Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 45/46 (1905)

Heft: 20

Artikel: Neuer elektrischer Automobilwagen für Adhäsions- und

Zahnstangenbetrieb der Stanstad-Engelbergbahn

Autor: Burkard, W.

DOI: https://doi.org/10.5169/seals-25433

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Neuer elektr. Automobilwagen für Adhäsions- und Zahnstangenbetrieb der Stänsstad-Engelbergbahn. — Simplon-Tunnel. — Wettbewerb für den Neubau eines Gesellschaftshauses der Drei E. Gesellschaften in Klein-Basel. II. — Wettbewerb für ein Knaben-Primarschul-Gebäude in Vevey. — Das Christusrelief am Hauptportal der Pauluskirche in Basel. — Miscellanea: Stuttgarter Rathaus. XLVI, Hauptversammluug des Vereins deutscher Ingenieure. Mittelalterliche Putzbehandlung. Arbeiterbewegung im schweiz. Baugewerbe. Internationaler Eisenbahn-Kongress in Bern 1910. VI. schweiz.

Konferenz für Schulgesundheitspflege. Jubiläum des eidg, Polytechnikums. Ein Eisenbahner-Haus in Rom. Schweizerische Stellwerkfabrik in Wallisellen. Schiffahrt auf dem Ober-Rhein. Rhätische Bahnen. Neue Urobrücke über die Sihl in Zürich. Schweiz. Bundesbahnen. Karawankentunnel. — Literatur: Moderne Baukunst. Eingegangene literarische Neuigkeiten. — Preisausschreiben: Plakat für die Stadt Bern. — Vereinnachrichten: Schweizer, Ing.- und Arch.-Verein. Bündnerischer Ing.- und Arch.-Verein. G. e. P.: Stellenvermittlung. 50jähriges Jubiläum des eidg. Polytechnikums in Zürich.

Nachdruck von Text oder Abbildungen ist nur unter der Bedingung genauester Quellenangabe gestattet.

Neuer elektrischer Automobilwagen für Adhäsions- und Zahnstangenbetrieb der Stansstad-Engelbergbahn.

Von W. Burkard.

Eine der interessantesten elektrisch betriebenen Lokalbahnen der Schweiz ist die Bahn von Stansstad nach Engelberg; nicht nur, weil die Bahn von der Ebene durch

anmutige Dörfer hindurch immer höher und höher steigt, zwischen den Bergen sich hindurch schlängelt und schliesslich mit einem Höhenunterschied von 564 m gegenüber Stansstad in dem weltberühmten Engelberg endet, sondern speziell ihres eigenartigen Tracés wegen, das in einem frühern Artikel der "Schweiz. Bauzeitung" in Bd. XXXIII, S. 126 u. ff. eingehend dargestellt ist. Von der gesamten Länge der Bahn (22,518 km) wird die Strecke von Stansstad bis Obermatt (rund 17,5 km) als Adhäsionsbahn betrieben. In Obermatt beginnt die 11/2 km lange Zahnstangenstrecke mit 250 $^{0}/_{00}$ Steigung, während das Endstück der Bahn von rund 3 km, von Gherst bis Engelberg, wiederum Adhäsionsbahn ist. Wir fügen in Ab-

bildung I ein Längenprofil mit Angabe der Maximal- und Minimalgefälle der Teilstrecken bei, da das in Band XXXIII S. 127 dargestellte Längenprofil nur je die verglichenen Gefälle der einzelnen Strecken enthält.

Der elektrische Betrieb dieser Bahn erfolgte seit |

wagens, mit einem Totalgewicht von rund 34 t bis zu einer Steigung von 23 $^0/_{00}$, d. h. von Stansstad bis kurz vor der Station Grafenort, mit einer stündlichen Geschwindigkeit von 20 km fortzubewegen; von hier bis zum Beginn der Zahnstangenstrecke bei Obermatt, wo Steigungen zwischen 25 und 50 $^0/_{00}$ zu überwinden sind, müssen obige Motoren 80 bis 90 P.S. leisten, um allein den vollbesetzten Sommerwagen von rund 18 t Belastung mit 20 km Geschwindigkeit befördern zu können.

