Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 45/46 (1905)

Heft: 3

Artikel: Die evangelische Pfarrkirche zu Weinfeld: erbaut von Pfleghard &

Häfeli. Architekten in Zürich

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-25372

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Mechanismen, die den Betrieb verteuern, gefährden und hohe Anlagekosten erheischen.

Als solche Schleusenprojekte mit gewürdigten Einzelheiten führt das Preisgericht das Projekt "Ohne Maschine" an, eine Sparschleuse, System Schnapp, kgl. Wasserbauinspektor in Berlin, in Verbindung mit v. Gerstenbeck und Bruno

Schulz. In einer Schleusenkammer schwimmt ein in fünf Etagen geteilter Eisenschwimmer von 56 m Länge, 25 m Breite und 21 m Höhe. Die Bewegung wird dadurch veranlasst, dass das in den Kammern enthaltene Wasser in entsprechende Seitenbecken ein- bezw. überfliesst und den Schwimmer entlastet. Das Emportauchen des Schwimmers senkt den Wasserspiegel der Schleusenkammer und hebt ihn umgekehrt beim Eintauchen. Das Gesamtgefälle wird in drei Stufen überwunden. Der Betrieb ist durch Wasserübergewicht oder durch Pressluft ermöglicht.

Im Projekt mit dem Motto: "Ziehet, Ziehet, Hebt!" sind zwei hintereinander gekuppelte, in Betoneisen konstru-ierte Schachtschleusen mit je sechs Seitenkammern vorgeschlagen. Im Projekt "Renaissance" ist eine Schachtschleuse mit Reservoiren zur Wasseraufnahme, im Projekte "Pourquoi vouloir faire aller les bateaux sur des rails" sind zwei Schleusen mit je sechs Sparbecken angeordnet.

Die Ergebnisse des Wettbewerbes sind somit zu Gunsten der schiefen Ebene ausgefallen.1)

Für die wirtschaftliche Entwicklung jener Länder, die wegen Terrainschwierigkeiten, Wassermangel u. drgl. auf die Vorteile der Wasserstrassen bisher verzichten mussten, wird dieser Wettbewerb nicht ohne Einfluss bleiben.

(Mit Tafel II.)

I.

Das alte Thurgauer Städtchen Weinfelden, das sich mit seinen behäbigen Bürgerhäusern und heimeligen Fachwerkgiebeln, unter breitkronigen Obstbäumen versteckt, am Südfusse des Ottenberges ausdehnt, wird von altersher von der Pfarrkirche überragt, die von steilabfallendem, schmalem Felsplateau über das Land schaut.

Das alte Gotteshaus, um die Mitte des XIII. Jahrhunderts gegründet und mutmasslich wohl 1567 anlässlich eines Um- oder Neubaues mit einem Turm versehen, war seit 1531 paritätisch und musste 1726 einem abermaligen Neubau weichen, da der vorhandene Kirchenraum den beiden

Gemeinden nicht mehr genügte. Der spitzzulaufende Felsvorsprung bot nur wenig Platz zu einer Vergrösserung; so sah man sich schon genötigt, ernstlich eine Verlegung der Kirche vom altgewohnten Platze zu erwägen, als Baumeister Grubenmann von Teufen als Helfer in der Not erschien und sich anerbot, "durch Verstärkung des Felsens durch

Seitenmauern eine schöne und überaus solide Baustelle zu schaffen und den gewünschten Umgang auf der Südseite durch eine hölzerne Galerie zu ermöglichen." 1726 wurde das nördlich, neben der alten Kirche gelegene Beinhaus samt der ganzen Anlage bis auf den Turmchor abgebrochen1) und der Neubau, der neben dem alten Südchor im Turmerd-geschoss noch einen zweiten Nordchor erhielt, soweit nach Norden verbreitert, dass auch die Nordwestecke direkt auf die Felsenkante zu stehen kam. (Abb. 1). Um selbst hier einen Umgang zu ermöglichen, kam der findige Architekt auf den Gedanken an dieser Ecke einen tunnelartigen Gang durch das Gebäude anzulegen, der auch auf unserer Ansicht der alten Kirche (Abb. 2 S. 35) deutlich sichtbar ist.

