Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 45/46 (1905)

Heft: 10

Artikel: Vergleichende Untersuchungen an Reaktions-Niederdruckturbinen

Autor: Prášil, Franz

DOI: https://doi.org/10.5169/seals-25396

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Vergleichende Untersuchungen an Reaktions-Niederdruckturbinen. (Forts.) — Die Kreuzkirche zu Zürich. III. (Schluss.) — Jahrbuch des Schweizer. elektrotechn. Vereins. — Miscellanea: Eidg. Polytechnikum. Simplon-Feier des bern. Ing.- u. Arch.-Vereins. Besuch der deutschen Techn. Hochschulen im Winterhalbjahr 1904/05. Ausgrabungen an der Stelle des Apollo-Tempels in Didyma bei Milet. Monatsausweis über die Arbeiten am Ricken-Tunnel. Neuer Handels- und Industriehafen in Wien. Eidg. Polytech-

nikum. Ausschmückung des Speyrer Domes. Monatsausweis über die Arbeiten am Simplon-Tunnel. — Konkurrenzen: Schulhaus in Colombier. Neubau eines Gesellschaftshauses der Drei E. Gesellschaften in Klein-Basel. — Korrespondenz. — Vereinsnachrichten: Zürch. Ing.- u. Arch.-Verein. G. e. P.: Stellenvermittlung.

Hiezu die Tafeln IX a und IX b: Vergleichende Untersuchungen an Reaktions-Niederdruckturbinen, sowie

Tafel VII: Die Kreuzkirche zu Zürich; die Reliefs der Kanzelwand.

Nachdruck von Text oder Abbildungen ist nur unter der Bedingung genauester Quellenangabe gestattet.

Vergleichende Untersuchungen an Reaktions-Niederdruckturbinen.

Von Professor Dr. Franz Prášil in Zürich.

Nachdruck verboten.

(Fortsetzung, mit zwei Tafeln IX a und IX b.)

F. Die Versuchsresultate.*)

Nach dem Vorbilde von Francis (siehe The Lowell hydraulic experiments) wurden für jedes Rad und für jede Beaufschlagungsart desselben die Hauptcharakteristiken in folgender Weise bestimmt:

Die bei den verschiedenen Bremsbelastungen gezählten Tourenzahlen n wurden durch die dem jeweilig gemessenen Totalgefälle H entsprechende Gefällsgeschwindigkeit $C=\sqrt{2~{
m g~H}}$ dividiert und als Abszissenwerte in einem Koordinatensystem angenommen, in welchem die aus der Bremsleistung, dem Gefälle und dem ebenfalls bei jeder Bremsbelastung gemessenen Wasservolumen Q berechneten Werte des totalen Wirkungsgrades einerseits, andererseits die Werte $\frac{Q}{C}$ als Ordinaten eingetragen wurden. Francis hat in seinen gleichartigen Diagrammen nur die Wirkungsgradkurven dargestellt und zwar auf Abszissenwerte, die nicht durch $x = \frac{n}{C}$, sondern durch $x = \frac{u_1}{C}$ bestimmt sind, wobei u_1 die jeweilige Umfangsgeschwindigkeit am Eintrittsumfang des Rades bedeutet; mit Rücksicht auf den beabsichtigten, eingangs erwähnten Vergleich habe ich es vorgezogen, statt $\frac{u_1}{C}$ den nur von der Winkelgeschwin-

digkeit w abhängigen Wert $\frac{n}{C}$ als Abszissenwert zu nehmen.

Die Werte von $\frac{Q}{C}$ ordnen sich, wie aus den Abbildungen 20 uud 21 (Tafel IX a) zu ersehen ist, in jedem Fall mit Abweichungen, deren Grössenordnung diejenige der unvermeidlichen Beobachtungsfehler nicht übersteigen, in bestimmte Kurven ein, und diese Tatsache liefert bei dem Umstande, dass die Messungen bei verschiedenen Gefällen vorgenommen wurden (es betrug z. B. am vollbeaufschlagten Rad I bei 171 1/2 minutlichen Umdrehungen das Gefälle: 4,033, 4,398, 4,581 und 4,621 m, am Rad III bei 1871/2 Umdrehungen: 3,781, 4,100, 4,346, 4,417 und 4,426 m), den experimentellen Nachweis für die grundsätzliche Richtigkeit des bisher aus der Theorie entnommenen Reduktionsverfahrens bei Bremsversuchen, bei dem das Gefälle infolge der äussern Disposition nicht konstant gehalten werden