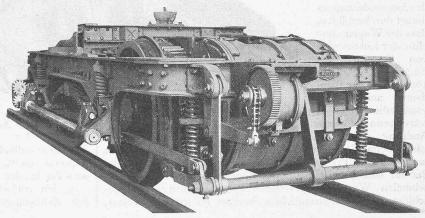


Abb. 2. Ansicht des Treibachsen-Drehgestells von hinten.

Eine elektrische Lokomotive $^{\circ}$) mit zwei Motoren von normal je 75 P.S. befördert den Automobilwagen über die Zahnstangenstrecke hinauf, während derselbe von der obern Endstelle der Zahnstange in Gherst bis zur Station Engelberg wieder mit Hülfe seiner zwei Motoren allein weiter-

fährt.

Da sich einerseits auf der Strecke Stansstad-Grafenort mit maximal nur 29°/60 Steigung und teilweise ziemlich langen geraden Strecken eine Geschwindigkeit von 20 km als zu gering erwies, zumal die Bahn überall eigenes Tracé besitzt, anderseits diese Geschwindigkeit nicht genügt, um in der Hochsaison beim gewaltigen Andrang Verspätungen einzuholen, arbeitete die Firma C. Wüst & Cie. in Seebach bei Zürich ein Projekt aus, um mittelst Drehstrom-Stufenmotoren,

Patent C. Wüst, die Wagen mit zwei Geschwindigkeiten befördern zu können. Es wurde hierauf obiger Firma zunächst die Lieferung der kompleten elektrischen Ausrüstung für einen vorhandenen Sommerwagen, unter folgenden Bedingungen, übertragen.

Die Motoren sollten stark genug gebaut sein um:

- a) den vollbelasteten Sommerwagen mit 56 Personen (18 t) und einen angehängten vollbelasteten Güterwagen (8,6 t), oder zusammen 26,6 t auf der Strecke Stansstad-Dörfli (max. 22 0 / $_{00}$) mit etwa 35 km und Dörfli-Grafenort (max. 29 0 / $_{00}$) mit etwa 23 km in der Stunde, oder
- b) den vollbelasteten Sommerwagen (18 t) und zwei angehängte Güterwagen (17,2 t) im Gesamtgewicht von ∞ 36 t auf der Strecke Stansstad-Grafenort (max. 29 $^0/_{00}$) mit einer konstanten Geschwindigkeit von 23 km in der Stunde, oder
- c) den vollbelasteten Sommerwagen (18 t) allein auf der teilweise 50 $^0/_{00}$ betragenden Steigung zwischen Grafen-

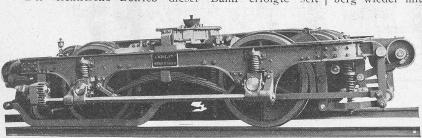
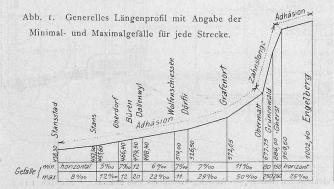



Abb. 3. Ansicht des Treibachsen-Drehgestells von der Seite.

Oktober 1898 mittelst dreiphasigem Wechselstrom von 33 Perioden und zwar mittelst Automobilwagen, wobei jeder Wagen mit zwei Motoren zu 35 P. S. ausgerüstet ist. Die Leistung dieser Motoren war berechnet, um einen vollbelasteten Sommerwagen, einschliesslich eines Anhänge-

1) Siehe Band XXXIII, S. 141.

ort und Obermatt mit rund 23 km Geschwindigkeit fortbewegen können.

Die Motoren müssen eine vorübergehende Ueberlastung von 80 bis 100 % und eine Ueberschreitung der Tourenzahl von mindestens 50 $^{0}/_{0}$ ohne Schaden zu nehmen ertragen können.