Die einschiffige, teilweise über 15 m breite Kirchenhalle erhielt eine grosse Rückempore, die sich an den Seiten gegen die Chorwand vorzog, ohne die letztere zu erreichen, und war mit einem flachen Tonnengewölbe überdeckt, dessen Scheitel erheblich höher als der Fusspunkt der Dachbinder lag. Die grosse Spannung, die verhältnismässig

schwachen Seitenmauern und der Wunsch, das Kircheninnere nicht durch Zugstangen zu entstellen, veranlassten Baumeister Grubenmann zu einer sehr interessanten Dachkonstruktion, die wir in den beigegebenen Skizzen (Abb. 4 und 5, S. 38) darstellen. Die in kurzen Abständen aufgestellten Binder wurden ebenso wie das Gespärre verhältnismässig stark gehalten und ausserdem noch zur fernern Entlastung der Seitenmauern in der ganzen Länge des Dachfirsts, also auf etwa 22 m, durch ein schweres eingebautes Hängewerk gefasst, das die Last des Daches auf die Giebelmauern mitübertragen sollte. Die kühne Konstruktion hat allerdings zu wiederholten Reparaturen Veranlassung gegeben; so mussten 1822 die Seitenmauern, um ihnen mehr Festigkeit zu verleihen, am Ost- und Westende mit eisernen Schlaudern verbunden werden; die gleichen Verankerungen erwiesen sich aber 1870 auch in der Mitte als nötig.

Bereits 1789 war das Hauptgewölbe von dem berühmten Stukkaturarbeiter Beck von Konstanz neu hergestellt und mit schlichten, aber ungemein vornehm wirkenden Stukkaturen geziert worden. Die Innenansicht der alten Kirche (Abb. 3 auf S. 35), nach einer vor dem Abbruch aufgenommenen Photographie, zeigt neben der eigentümlichen doppelchörigen Anlage auch dieses hübsche Gewölbe.

Zu Anfang des Jahres 1900 trug sich die Gemeinde Weinfelden mit dem Gedanken, ein neues Geläute anzuschaffen und dafür den alten Turm zu erhöhen. Die zu

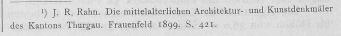


Abb. 6. Ansicht der neuen Kirche in Weinfelden vom Marktplatz aus.

¹⁾ Wie uns mitgeteilt wird, rührte das eine der beiden Projekte, die zwar in zweiter Prüfung vom Preisgerichte ausgeschieden wurden aber doch eine Anzahl Stimmen für Zulassung zum engsten Wettbewerb erhalten hatten, von der Firma Froté, Westermann & Cie. und Ingenieur L. Thormann, beide in Zürich, her. In diesem Projekt (Nr. 95 des Verzeichnisses) war die Aufgabe ganz ähnlich wie bei «Universell» gelöst, durch eine längsgeneigte Ebene mit zwei von einander unabhängigen, mittelst Zahnstange elektrisch angetriebenen Trogfahrzeugen.

Die evangelische Pfarrkirche zu Weinfelden.

Erbaut von Pfleghard & Häfeli, Architekten in Zürich.

Ansicht der Kirche von Süd-Ost.

Seite / page

36(3)

leer / vide / blank

diesem Zwecke angeordnete Untersuchung über die Grundmauern des Turmes offenbarten einen solch schlechten Zustand derselben, dass von einer weitern Belastung durch Aufbauten abgeraten werden musste. Ein Abtragen des Turmes war in Rücksicht auf die damit verbundene Gefahr für den durch die Turmmauer gestützten Längsträger des Dach-

in wieweit auf die Verwendung der übrigen Methoden ganz oder wenigstens teilweise verzichtet werden kann. Leider hat bisher die Idee, auf verwilderten Strömen durch passende Vorkehrungen die Uebelstände hoher Kiesschwellen vorübergehend zu beseitigen, nur geringen Anklang gefunden, was sehr zu bedauern ist; denn überall da, wo mit Sachkenntnis den Verhältnissen entsprechend gearbeitet wurde, wie z. B. an der Donau durch

Die evangelische Pfarrkirche in Weinfelden.

Erbaut von Pfleghard & Häfeli, Architekten in Zürich.

