei 250 mkg und das Maximum der Zugkraft pro Triebachse bei etwa 1900 kg zu liegen. Da jedoch viele Beispiele sich

auf ältere Anlagen beziehen und eine Steigerung der Leistungsfähigkeit der Bauart noch zu erwarten sein wird, so dürfte bei weiterer Ausbreitung der elektrischen Traktion eine Steigerung dieser Grenzwerte auf 300 mkg am Motor und 2000 kg pro Triebachse sicher zu erwarten sein.

Bei den Gestellmotoren finden sich für den Fall der

Stromart Drehstrom besonders hohe Motordrehmomente verwendet; es rührt dies davon her, dass für Drehstromfahrzeuge absichtlich die äusserste Reduktion in der Motorenanzahl zu erreichen gesucht wird; infolge der Verteilung dieser Drehmomente auf eine Anzahl Triebachsen, die wesentlich grösser als die Anzahl Motoren ist, werden dann die Zugkräfte für eine Triebachse wieder normal. Hinsichtlich der Wa-

gengeschwindigkeiten dürfte es als erwiesen gelten, dass für die Vorgelegemotoren grössere und kleinere Geschwindigkeiten vorkommen, während die Gestellmotoren mit Räderübersetzungen eher für kleinere und die Achsmotoren und Gestellmotoren ohne Räderübersetzungen vorzugsweise für grössere Geschwindigkeiten der Fahrzeuge benutzt werden. Den besonders grossen Geschwindigkeiten der Schnellbahn - Motorwagen stehen dann entsprechend ermässigte gegenüber. Zugkräfte Mit Rücksicht auf das Anwendungsgebiet ver-

Wir empfehlen somit die sehr einfache Systematik, alle motorisch ausgerüsteten Fahrzeuge in zwei Klassen einzuteilen, wie folgt:

Klasse 1: Fahrzeuge mit kleiner Zugkraft pro Triebachse, gekennzeichnet durch Anwendung der Bauart des Vorgelegemotors.

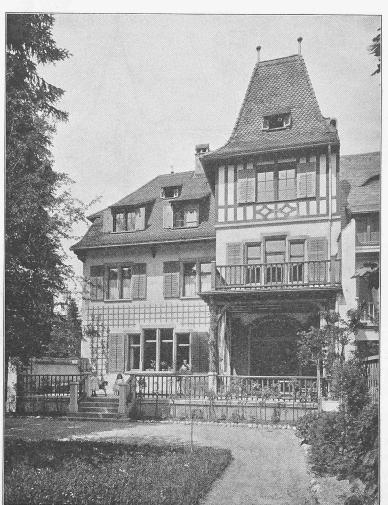


Abb. 41. Wohnhaus Gellertstrasse 14. — Gartenfassade nach Süden. Erbaut von La Roche, Stähelin & Cie., Architekten in Basel.