Kaum waren das Studium und die Plane dieser interessanten Lösung so weit gediehen, dass mit der Ausführung begonnen werden konnte, so drängte sich die Frage auf, ob es nicht möglich wäre, den Antrieb des Automobilwagens derart durchzubilden, dass der Wagen ohne Hilfe der Lokomotive von Stansstad bis Engelberg gelangen könnte, da der Bahn damit auch nicht ganz gedient gewesen wäre, wenn der ganze Andrang der Fahr-

gäste beim Beginn der Zahnstangenstrecke hätte warten müssen. Das Problem stellte eine sehr schwierige Aufgabe dar für eine Bahn mit nur 1 m Spurweite und entsprechend schmalen Wageunntergestellen; nichts destoweniger entschloss sich nach gründlichem Studium die genannte Firma, eine bezügliche Ausführung unter nachstehenden Bedingungen zu übernehmen.

Die Motoren sind so zu bauen und zu bemessen, dass sie: 1. den vollbelasteten Sommerwagen (20 t) auf der Strecke Stansstad-Grafenort bei max. 29 $^{\circ}/_{00}$ Steigung mit 33,6 km, ferner von Grafenort bis Obermatt bei 50% Maximalsteigung

mit 22,2 km, oder

2. den vollbelasteten Sommerwagen (20 t) und einen vollbelasteten angehängten Güterwagen von 8,6 t oder 00 29 t auf der Strecke Stansstad-Grafenort mit max. $29^{0}/_{00}$ Steigung mit etwa 33,6 km, oder

3. den vol, belasteten Sommer wagen (20 t) und zwei angehängte Güterwagen (17,2 t) oder ∞ 38 t auf der Strecke Stansstad-Grafenort, max. 29 % Steigung, mit einer konstanten Geschwindigkeit 22,2 km, oder

Elektrischer Automobilwagen für Adhäsions- und Zahnstangenbetrieb

4. den vollbelasteten Personenwagen von (20 t) auf der teilweise 50 % betragenden Steigung bis Obermatt mit

22,2 km in der Stunde, oder 5. den vollbelasteten Sommerwagen von (20 t) allein aut der Zahnstangenstrecke Obermatt-Gherst mit einer Ge-

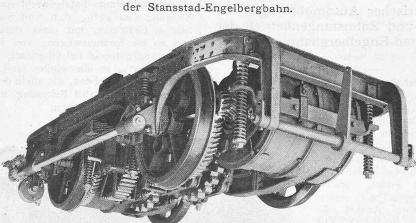


Abb. 4. Untersicht des Drehgestells mit dem elektrischen Antrieb, von hinten.

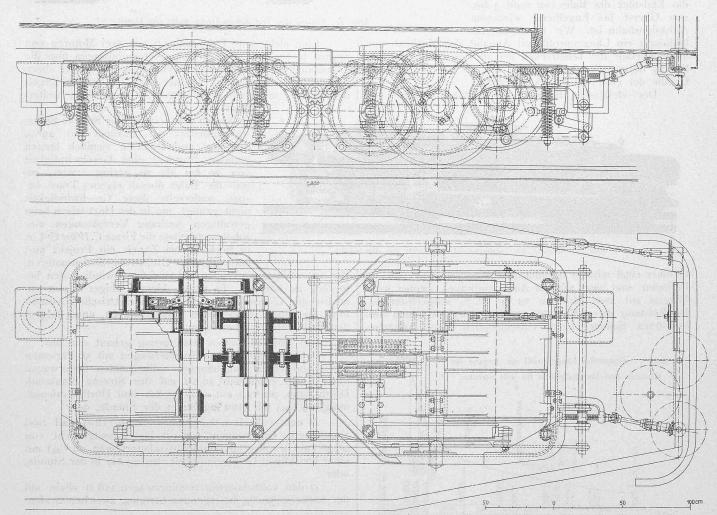


Abb. 6. Drehgestell mit dem von C. Wüst & Cie. in Seebach eingebauten elektrischen Antrieb, — Ansicht, Grundriss und Schnitt. — Masstab I : 25.

erwähnte zweiteilige

Zahnrad lose auf der

Laufachse. Auf der

Innenseite gegen den

Motor zu trägt dieses

Zahnrad einen Kol-

ben, der seine Bewe-

gung durch ein Trans-

portrad auf das auf

Rollenlager ruhende

Treibzahnrad über-

trägt. Diese Anord-

nung entspricht dem

Betrieb auf der Zahn-

schwindigkeit von rund 6,3 km in der Stunde fortzubewegen vermögen.