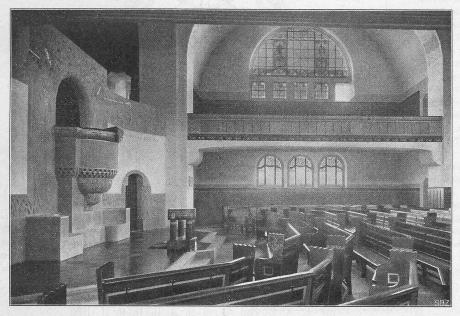


Abb. 7. Innen-Ansicht der Kirche gegen Kanzel, Altar und Südempore.

stuhls unmöglich; da sich gleichzeitig auch die Seitenmauern der Kirche in schlechtem Zustand befanden und stark nach aussen gewichen waren (siehe Abb. 4), entschlossen sich die bisher vereinigten beiden Kirchengemeinden zum Abbruch des ganzen Gebäudes und zur gleichzeitigen Neuerstellung je einer besondern evangelischen und katholischen Kirche. Während für letztere im Tale ein geeigneter Bauplatz gefunden wurde, beschloss man für den Neubau der evangelischen Kirche die alte, durch ihre Lage hervorragend schöne Baustelle zu benützen und betraute die Architekten Pfleghard & Häfeli in Zürich mit der Ausarbeitung der Pläne und der Bauausführung. (Schluss folgt.)

Mobile Leitwerke.

Von R. Gelpke, Ingenieur in Basel.

Zur Schiffbarmachung von Strömen, die infolge Rektifikation des Laufes grosse Sohlenbeweglichkeit mit allen Erscheinungen der Talwegsverwilderung, tiefen Uferkolken und seichten Uebergängen zeigen, wie der Rhein zwischen Basel und Germersheim, die Donau zwischen Ulm und Regensburg, ferner unterhalb Wien, sind der Hauptsache nach drei verschiedene Wege vorgezeichnet:

- 1. Regulierung auf Niederwasser durch Ausbau einer besondern Fahrrinne innerhalb des korrigierten Strombettes.
- 2. Lokale vorübergehende Hebung der im veränderlichen Talweg auftretenden Schiffahrtshindernisse.
- 3. Erzeugung von intermittierend wirkenden Stauwellen aus künstlichen oder natürlichen Akkumulatoren zur zeitweise vermehrten Wasserführung und dadurch bewirkten Erhöhung der Wassertiefen im Stromstrich über den Schwellen.

Punkt I entfällt hier der weitern Erörterung, da über die Vor- und Nachteile der Niederwasserregulierung eine erschöpfende Literatur bereits vorhanden ist. Ebenso wird hier Punkt 3 ausser Betracht fallen, da die Erzeugung von Stauwellen bestimmte geologische, orographische und hydrographische Eigentümlichkeiten des Flussgebietes voraussetzt, die nicht überall zutreffen.

Von einer erfolgreichen Nutzanwendung der im Punkte 2 angeführten Methode zur Verbesserung der Fahrwasserverhältnisse hängt es ab,

Abrechen der Fuhrten mit sogen. Rechendampfern, waren die Bemühungen von Erfolg begleitet. Auffallend ist die Erscheinung, dass am Oberrhein von Mannheim an aufwärts bis nach Basel, trotz seiner hervorragenden Bedeutung als Grosswasserstrasse wenig oder besser gesagt nichts getan wurde zur Behauptung der Schiffahrt bei sinkenden Wasserständen. Allerdings sind Versuche zur Vertiefung seichter Uebergänge mit Eimerbaggern vorgenommen worden, jedoch ohne durchschlagenden Erfolg. Ein anderes Resultat konnte von vorneherein bei der hohen Stromgeschwindigkeit und bei der entsprechend vermehrten Stosskraft des Wassers nicht erwartet werden. Diese verfehlten Versuche scheinen nur anzudeuten, dass mit einer unverkennbaren Absichtlichkeit die Oberrheinschiffahrtsstrasse in ihrer Verkehrsfähigkeit vernachlässigt wurde, wohl aus wirtschaftspolitischen Rücksichten. Es war deshalb nicht zu verwundern, dass der Gedanke an die Erstellung eines Rhein-Seitenkanals von Strassburger Handelskreisen ernstlich in Erwägung gezogen wurde. Neuerdings hat sich glücklicherweise wieder eine Schwenkung zu Gunsten der Ausbildung des Stromes als Wasserstrasse vollzogen. Den Bemühungen des Ingenieurs Kretz in Karlsruhe scheint es gelungen zu sein, in richtiger Erkenntnis der Geschiebebewegung des Stromes mit den durch

die Wasserstände jeweilen bedingten Schwellenverhältnissen ein praktisches Verfahren zur Vertiefung der Fuhrten mit Hilfe eines sogenannten Spülbaggers aufzustellen.