Auch die Werte der Wirkungsgrade η ordnen sich in charakteristische Kurven ein; es sind hiebei die Abweichungen allerdings grösser als bei den Kurven $\frac{Q}{C}$, was dadurch erklärlich ist, dass bei Berechnung der Werte von η die jeweilen tatsächlich gemessene Bremsleistung in Ansatz gebracht wurde, deren Wert bei den verschiedenen Versuchsserien durch die auf Seite 96 geschilderte Aufhängung jedenfalls verschieden beeinflusst wurde. Da jedoch die mittlern Abweichungen wenigstens für die Beaufschlagungsarten mit grösserer Leitradöffnung nicht grösser als

*) Für die sorgfältige Berechnung und Ausarbeitung der in diesem Kapitel zur Darstellung gelangenden Diagramme, sei den Herren Ingenieuren Jann und Neftel, Assistenten am eidg. Polytechnikum, bestens gedankt.

Berichtigung. Wie die Leser beachtet haben werden, sind die beiden Abbildungen 16 und 17 (S. 98 und 99) vom Setzer vertauscht worden. Ausserdem ist richtig zu stellen, dass Abb. 18 auf Seite 98 sich auf Rad II bezieht und nicht wie in der Unterschrift angegeben auf Rad III.

o,5 bis o,8 % sind, also innerhalb Grenzen liegen, die auch noch durch unvermeidliche Beobachtungsfehler bedingt sein können, erschien es für den beabsichtigten Vergleich genügend, die Wirkungsgrade, wie sich die-selben direkt aus den Berechnungen ergaben, zur Darstellung zu bringen. Durch die Resultate der Ablaufversuche ist es ermöglicht, den Einfluss der Aussenwiderstände für jeden einzelnen Fall in Rechnung zu stellen.

Berücksichtigt man nun, dass für H konstant auch C konstant ist, so geben die Hauptcharakteristiken das Bild der Veränderlichkeit von Wasserkonsum und Wirkungsgrad in Abhängigkeit von Tourenzahl und Beaufschlagungsart und somit die Grundlage für die beabsichtigte Vergleichung

der Räder.

Dieser Vergleich liefert folgende Resultate:

a) Bezüglich des Wasserkonsums.

a) Bei vollkommen geöffnetem Leitapparat:

1. Bei allen vier Rädern nimmt der Wasserkonsum vom Stillstand ab zuerst zu, bis zu einem Maximum, und dann wieder derart ab, dass beim Leerlauf weniger Wasser konsumiert wird, als bei Stillstand.

2. Das Maximum des Wasserkonsums tritt bei allen Rädern bei einer Tourenzahl ein, die kleiner ist als diejenige, bei welcher der Wirkungsgrad ein Maximum ist.

3. Bei den Rädern I und II (kleinerer Reaktionsgrad) liegt das Konsumsmaximum vom Wirkungsgradmaximum weiter entfernt als bei den Rädern III und IV (grösserer Reak-

4. Die Abnahme des Wasserkonsums vom Maximalwert bis zu jenem des Leerlaufs findet bei den Rädern mit kleinem Schaufelspalt viel intensiver statt, als bei denjenigen mit grossem Schaufelspalt; bei Rad II (kleinerer Reaktionsgrad, kleiner Schaufelspalt) zeigt sich bei einer Tourenzahl, die um etwa 180/0 über derjenigen des grössten Wirkungsgrades liegt, in auffallender Weise ein starker Abfall, während bei Rad IV (grösserer Reaktionsgrad, kleiner Schaufelspalt) ein solcher starker Abfall erst in der Nähe des Leerlaufes zu beginnen scheint.

β) bei verkleinerten Leitradöffnungen:

5. Das Maximum des Wasserkonsums rückt dem Stillstand um so näher, je kleiner die Leitradöffnung wird; bei den Rädern mit kleinerem Reaktionsgrad tritt von halbgeöffnetem Leitapparat abwärts überhaupt kein Maximum im analytischen Sinn innerhalb des untersuchten Tourenzahlgebietes mehr auf.

6. Der sub 4 angedeutete auffallende Abfall bei den Rädern mit kleinem Schaufelspalt verringert sich mit kleiner werdender Leitradöffnung. Da nun ein solcher auffallender Abfall bei den Rädern mit grösserem Schaufelspalt überhaupt nicht konstatiert wurde, die Verkleinerung der Leitradöffnung bei der angewandten Regulierungskonstruktion mit einer Vergrösserung des Schaufelspaltes verbunden ist, so ist zu schliessen, dass dieser auffallende Abfall eben durch den kleinen Schaufelspalt verursacht ist.

b) Bezüglich des Wirkungsgrades.