Hiebei ist angenommen, dass das eine vorhandene Wagendrehgestell entsprechend als Motorendrehgestell abgeändert werde.

Der zur Verwendung gelangende Automobilwagen besitzt zwei zweiachsige Drehgestelle, wovon das bergwärts liegende für die Unterbringung der Motoren nebst den übrigen mechanischen Einrichtungen dient, während das

hintere Drehgestell die Rillenbremse für den Zahnstangenbetrieb enthält.

Zur Sicherheit sind folgende vier Bremsvorrichtungen vorgesehen:

1. eine Adhäsionsbremse, die imstande ist, den vollbelasteten, mit voller Geschwindigkeit laufenden Wagen auf einem Gefälle von $50~0/_{00}$

auf dem vorgeschriebenen Bremsweg festzuhalten;

2. eine auf dem Motorendrehgestell befindliche, von Hand betätigte Rillenbremse, die den Wagen auf dem 250 % Gefälle der Zahnstangenstrecke auf ein paar Meter Distanz zum Stillstand bringt;

3. eine gleiche Rillenbremse mit der gleichen Wirkung, wie unter 2, die auf dem hintern Drehgestell angeordnet ist;

4. die unter 2. angeführte Rillenbremse tritt mittelst Geschwindigkeitsregulator automatisch in Tätigkeit, sobald beim Abwärtsfahren auf der Zahnstangenstrecke die vorgeschriebene zulässige Geschwindigkeit überschritten wird.

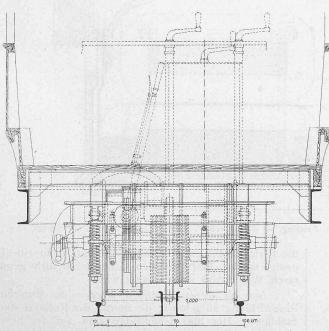


Abb. 7. Drchgestell. Schnitt durch die Plattform. — 1:25.

Allgemeine Anordnung.

Weil die Bahn sehr viele Kurven und sogar solche mit nur 50 \hat{m} Radius besitzt, musste darauf Rücksicht genommen werden, die beiden Treibzahnräder einander möglichst zu nähern. Aus diesem Grunde wurde die Anordnung nach den Abbildungen 2 bis 8 gewählt.

Für den Adhäsionsbetrieb geschieht der Antrieb fol-

gendermassen

Die beiden federnd aufgehängten Stufenmotoren treiben mittelst Doppelschraubenkolben, Patent C. Wüst, auf ein zweiteiliges Zahnrad, welches lose auf der Laufachse

sitzt. Im Innern dieses zweiteiligen Zahnrades ist eine vom Führerstand aus bedienbare Rillenkupplung angebracht. Wird die Kupplung eingerückt, so entsteht durch die Innenzahnung eine so starke Reibung, dass das auf der Laufachse sitzende Zahnrad mitgenommen wird. Im gleichen Augenblick des Einrückens greifen die Fangbacken der innern Kupplung in die Klauen des auf der Laufachse fest aufgepressten Laufrades, wodurch letzteres sich zu drehen beginnt. Wenn nun die Kupplung ausgerückt wird, läuft das oben-

Elektrischer Automobilwagen für Adhäsions- und Zahnstangenbetrieb der Stansstad-Engelbergbahn.

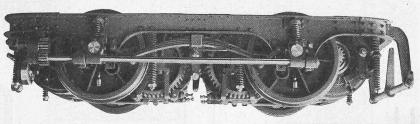


Abb. 5. Untersicht des Drehgestells mit dem elektrischen Antrieb, von der Seite.

stangenstrecke.
Die feststehende Achse des Treibzahnrades lagert in zwei kräftigen Stahlgussrahmen, die mit dem Stahlgussgehäuse der Motoren verschraubt sind.