Das hier zur Anwendung gelangende Prinzip ist dasselbe wie bei der Funktion des Abrechens; es besteht in einer Lockerung des sandigen

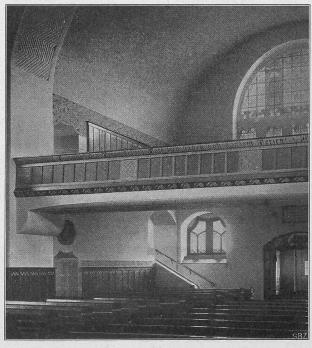
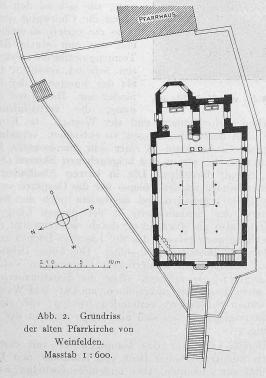


Abb. 8. Blick nach der Westempore und dem Haupteingang.


und kiesigen Materials, das nun mit Leichtigkeit vom Strome in den nächsten Kolk fortgeschwemmt werden kann. Zur kräftigen Unterstützung dieses Vorganges, ebenso wie zur Anwendung ohne Mithülfe von Rechenschiffen und Spülbaggern, soll hier ein System sogen. «mobiler Leitwerke»

Die Ergebnisse der internationalen Wettbewerb-Ausschreibung des k. k. österr. Handelsministeriums für ein Kanal-Schiffshebewerk.

Von Josef Rosshändler, Ingenieur in Basel.

(Schluss.)

Der zweite Preis ist dem Projekt "Habsburg" von einer ganz andern Konstruktionsart zuerteilt worden: Ein Hubzylinder mit zwei Trogtrommeln, als Schwimmer. Es sind dieses Konstruktionen nach den Patenten von den Herren Ingenieuren Umlauf und von Stockert in Wien und Baurat C. Offermann in Berlin, welche Patente von der Maschinenbaugesellschaft Nürnberg erworben wurden. "Das Schiffshebewerk besteht aus einem auf dem Unterwasser schwimmenden, horizontalen Hubzylinder von 52 m Durchmesser und 70 m Länge, der als räumliches Tragwerk ausgebildet ist und beim Drehen um seine Achse in zwei eingebauten Trommeln von 12 m Durchmesser die schwimmenden Schiffe mit geringem Kraftaufwand hebt und senkt." Die Führung des Hubzylinders erfolgt zwangläufig durch zwei Schwingen, die in den Drehpunkten verankert sind und ihre Verbindung mit dem räumlichen Tragwerk durch zwei, in der Mitte der Zylinderstirnwände angeordnete stählerne Zapfen finden. Der Hubzylinder schwimmt im Unterwasser mit begrenztem Umfang, wobei das Wasser bei vermehrter Tauchung durch einen Spalt zwischen Hubzylinder und Schwimmgrube austritt und umgekehrt wieder eintritt. Der Schwimmgruben-Wasserspiegel soll mit dem Niveau der untern Haltung übereinstimmen; hiedurch können die untern Haltungsverschlüsse entfallen. Allerdings werden für die Regulierung der Wasserschwankungen im Unterwasser Vorschleusen, ja sogar Pumpwerke nötig. Die seitlichen

Windkräfte auf das System werden in das Unterwasser und in die Drehpunkte der Schwinghebel, die auf die Stirnfläche wirkenden Windkräfte werden auf die Stirnmauer übertragen. Die Drehbewegung des Hubzylinders erfolgt durch Eingriff je eines Zahngetriebes in zwei, den halben Umfang der Trommel umfassende Zahnkränze. Trotz des enormen Gewichtes dieses Hebewerkes von 10000 t genügen zum Antrieb des Hubzylinders 52 Pferdestärken.

Die eigentümliche Konstruktion eignet sich am besten für Höhen von 36,0 m. Seine Vorteile: geringe Bewegungs-

widerstände und die Vermeidung belasteter Fundamente sind hoch anzuschlagen.