α) Bei vollkommen geöffnetem Leitapparat:

1. Der Verlauf der Wirkungsgradkurven ist für die Räder I, III und IV ein parabelähnlicher; beim Rad II ist im Bereiche des auffallenden Konsumabfalls ein auffallender Wirkungsgradabfall zu konstatieren.

2. Das Maximum des Wirkungsgrades liegt bei den Rädern mit kleinem Reaktionsgrad tatsächlich bei kleinerer Tourenzahl, als bei Rädern mit höherem Reaktionsgrad und zwar für die Räder I und II bei $n\cong 16,5 \sqrt{2gH}$, für die Räder III und IV bei $n \cong 18,0 \sqrt{2gH}$; nachdem die Eintritts-

Die Red.

radien über die Schaufelenden gemessen für die Räder I und III einerseits, für II und IV anderseits, die Längen 0,404 m bezw. 0,416 m haben, folgten für die günstigsten Umfangsgeschwindigkeitskoeffizienten $k_{u_1} = \frac{u_1}{V \cdot 2g \cdot H}$ folgende Werte:

3. Die Leerlaufstourenzahl ist für die Räder mit grösserem Schaufelspalt grösser als für diejenigen mit kleinerem Schaufelspalt.

4. Der Wert des Wirkungsgradmaximums ist für die Räder kleinern Reaktionsgrades nahezu gleich, und zwar 85%; bei den Rädern grösseren Reaktionsgrades ergibt sich dieser Wert bei grossem Schaufelspalt mit 81%, bei kleinem Schaufelspalt mit 82%. Es ist hierbei zu bemerken, dass der effektive Wirkungsgrad der Turbine, wie solcher etwa bei Garantieuntersuchungen in Frage kommt, in beiden Fällen noch um denjenigen Betrag zu vergrössern ist, der den Reibungsverlusten durch das Bremszeuggewicht entspricht; ein Betrag, der nach den Resultaten der Ablaufversuche und unter Berücksichtigung des Einflusses der Aufhängung mit etwa 20/0 anzunehmen sein dürfte.

β) bei verkleinertenLeitradöffnungen :

5. Das Maximum des Wirkungsgrades variiert bei Verkleinerung der Leitradöffnung ebenfalls im abnehmenden Sinn sowohl der Grösse als der Tourenzahl nach, bei der es eintritt; nur bei Rad I scheint der Wert des Maximums bei 11/12 Oeffnung, denjenigen bei 12/12 noch etwas zu übersteigen.

6. Bei den Rädern mit kleinerem Reaktions-

grad nähern sich die Wirkungsgradkurven für $^{12}/_{12}$ und $^{11}/_{12}$ Leitradöffnung sehr bedeutend; bei Rad II ist dies für Tourenzahlen $n > 21,5 \sqrt{2gH}$ auch noch für $^{10}/_{12}$ Leitradöffnung der Fall. Bei Rad II zeigen sich in und über dem Bereich des Konsums-Wirkungsgradabfalls die grössten Abweichungen in den Wirkungsgradwerten.

7. Bei ⁶/₁₂ Leitradöffnung zeigen die Wirkungsgradkurven bei allen Rädern gleichsinnige Abweichungen von der parobolischen Form, wozu bemerkt sei, dass bei den seither durchgeführten Versuchen mit anderer Disposition des Saugrohrs diese Erscheinung ebenfalls konstatiert wurde.

8. Bei den Rädern mit höherem Reaktionsgrad schneiden sich bei $n\cong 16,5$ $\sqrt{\frac{2}{g}H}$ die Wirkungsgradkurven für $\frac{12}{12}$, $\frac{11}{12}$ und $\frac{10}{12}$ Leitradöffnung; es entspricht dies des bereits öfters konstatierten Erscheinung der Konstanz der Wirkungsgrades bei Beaufschlagungen von $\frac{12}{12}$ bis $\frac{10}{12}$.

Die aus den Hauptcharakteristiken abgeleiteten Wirkungsgradcharakteristiken in Abhängigkeit des durch die Leitradöffnung bedingten Wasserkonsums (siehe Diagramme

Vergleichende Untersuchungen an Reaktions-Niederdruckturbinen.