Da einerseits die Motoren am Drehgestell federnd und um die Laufachse pivotierend aufgehängt sind und anderseits die feststehende Treibzahnradachse beidseitig mit verstellbaren Federn am Drehgestell gelagert ist, so lässt sich durch Verstellen der verschiedenen Federn der Zahneingriff in die Zahnstange auf das genaueste ausregulieren, desgleichen auch, wenn die Bandagen der Laufräder abgelaufen sind. Zudem ist am hintern Drehgestell eine

regulierbare Einstellvorrichtung vorhanden, welche das Steigen des Wagens beim Bremsen auf der Zahnstangenstrecke verhütet. Aus den Abbildungen 2 bis 8 sind die nähern Details der gesamten Anordnung nach Patent C. Wüst deutlich ersichtlich.

Motoren.

Um den vorbeschriebenen Betriebsbedingungen zu genügen, müssen die Motoren sehr verschiedene Leistungen entwickeln. Darum war für deren Konstruktion von Anfang an darauf Rücksicht zu nehmen, dass sie für alle Leistungen, möglichst mit

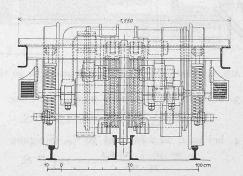


Abb. 8. Drehgestell. Schnitt durch die Mitte. - 1:25.

gleichmässigem Nutzeffekt arbeiten. Da der nächste Speisepunkt vom Beginn der Bahn in Stansstad 3553 m entfernt ist, so sinkt die Spannung beim Anfahren, auch bei den jetzigen Automobilwagen, von normal 750 bis auf 300 Volt; auch auf diesen Punkt musste beim Entwerfen der Motoren die grösste Sorgfalt verwendet werden.

Für die verschiedenen Bedingungen ergaben sich nachstehende Leistungen der Motoren pro Wagen unter Annahme eines Traktionskoeffizienten von 10 kg pro t und eines Nutzeffekts der Rädergetriebe von $80^{\circ}/_{\circ}$:

- 1. bei 20 t, 33,6 km und 29 0/00 Steigung $\frac{20(29+10)9,4}{75\cdot 0,8} = 122 P. S.$
- 2. bei 29 t, 33,6 km und 29 0/00 Steigung $\frac{29 (29 + 10) 9,4}{75 \cdot 0,8} = 177 P. S.$

Bohrung und 695 mm äusserem Eisendurchmesser. Bei der sechspoligen Stufe beträgt die Eisenbreite 200 mm, die Bohrung 500; der äussere Eisendurchmesser ist derselbe wie bei der vierpoligen Stufe.

In der Nähe der Zentrale Obermatt erhalten die Motoren Strom von manchmal bis 1000 Volt, ebenso steigt

Elektrischer Automobilwagen für Adhäsions- und Zahnstangenbetrieb der Stansstad-Engelbergbahn.

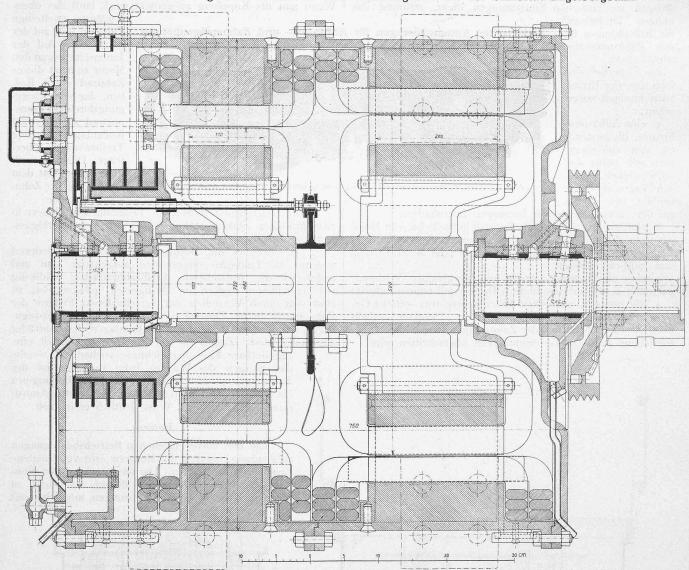


Abb. 9. Vier- und sechspoliger Stufenmotor für 40 bis 95 P.S. Leistung. — Gebaut von C. Wüst & Cie. in Seebach. — Schnitt 1:5.