Die Gesamtkosten des Projektes belaufen sich auf 6400000 Kr. Es stellt sich nach Angaben des Preisgerichtes gemäss nachfolgendem Vergleich um 910000 Kr. ungünstiger, als das Projekt "Universell", weil die Kosten der durch die schiefe Ebene ersparten Kanalstücke in Betracht gezogen werden müssen.

Die evangelische Pfarrkirche zu Weinfelden.

Abb. 1. Ansicht der alten Pfarrkirche von Nord Ost.

Nachteile des Systems sind, dass Störungen völligen Unterbruch des Betriebes bedingen und dass die Verwendungsfähigkeit eine begrenzte ist, da die Höhe von 20,0 m die untere Grenze der Anwendungsfähigkeit ergibt, weil dann die Trogtrommeln mit ihren, durch die Schiffsgrösse gegebenen Abmessungen so nahe aneinander rücken, dass die Konstruktion des Hubzylinders unmöglich wird. Grössere Hubhöhen als 36,0 m würden anderseits zu ungeheuerlichen Abmessungrn und schwer ausführbaren Konstruktionen führen. Immerhin zeichnet sich dieses Projekt durch grosse Leistungsfähigkeit, grosse Betriebssicherheit und geringe Betriebskosten aus, sodass es von Wert wäre, ein derartiges Hebewerk ausgeführt zu sehen.

Vergleich der Erstellungs-Kosten in Kronen:

Projekt	Bauarbeiten	Maschinen- Anlagen	Gesamtkosten
«Universell» I, Preis	1 900 000	4 190 000	6 090 000
«Habsburg» II. »	2 650 000	3 750 000	6 400 000

An Kosten der Kanalanlage ist bei Projekt I 1 Mill. Kr.
und " " II 400000,

in Abzug zu bringen, somit ergeben sich für Projekt "Universell" Gesamtkosten 5 090 000 Kronen. "Habsburg" "6000 000 "

Zum Schlösse kommen wir noch in Kürze auf die

Schleusen-Projekte zu sprechen.

Das Preisgericht hat es abgelehnt, in seinen Begründungen die prinzipielle Frage zu untersuchen, ob die Auflösung einer grossen Gefällsstufe in mehrere Schleusen rationell ist oder nicht. Es scheint, dass eigentliche Schleusenprojekte mit Gefällsstufen von 6,0 m bis 9,0 m in einwandfreier Bearbeitung nicht vorgelegen haben. Hingegen waren Projekte vorhanden, welche die grosse Förderhöhe in einer oder in zwei Schleusen zu bewältigen suchten. Durch diese Lösungen waren die Projektanten genötigt, mehrere Sparbecken oder geschlossene Kammern übereinander anzuordnen, damit der Wasserverbrauch in mässigen Grenzen gehalten werden konnte. Das Preisgericht fand jedoch in den grossen erforderlichen Bauwerken, in den komplizierten Einbauten der Sparbecken mit ihren Kanälen und Ventilen schlecht zugängliche

kurz erörtert werden, das seichte Schwellen der Schiffahrt wieder zu erschliessen bestimmt ist.

Anstatt durch feste Bauwerke, wie Grundschwellen, Buhnen, Leitwerke usw. dem Strome eine geschlossene Führung zur Zusammenhaltung des Fahrwassers bei Niederwasserständen vorzuschreiben, wobei eine einschneidende, dauernde Aenderung der Stromkonfiguration leider oft nicht im Sinne der Ausbildung eines natürlichen Beharrungszustandes betont wird,

soll hier eine künstliche, vorübergehende Einschnürung des Stromprofils auf den kritischen Uebergängen bewirkt werden. Der übergrossen Ausbreitung der Wasserfäden beim Wechsel des Talweges und der damit notwendigerweise zusammenhängenden Verminderung der Fahrtiefen im Stromstriche kann durch Anwendung der mobilen Leitwerke wirksam begegnet werden. Je nach der Grundrissform des Talweges sind der Hauptsache nach »gestreckte« und »gebrochene« Uebergänge zu unterscheiden. (Siehe Abbildung a und b). Bei den gestreckten Uebergängen ist die Richtungsänderung des Stromstriches keine so schroffe wie bei den gebrochenen; die Wasserfäden sind besser zusammengehalten und die Tiefenverhältnisse zeigen im Allgemeinen keine die Schiffahrt hemmenden allzuseichten Partieen. Die gebrochenen Uebergänge jedoch sind der Schiffahrt direkt hinderlich, indem durch die Anstauung der Wassermassen oberhalb der Schwelle die geschwächte Strömung die in Bewegung

befindlichen Geschiebemassen an der Schwellenstelle deponiert und die Wassermassen wie bei einem langgestreckten Streichwehr in breiter dünner Schicht über den Kiesrücken abstürzen lässt. Das Gefälle ist hier treppenförmig ausgebildet und konzentriert sich in der Hauptsache auf den Schwellenabsturz. Diese Verhältnisse gelten aber nur bei Niederwasser; bei Mittelwasser weist die

