Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 43/44 (1904)

Heft: 8

Artikel: Die elektrische Kraftübertragung Rauris-Lend

Autor: Spyri, H.

DOI: https://doi.org/10.5169/seals-24773

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Elektrische Kraftübertragung Rauris-Lend. (Schluss.) — Wettbewerb zur Erlangung von Projekten und Uebernahmsofferten für die neue Utobrücke über die Sihl in Zürich. II. (Schluss.) — Wettbewerb für ein Weltpostverein-Denkmal in Bern. — Missellanea: Zweiter internat. Kongress zur Förderung des Zeichenunterrichtes in Bern. Verband deutscher Arch- u. Ing.-Vereine. XIII. internat. Strassen- u. Kleinbahnkongress. Grösstes Kriegsschiff. Instandstellungsarbeiten des Luxemburgpalastes in Paris, Hohen-

Die elektrische Kraftübertragung Rauris-Lend.

Von Ingenieur H. Spyri.

(Schluss.)

In der Fabrik in Lend ist ein besonderes Gebäude für die Umformer errichtet. Von jedem Generator werden zwei Motor-Generatoren gespeist, deren Gleichstromleistung je 560 kw beträgt. Die ankommenden neun Leitungen passieren hier zunächst wieder die Blitzschutzvorrichtungen

wie in der Kontrollstation, sodann neun Induktionsspulen und gelangen zu einem Sammelschienen - System, das durch geeignete Leitungsschliesser ermöglicht, irgend zwei Motorgeneratoren an irgend eine der Leitungen respektive der Generatoren anzuschliessen. Jeder Motor der Umformergruppen hat ein Ampèremeter mit Stromwandler und einen dreipoligen Hochspannungs - Ausschalter, je zwei Umformer, zusammen ein Voltmeter mit Messtransformator. Die Gleichstromgeneratoren haben je ein Voltmeter und einen Nebenschlussregulator.

Die Abb. 9 (S. 88) gibt die drei Schemas der Generator-, Kontroll- und Umformerstation wieder.

Den interessantesten Teil der Anlage bilden ohne Zweifel die Motor-Generatoren der Umformerstation Lend, die vertikal angeordnet sind. Zur Wahl dieser Anordnung bewogen folgende Rücksichten:

1. Die in den übrigen Anlagen der Aluminium-Industrie-Gesellschaft in Neu-

hausen und Rheinfelden laufenden Gleichstrom-Generatoren sind, weil auf vertikale Turbinenwellen aufgesetzt, ebenfalls vertikal angeordnet. Das Personal der Gesellschaft ist daher mit dieser Anordnung vertraut und an dieselbe gewöhnt.

2. Die Bedienung ist bei dieser vertikalen Anordnung sehr einfach und rationeller als bei horizontaler Disposition; der von den zahlreichen Bürsten gebildete Kupfer-Kohlenstaub fällt zu Boden und gelangt nicht in die Wicklungen.

Oben sind die Motoren der Gruppe, unten die Generatoren angeordnet, sodass deren Kollektoren sich etwa in Manneshöhe über Boden befinden. Die Motoren sind für eine Aufnahme von 1000 P. S. bei 10000 Volt und

zollerndamm in Berlin. Schweizer. Bundesbahnen. X. internat. Schiffahrtskongress. Montreux-Berneroberland-Bahn. — Konkurrenzen: Schulhausneubau in der Säge zu Herisau. — Nekrologie: † G. Wülfke. — Literatur: Die Betriebsmittel der elektr. Eisenbahnen. — Korrespondenz. — Vereinsnachrichten: G. e. P. Stellenvermittlung.

Hiezu eine Tafel: Wettbewerb für ein Weltpostverein-Denkmal

340 Umdrehungen in der Minute mit 45 Perioden gebaut; die Gleichstrom-Generatoren leisten 560 kw bei 160 Volt und 340 Touren.

Das gusseiserne Gehäuse des Gleichstrom-Generators ruht einerseits mit zwei Tragfüssen auf zwei Steinsockeln, anderseits auf zwei hohlen Gussäulen. Auf diesem Generatorgehäuse sitzt direkt das einteilige Gehäuse des Drehstrommotors. Der Rotor des Drehstrommotors und die Armatur des Gleichstromgenerators sind mit einander verschraubt und drehen sich um eine feststehende vertikale

Welle, die oben in einem in die Nabe des Drehstromrotors eingebauten Spurlager läuft, das durch einen Tropföler geschmiert wird. Dem Oeler wird das Oel durch in der Welle angebrachte Bohrungen zugeführt. Unten ist die Welle in einem Oeldrucklager in Kastenform gelagert.

Zur Aufnahme des

Zur Aufnahme des Gewichts der beiden rotierenden Teile im Gesamtbetrage von 12500 kg, dient ein unter dem Kollektor des Gleichstromgenerators liegendes Spurlager. Die Spurplatte aus Stahlguss ruht in einer gusseisernen Pfanne, während die untere Lagerschale nach abwärts zu einem Flansch ausgebildet ist, der auf der Spurplatte aufliegt. Sowohl die Spurplatte als der Flansch des Lagers sind mit einer rundum laufenden Rinne von 55 mm Breite versehen zur Aufnahme des zur Entlastung der Flanschen dienenden Drucköls. Dieses letztere wird durch eine vom Rotor des Umformers mittelst Schnecken- und Stirnradübersetzung angetriebene kleine

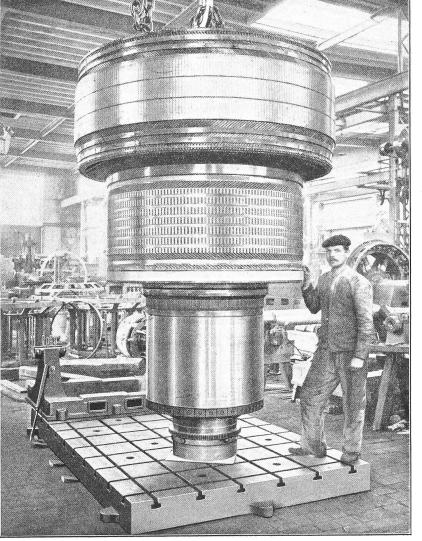


Abb. 11. Rotoren der Drehstrom-Gleichstrom-Umformer von 560 kw Gleichstromleistung.