3. bei 38 t, 22,2 km und 23 0/00 Steigung

$$\frac{38 (23 + 10) 6,2}{75 \cdot 0,8} = 130 P. S.$$

4. bei 20 t, 22,2 km und 50 0/00 Steigung

$$\frac{20 (50 + 10) 6,2}{75 \cdot 0,8} = 124 P. S.$$

5. bei 20 t, 6 km und 250 0/00 Steigung

$$\frac{20 (250 + 12) 1,67}{75 \cdot 0.8} = 146 P. S.$$

Der Hauptverkehr findet auf der Strecke Stansstad-Grafenort statt; die mittlere Steigung für diese Strecke beträgt 15,3 %, sodass sich für dieselbe als mittlere Leistung ergibt

$$\frac{20 (15,3 + 10) 9,4}{75 \cdot 0,8} = 79 P. S.$$

Nach diesen Ergebnissen waren die Motoren für eine Leistung von 40 bis 89 P.S. zu bemessen.

Der Stufenmotor ist vier- und sechspolig ausgeführt. Die vierpolige Stufe hat 110 mm Eisenbreite bei 460 mm die Periodenzahl ganz gewaltig, speziell, wenn eine Lokomotive talwärts fährt und den Generatoren nicht genügend rasch Widerstand vorgeschaltet wird.

Aus all diesen Gründen wurden die Rotoren mit Ringwicklung ausgeführt; die Sterne der Rotoren sind aus Stahlguss. Die fünf Schleifringe sind auf der Seite des vierpoligen Elementes angeordnet. Die Stahlgussbüchse der Schleifringe sitzt auf dem Rotorstern. Die kräftigen Lager von 80/175 bezw. 80/150 mm werden durch eine gemeinsame Oelpumpe geschmiert; das ablaufende in Gefässen aufgefangene Oel wird filtriert und gelangt dann wieder zur Verwendung.

Aus den beiden Kurvenbildern (Abb. 11) sind die Nutzeffekte der Motoren zu entnehmen.

Kontroller mit Widerstand.

Den vier Elementen der Motoren entsprechend sind auch die Kontroller ausgeführt. Beim Anfahren gelangt immer die niederste Geschwindigkeit zur Geltung; wenn eine gewisse Fahrgeschwindigkeit erreicht ist, wird auf die grosse Geschwindigkeit umgeschaltet.

Der Kontroller besitzt entsprechend den beiden Geschwindigkeiten zwei Reversierwalzen; wird eine von diesen Walzen auf vorwärts oder rückwärts gestellt, so erhalten die parallel geschalteten Statoren Strom, hierauf wird durch

die andere Reversierwalze verriegelt; ebenso kann die Hauptkurbel für die Widerstände nicht bewegt werden, wenn die Reversierwalzen auf Null stehen. Durch diese gegenseitige Verriegelung ist jede falsche Handhabung unmöglich gemacht.

Aus den Abbildungen 12 und 13 (S. 248) sind die

Elektrischer Automobilwagen für Adhäsions- und Zahnstangenbetrieb der Stansstad-Engelbergbahn.