Buhnen, Leitlammenhaltung
bei eine eineider oft nicht
es betont wird,

Abb. 4. Der Dachstuhl des abgebrochenen Kirchenschiffs. — Querschnitt.

Masstab 1:150.

gebracht werden. Diese mobilen, durch die versenkten Caissons dargestellten Leitwerke veranlassen einen Aufstau der Wassermassen oberhalb des künstlich gestalteten Kanals. Zwischen den Caissonswänden selbst strömt das Wasser bei vermehrter Tiefe und etwas vergrösserter Geschwindigkeit in der gewünschten Breite von 60 bis 80 m dahin. Das dadurch gesteigerte

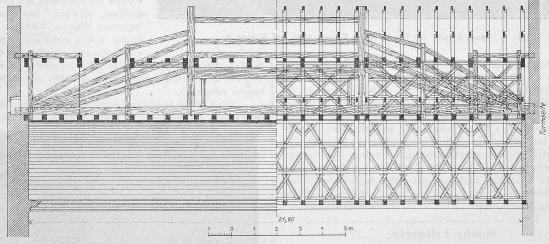
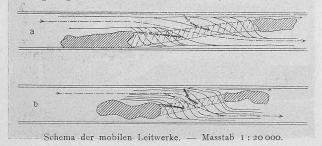



Abb. 5. Der Dachstuhl des abgebrochenen Kirchenschiffs. — Längenschnitt. — Masstab 1:150.

Stromverfassung ausgeglichenere Zustände auf. Während in den Uferkolken der Strom auf durehschnittlich 80 bis 90 m zusammengedrängt ist, steigt die Strombreite auf den Uebergängen oft auf 300 bis 500 m an; hier können somit allein durch Einschnürung der Strombreite auf 60 bis 80 m ähnliche günstige Tiefenverhältnisse erzielt werden, wie in den Uferkolken.

Anstatt dies durch permanente Einbauten zu bewerkstelligen, werden nach Massgabe der erforderlichen Umstände in die Grenzlinien des beabsichtigten Uebergangskanals Caissons eingefahren (siehe Abbildung), die nach Fixierung ihrer Lage vermittelst Verankerung durch Einpumpen von Wasser langsam zum Sinken und damit zum Aufsitzen auf die Stromsohle

Arbeitsvermögen des Stromes macht sich geltend in einem raschen Ausspülen der Sohle, welcher Vorgang noch wesentlich beschleunigt und unterstützt werden kann durch vorausgehende künstliche Lockerung der obersten Schichten mit Hilfe von Spülbaggern oder Rechenvorrichtungen. Die zum Abschwemmen gebrachten Kiesmassen gelangen so zum grössten Teil im nächstfolgenden Kolk zur Ablagerung und beeinträchtigen deshalb in keiner Weise den momentanen Beharrungszustand des Stromes. Ist die erwünschte Sohlenvertiefung eingetreten, der Zweck der Caissonaufstellung erfüllt, so treten die mobilen Leitwerke für den betreffenden Uebergang ausser Aktion; die Caissons werden durch Auspumpen des Wassers gehoben und zur Wiederholung des analogen Prozesses mittels eines Schleppdampfers an eine andere Verwendungsstelle geführt. Die Bauart der Caissons selbst ist an keine besondere Eigentümlichkeiten gebunden; sie werden jedoch mit Vorteil die Querschnittsform von Schwimmdocks erhalten, um durch Betonung einer starken Querversteifung gegen seitliches Kippen genügend Widerstand zu bieten.

Miscellanea.

Schmalspurbahn von Meiringen nach Gletsch. Dem von den Ingenieuren E. Vogt in Laufen und Karl Probst in Luzern eingereichten Konzessionsbegehren nach soll die meterspurige, als reine Adhäsionsbahn zu bauende Grimselbahn Meiringen-Gletsch durchwegs auf eigenem Bahn-