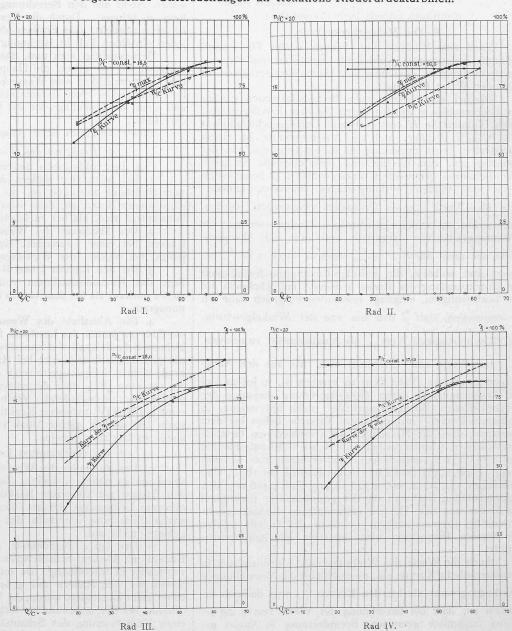


Abb. 22 u. 23. Wirkungsgrad-Charakteristiken als Funktion des relativen Wasserkonsums bei verschiedenen Beaufschlagungen.

Abb. 22 und 23) zeigen ferner,

9. dass bei den versuchten Rädern bei konstantem Gefälle und für diejenige Tourenzahl, die dem günstigsten Wirkungsgrad bei Vollöffnung des Leitapparates entspricht, der Wirkungsgrad nur bei Rad II sofort erheblich mit dem Wasserkonsum (d. h. also mit der Leitradöffnung) abnimmt und

10. dass die Tourenzahlen günstigsten Wirkungsgrades für die einzelnen Beaufschlagungsverhältnisse linear mit dem bezüglichen Wasserkonsum variieren.

Es sei hier bemerkt, dass es bei der geschlossenen

Vergleichende Untersuchungen an Reaktions-Niederdruckturbinen.

Von Professor Dr. F. Prášil in Zürich.

Nachdruck verboten!

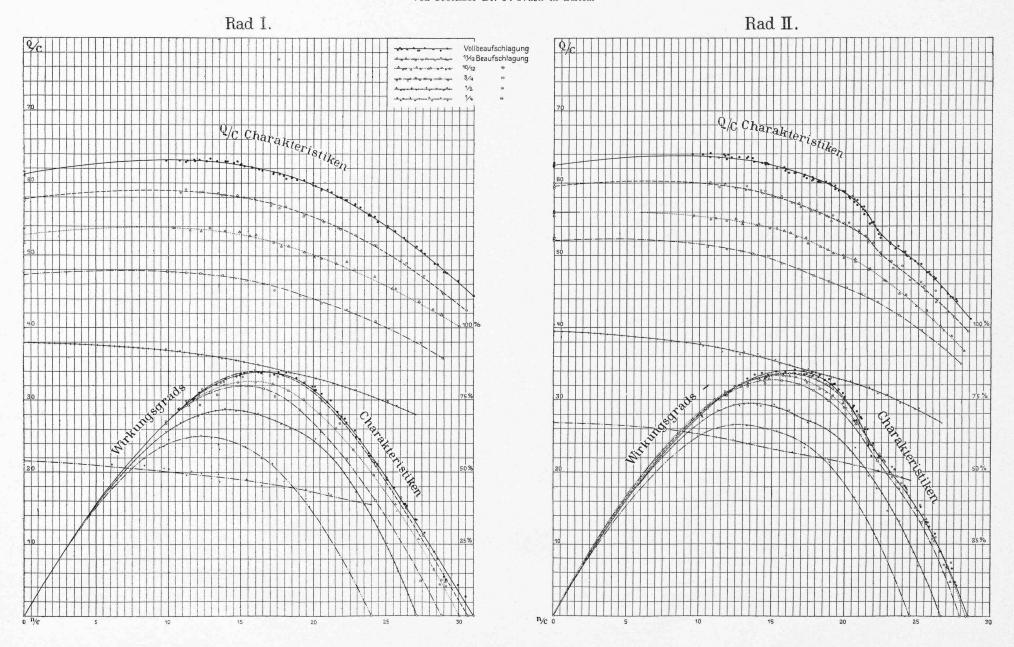


Abb. 20. Hauptcharakteristiken für Rad I und II.