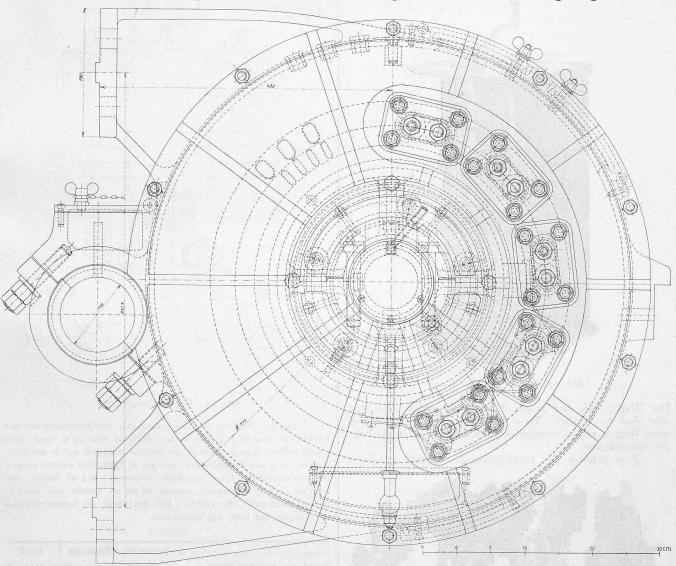


Abb. 10. Vier- und sechspoliger Stufenmotor für 40 bis 95 P. S. Leistung. — Gebaut von C. Wüst & Cie. in Seebach. — Seitenansicht 1:5.

die Hauptkurbel mittelst Räder und Seilen an den in der Mitte unter dem Wagen befestigten Widerständen langsam Widerstand abgeschaltet und der Wagen beginnt, infolge der günstigen Abstufung der Widerstände, sich ohne den geringsten Stoss, sehr sanft zu bewegen.

Mit dem Moment, wo die eine oder die andere Reversierwalze auf vorwärts oder rückwärts gestellt ist, ist

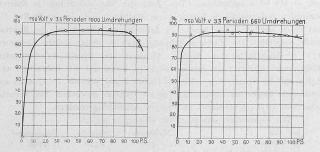


Abb. 11. Nutzeffekt-Kurven des Motors.

Anordnung und die Details des Kontrollers zu ersehen; ebenso gibt das Schaltungsschema in Abbildung 14 (S. 248) jeden weitern Aufschluss über die Schaltung der Motoren sowie die Anordnung der Kontroller und der Widerstände.

Zeitgewinnung und Stromersparnis.

Die Fahrzeit von Stansstad bis Engelberg beträgt gegenwärtig einschliesslich der Wartezeit auf den Stationen 86 Minuten. Indem nun bis Grafenort mit 33,6 km anstatt mit 20 km gefahren werden kann, es ebenso ermöglicht wird, die Geschwindigkeit auf der Zahnstangenstrecke von 5,5 auf 6,3 km zu steigern, und auf der Strecke Gherst bis Engelberg teilweise mit der grössern Geschwindigkeit zu fahren, wird in Zukunft Engelberg in rund 60 Minuten erreicht werden können, was etwa 30 % Zeitgewinnung ergibt.

Weil ferner die Wagen in Zukunft von Stansstad bis Engelberg ohne Hilfe der Lokomotive gelangen können, werden nicht nur die Kosten für die Lokomotive, sondern ebenfalls die Löhne für die zwei Mann Bedienung auf derselben, ein nicht zu unterschätzender Ausgabeposten, erspart.

Bei dem jetzigen Betrieb auf der Zahnstangenstrecke kommen als Gewichte für den Stromaufwand und den Zahnstangendruck in Betracht die Lokomotive mit 14 t, der vollbelastete Wagen mit 56 Personen 18 t, zusammen 32 t.

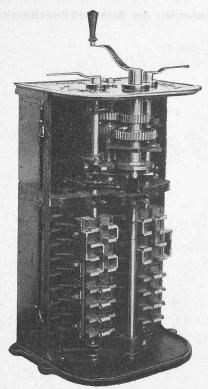


Abb. 12. Ansicht des Kontrollers.

Der Wagen mit der neuen Einrichtung wiegt rund 23 t, also sind 9 t erspart. Dass der rund um 25 $^{\rm 0}/_{\rm 0}$ leichtere neue Wagen selbstverständlich auch weniger Strom braucht, ist einleuchtend.

Zum Schluss sei vergleichsweise darauf verwiesen,

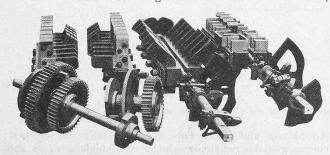


Abb. 13. Detailstücke zum Kontroller.

dass kürzlich drei Lokomotiven der elektrisch betriebenen Valtellinabahn ebenfalls mit Stufenmotoren ausgerüstet wurden, die teils einzeln, teils in Kaskadenschaltung arbeiten. 1)

Simplon-Tunnel.