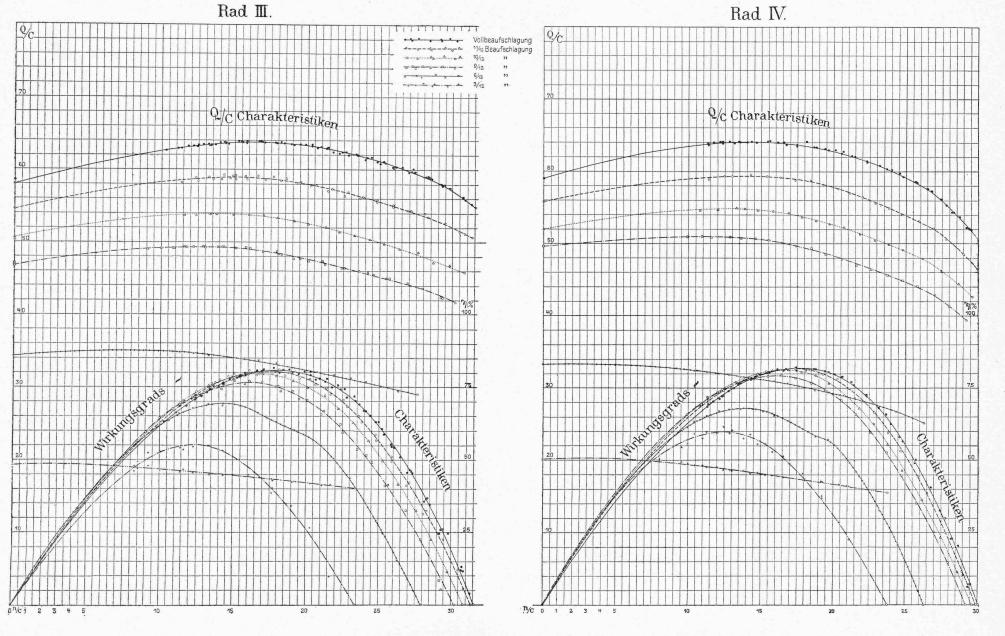


Abb. 21. Hauptcharakteristiken für Rad III und IV.

Vergleichende Untersuchungen an Reaktions-Niederdruckturbinen.

Nachdruck verboten!

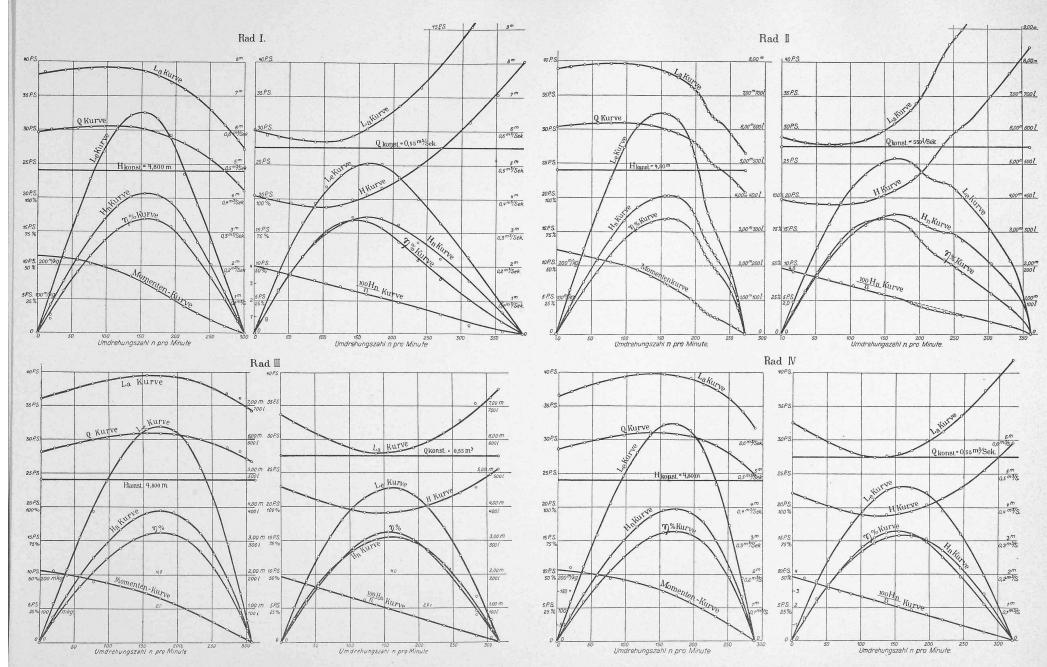


Abb. 24. Spezialcharakteristiken für die Räder I, II, III und IV bei 12/12 Beaufschlagung.

Seite / page

120(5)

leer / vide / blank

Disposition der Turbine zu zeitraubend gewesen wäre, bei jeder Brems-Serie die tatsächliche lichte Austrittsweite aus dem Leitapparat zu messen, bezw. zu kontrollieren. Aus diesem Grunde wurde von einer Aufzeichnung der zu den einzelnen Werten von $\frac{Q}{C}$ gehörigen lichten Austrittsweiten

Sind nun für ein Turbinensystem die Hauptcharakteristiken bekannt; so ist es möglich, Spezialcharakteristiken für die verschiedensten Fälle von Gefälls-, Wasserkonsumsund Tourenvariationen für dasselbe System abzuleiten, wie dies bei weiterer Ausarbeitung der Versuche durchgeführt wurde, und zwar für volle Oeffnung der Leitapparate je für ein konstantes Gefälle von 4,8 m und für konstanten Wasserkonsum von 0,550 m³/Sek. Beistehende Tabelle gibt die absolute Leistung $L_a = \frac{\gamma \, Q \, H}{75}$ in $P. \, S.$ die Bremsleistung $L_{\sigma} = L_a \cdot \eta$ in $P. \, S.$ das Nutzgefälle $H_n = \eta \cdot H$ in Meter,

VII a bei konstantem H das Kraftmoment $M = \frac{La}{\omega}$ in kg/m, VII bei konstantem Q, die dem Kraftmoment proportionale Grösse $too \frac{H_n}{n}$, wobei der Faktor 100 nur des

besseren Masstabes halber beigefügt ist. In den Diagrammen für konstantes Gefälle erscheinen die Kurven von

I als zur Abszissenachse parallele Gerade,

II) mit Ordinaten proportional denjenigen der Haupt-

III charakteristiken,

Hauptcharakteristiken für die Räder I, II, III und IV bei 12/12 Beaufschlagung.1)

Leitapparat A.								Leitapparat B.							
Rad I. $D_1 = 808 \ mm$.				Rad II. $D_1 = 832 mm$.				Rad III. $D_1 = 808 \ mm$.				Rad IV. $D_1 = 832 \text{ mm}.$			
n/c	u/c	1000 Q	η 0/0	n/c	u c	1000 2	η 0/0	n/c	u/c	1000 Q	η 0/0	n/c	u/c	1000 Q	$\eta^{0}/_{0}$
0	0	61,20	0	0	0	62,5	О	0	0	58,0	О	o	0	59,0	0
2	0,0845	61,85	16,25	2	0,087	62,95	17,0	2	0,0845	59,05	15,0	2	0,087	60,15	15,0
4	0,169	62,41	31,70	4	0,174	63,40	33,0	4	0,169	60,05	29,0	4	0,174	61,20	29,25
6	0,254	62,80	45,75	6	0,262	63,65	47,0	6	0,254	61,0	41,2	. 6	0,262	62,10	41,8
8	0,338	63,10	57,60	8	0,348	63,78	59,2	8	0,338	61,85	52,25	8	0,348	62,85	53,2
10	0,423	63,20	68,20	10	0,436	63,72	69,4	10	0,423	62,60	61,7	10	0,436	63,50	63,0
12	0,507	63,08	76,75	12	0,523	63,45	77,7	12	0,507	63,15	69,5	12	0,523	63,90	71,3
14	0,592	62,71	82,75	14	0,610	62,91	83,2	14	0,592	63,55	75,5	14	0,610	64,1	77,3
16	0,676	62,12	84,70	16	0,696	61,93	85,0	16	0,676	63,75	79,5	16	0,696	63,95	81,0
18	0,761	61,18	83,80	18	0,784	60,55	83,65	17	0,719	63,75	80,5	17	0,740	63,80	81,8
20	0,845	59,72	78,65	20	0,871	58,50	75,3	18	0,761	63,65	80,9	18	0,784	63,55	82,0
22	0,930	57,75	68,75	2 I	0,916	56,95	67,6	20	0,845	63,30	79.5	20	0,871	62,75	79,8
24	1,015	55,37	55,75	21,5	0,936	55,70	62,25	22	0,930	62,65	75,2	22	0,958	61,60	73,7
26	1,100	52,65	40,09	22	0,958	54,00	58,1	24	1,015	61,65	67,35	24	1,045	60,05	63,1
28	1,185	49.53	24,90	22,5	0,981	52,70	54,4	26	1,100	60,45	55,25	26	1,132	58,10	47,0
30	1,270	46,17	8,30	23	1,002	51,75	50,80	28	1,185	59,05	39,5	27	1,176	56,75	37,4
31	1,312	44,45	0	24	1,045	50,30	44,4	30	1,270	57,10	19,4	28	1,220	54,95	26,4
li de la	Reja Will			26	1,132	46,85	28,7	31,56	1,334	54,82	0	29	1,263	52,95	14,7
		distribution	8 . 7 9	28	1,220	42,50	6,4	TA IA				30,1	1,320	50,40	0
			Comp.	28,5	1,244	41,05	0	Ball in	Maria I	de unouit		urbalic.		SLOP PRO	NINEH

für die vier Fälle, die aus den Hauptcharakteristiken entnommenen Werte von $\frac{n}{C}$, $\frac{Q}{C}$ und η . Die Abbildung 24 (Tafel IX a) stellt die Spezialcharakteristiken, und zwar je links diejenigen für das konstante Gefälle, rechts diejenigen für konstanten Wasserkonsum dar.