Der 26. Vierteljahresbericht, mit dem 31. März 1905 abschliessend, ist uns soeben zugekommen, und wir beeilen uns demselben in gewohnter Anordnung die wesentlichen Daten über den Fortschritt der Arbeit im ersten Quartal 1905 und den Stand derselben am Ende des Quartals zu entnehmen.

Elektrischer Automobilwagen für Adhäsions- und Zahnstangenbetrieb. Von C. Wüst & Cie.

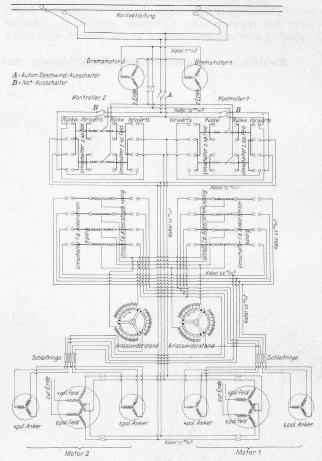


Abb. 14. Das Schaltungsschema.

Auf der Nordseite sind im Quartal nur der Firststollen und der Vollausbruch vorgetrieben und darin Fortschritte von 19 m bezw. 49 m erzielt worden. Von der Südseite aus sind die restlichen 191 m des Richtstollens, 72 m des Parallelstollens und 334 m Firststollen erbohrt worden. Die Quartalleistung betrug nordseits zusammen 1954 m³ Aushub und 2049 m³ (213 m) Mauerwerk, südseits 16 908 m³ Aushub und 6403 m³ (385 m) Mauerwerk. Die Tabelle I gibt den Stand der Gesamtleistungen je zu Beginn und Ende des Vierteljahres.

Tabelle I

	00110 11			
Gesamtlänge des Tunnels 19729 m	Nordseite-Brieg	Südseite Iselle	Total	
Stand der Arbeiten Ende	Dez. 1904 März 19 05	Dez. 1904 März 1905	Dez. 1904 März 1905	
Sohlenstollen im Haupttunnel . m	10376 10376	9162 9353	19538 19729	
Parallelstollen m	10154 10154	9172 9244	19326 19398	
	10100 10119	8522 8856	18622 18975	
	10070 10119	8380 8780	18450 18899	
Gesamtausbruch	469585 474539	429075 445983	898660 917522	
Verkleidung, Länge m	9906 10119	8271 8656	18177 18775	
Verkleidungsmauerwerk m ³	102931 104980	107262 113665	210193 218645	

Beide Stollen der Südseite wurden mit einem mittleren Querschnitt von je $6,8~m^2$ vorgetrieben. Die Zahl der durchschnittlich in Betrieb stehenden Bohrmaschinen betrug 4 im Stollen I und 3,5 im Stollen II; mit ihnen wurden in 46~ bezw. 24~ Arbeitstagen, 161~ bezw. 60~ Bohrangriffe ausgeführt. Die Maschinenbohrung ergab in beiden Stollen zusammen $1713~m^3$ Aushub, für den 8696~kg Dynamit und 1645,2 Arbeitsstunden aufgewendet wurden; von letztern entsielen 806,9~ auf die Bohrarbeit und 838,3~ auf die Schutterung. Mittels Handbohrung wurden im Quartal auf sämtlichen Baustellen zusammen $6798~m^3$ Material gewonnen bei Verwendung von 10354~kg Dynamit und 75~386~ Arbeitertagschichten.

Durchschnittlich arbeiteten im Viertelight täglich

	Durchschmitthen are	citeten	IIII TICITCIJA	in tagnen.	
	auf der		Nordseite	Südseite	Zusammen
	im Tunnel		356	1340	1696
ausserhalb des Tunnels	193	432	625		
		Total	549	1772	2321 Mann.

¹⁾ Siehe Zeitschrift des Vereins deutscher Ingenieure. 1905. Heft 9 und 10.