Die Umrechnung der Hauptcharakteristiken auf Spezialcharakteristiken erfolgt in folgender Weise:

a) Für konstantes Gefälle (H = konstant).

Durch $C = \sqrt{2gH}$ ist die Grösse C bestimmt; es können hiemit und mittelst der aus den Hauptcharakteristiken entnommenen Zahlenwerte von $x = \frac{n}{C}$, $y = \eta$ und $z = \frac{Q}{C}$ n und das zugehörige Q und mit diesen Grössen absolute Leistung, Bremsleistung, Nutzgefälle und Kraftmoment berechnet werden.

b) Für konstanten Wasserkonsum (Q = konstant).

Die Hauptcharakteristiken geben die Zahlenwerte $z = \frac{\mathcal{Q}}{\mathcal{C}}$; man kann für ein gegebenes Q zu jedem z das zugehörige C rechnen, da $C=\frac{z}{Q}$, und daraus mit $H=\frac{C^2}{z\,g}$ das jeweilige Gefälle mit $n = x \cdot C = x \cdot \frac{z}{Q}$ die zugehörigen Tourenzahlen bestimmen, womit wieder die Grundlagen für die weitere Rechnung gegeben sind.

In diesen Diagrammen sind als Abszissen die minutlichen Tourenzahlen, als Ordinaten die jeweiligen Werte folgender Grössen eingetragen:

das Totalgefälle H in Meter,

II der Wasserkonsum Q in Kubikmeter/Sek., III der Wirkungsgrad η in $^0/_0$,

VI mit Ordinaten proportional η , und

VIIa als Linien, deren Ordinaten in der Ordinatenachse, also für $n={\rm o},\,$ den grössten Wert haben und mit zunehmendem n mit veränderlicher Neigung in der Weise gegen die Abszissenachse abfallen, wie dies für Francisturbinen zuerst von Pfarr in seiner für den Aufschwung des Francisturbinenbaues bahnbrechenden Publikation in der Zeitschrift des Vereins deutscher Ingenieure (Jahrg. 1892, S. 797 — 805) auf Grund von eigenen Versuchen dargestellt wurde.

In den Diagrammen für konstanten Wasserkonsum erscheinen hingegen die Kurven von

I mit Ordinaten, die innerhalb des dargestellten Bereiches ein analytisches Minimum besitzen,

als eine zur Abszissenachse parallele Gerade, mit Ordinaten proportional denen für η der II Hauptcharakteristiken, wobei jedoch das Bild doch gegenüber dem der Hauptcharakteristik verzerrt ist, da die Abszissenwerte in diesem Fall nicht

mehr proportional $\frac{n}{C}$ sind,

IV mit Ordinaten proportional H,

mit Ordinaten proportional $H \cdot \eta$,

VI mit Ordinaten ebenfalls proportional $H \cdot \eta$,

VIIb mit Ordinaten, deren grösster Wert wie bei VIIa für n=o erscheint, die jedoch im Gegensatz zu VIIa sich

¹⁾ Dem von diesem Artikel zu erstellenden Sonderabdruck werden analoge Tabellen auch für kleinere Beaufschlagungen beigegeben werden.

mit *n* derart verändern, dass der Verlauf der Linien als ein der Hauptsache nach linearer betrachtet werden kann, und zwar für alle Räder mit fast gleicher Neigung gegen die Abszissenachse.

Diese Erscheinung ist wesentlich; sie führt darauf, im geradlinigen Verlauf der Momentenkurve das prinzipielle Gesetz der Kraftabgabe charakterisiert zu finden, die Abweichungen vom gradlinigen Verlauf hingegen als Mass derjenigen Störungen zu betrachten, die einflussnehmend auf Leistung und Wirkungsgrad des Systems sind.

Für die Beurteilung der Durchflusswiderstände gibt hiebei der Verlauf der Gefällskurve eine Grundlage, wie gestellt werden, jedoch unter Berücksichtigung des Umstandes, dass im Laufrad der Turbine neben dem Auftreten von Trägheitskräften, die einflussnehmend auf die Pressungszustände sind, eine Energieabgabe nach aussen stattfindet, die nun in der Variation des Wasserspiegels nicht mehr zum Ausdruck kommen, hingegen wohl in der abgegebenen Leistung oder in einer Grösse, die von der Leistung abgeleitet ist. Das ist eben der Wert von $\frac{H_n}{n}$, dessen Veränderlichkeit mit n, wie aus den Versuchen hervorgeht, sich einem bestimmten und zwar linearen Gesetz nähert.

Um die Erscheinung des geradlinigen Verlaufes noch

weiter zu konstatieren, wurden die Versuche von Francis an der Tremontturbine (Abb. 25) und an dem von ihm zuerst konstruierten Center-vent water wheel (Abb. 26) (s. The Lowell hydraulic experiments) benützt, indem auch für dieselben Spezialcharakteristiken für Q = konstant konstruiert und die H_n Kurven bestimmt wurden; wie die Abbildung 27 zeigt, ergibt sich auch in diesen Fällen ein linearer Verlauf dieser Grössen; dass bei einer Jonvalturbine der Verlauf der Momentenkurve sich der Hauptsache nach einer Geraden anschliesst und Q hiebei wenig variiert, ist bekannt.

Die schon durch die Hauptcharakteristiken für Rad II und IV ersichtliche

Erscheinung des auffallenden Konsumsabfalles kommt in den Spezialcharakteristiken für H= Konstant in derselben Weise zum Ausdruck, wie in den Hauptcharakteristiken; für Q= Konstant erscheint hiebei an derselben Stelle eine auffallende Gefällszunahme, woraus zu schliessen ist, dass die Erscheinung durch eine bedeutende Erhöhung der Durchfluss-

widerstände bedingt ist. Da die Erscheinung an den beiden Rädern bei verschiedenen Umdrehungszahlen auftritt, so liegt die Vermutung nahe, dass für dieselbe der Reaktionsgrad von Einflussist, worüber jedoch nur eine Fortsetzung der Versuche an Rädern anderer Reaktionsgrade sichern Aufschluss geben kann.

In folgendem soll nun:

1. auf theoretischer Grundlage eine Prüfung der Erscheinung des geradlinigen Verlaufes der Momentkurve für Q = Konstant, und

2. für ein Rad (Rad III) die Bestimmung der Widerstände auf Grund der Spezialcharakteristiken durchgeführt werden. (Fortsetzung folgt.)

Vergleichende Untersuchungen an Reaktions-Niederdruckturbinen.

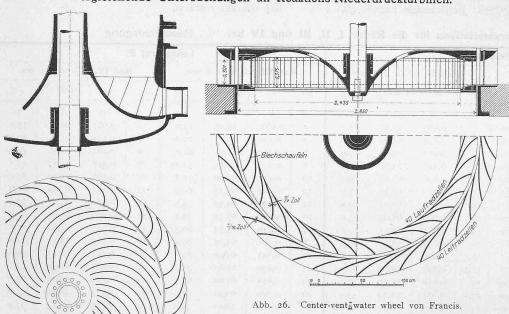


Abb. 25. Tremont-Turbine.

NB. Die Abbildungen 25 und 26 sind entnommen aus the Lowell hydraulic experiments.

leicht aus folgender einfachen Betrachtung zu ersehen ist:
Es sei irgend ein Gefäss mit einer Ansatzröhre von bestimmter Form und bestimmtem Querschnitt versehen. Führt man dem Gefäss eine bestimmte Wassermenge zu, so wird sich schliesslich ein Beharrungszustand einstellen, bei dem das Niveau des Wasserspiegels im Gefässe auf

konstanter Höhe bleibt; verändert man nun den Zustand des Ansatzrohres in irgend einer Weise oder bringt sonst eine Veränderung an einer Stelle des Gefässes an, wo Strömung herrscht, und zwar unter Beibehaltung der Grösse des eigentlichen Ausflussquerschnittes, so wird bei gleichbleibender Quantität des zuströmenden Wassers das Niveau des Wasserspiegels im Gefässe eine andere Lage annehmen, sofern durch die geschehene Veränderung eine Aenderung der Energieumwandlung im Gefäss bedingt ist. Das

Mass der Lageveränderung des Wasserspiegelniveaus bestimmt die Grösse derjenigen Energie, welche im neuen Zustande zur Ueberwindung von Widerständen auf Bildung und Erhaltung von Wirbelungen mehr oder weniger aufgewendet werden muss.

Dieselbe Betrachtung kann auch für die Turbine an-

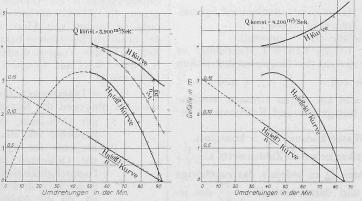


Abb. 27. Spezialcharakteristiken der Tremont-Turbine und des Center-vent water wheel, abgeleitet aus den Versuchen von Francis in den Jahren 1849 und 1851.