Kolbenpumpe unter einem Druck von 10 Atmosphären in die Rinne gepresst. Das ganze Spurlager samt Pumpe und deren Antrieb ist in einem gusseisernen Gehäuse untergebracht, das ganz mit Oel gefüllt ist. Es wäre also auch bei zufälligem Versagen der Pumpe immer noch eine ausreichende Schmierung der Lager gesichert. Eine in das Gehäuse gelegte Wasserzirkulationsschlange aus Kupfer verhindert die Erwärmung des Oelvorrates.

Abbildung 10 zeigt den komplett aufgebauten Motorgenerator, Abbildung 11 die beiden Rotoren und die Abbildungen 12 und 13 geben Konstruktionszeichnungen der ganzen Gruppe, aus welchen deren Detailausführungen er-

sichtlich sind. Die Abmessungen und Leistungen sind zusammengefasst folgende:

1. Gleichstromdynamo:

Leistung	560 kw							
Minutliche Tourenzahl	340							
Spannung	160 Volt							
Aeusserer Ankerkern-Durchmesser	1500 mm							
Innerer Ankerkern-Durchmesser								
Ankerkern-Durchmesser auf dem Grunde								
der Nuten gemessen	1416 "							
Länge des Ankers (einschl. Ventilations-								
schlitze)	400 "							

Polschenkel-Länge			380 mm
Innerer Gehäuse-Durchmesser .			1030 "
Aeusserer Gehäuse-Durchmesser	*		2160 "
Gehäusebreite			500 "
2. Drehstrommotor:			
Leistung			. 1000 P.S.
Perioden in der Sekunde		2	. 45
Spannung		9	. 10000 Volt
Aeusserer Gehäuse-Durchmesser .	140	16	. 2800 mm
Innerer Statorkern-Durchmesser.			. 2003,6 mm
Aeusserer Statorkern-Durchmesser		¥	. 2510 "
Durchmesser über den Grund der			
Nuten gemessen			2082

Die elektrische Kraftübertragung Rauris-Lend.

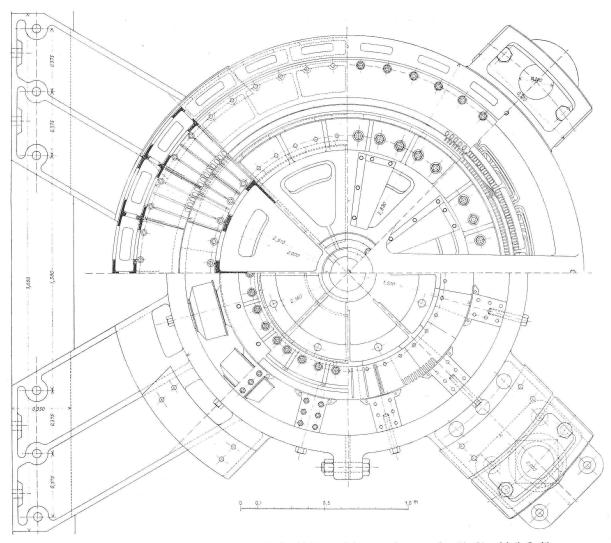


Abb. 12. Drehstrom-Gleichstrom-Umformer von 560 kw Gleichstromleistung, erbaut von der Maschinenfabrik Oerlikon.

Grundriss und Horizontalschnitt. — Masstab 1:20.

Anzahl der Ventilationsschlitze 2	Statorkernlänge einschl. Ventilations-
Achsiale Länge eines Kanales 10 mm	schlitze 400 mm
Achsiale Länge des Eisenkerns 380 "	Zahl der Ventilationsschlitze 2
Nutenzahl 204	Länge eines Schlitzes 10 mm
Tiefe der Nuten 42 mm	Länge des Eisenkerns 380 "
Breite der Nuten	Nutenzahl 192
Zahl der Leiter auf dem Umfang 816	Nutentiefe 59 mm
Kollektordurchmesser 900 mm	Nutenbreite
Kollektorbreite 600 "	Rotorkerndurchmesser, innerer 1580 "
Polzahl	" äusserer 2000 "
Durchmesser der Polflächen 1516 mm	" auf dem Grunde der
Polbreite \ \u00e4ber die Pol- 250 ,,	Nuten gemessen 1948 "
Pollänge schuhe gemessen 380 "	Rotorkernlänge, einschliesslich Ventila-
Polschenkel-Breite	tionsschlitze

Zahl der V										
Länge eine										mm
Länge des	Eisen	kerr	ıs .	361		100	*		380	"
Nutenzahl							(*)		320	**
Nutentiefe		100		120					26	mm
Nutenöffnu	ng .								9,2	,,
Gesamthöh	e der	gan	zen	Gru	ipp	e			3640	

Der Drehstrommotor besteht aus einem kreisrunden einteiligen, hohlen Gussrahmen, der einerseits mit dem da-

Wandstärke gebettet sind, der beidseitig 80 mm über das Eisen vorsteht. Die Wicklung ist als Handwicklung ausgeführt. Der Rotor besteht aus einem starken Gusstern, der mit dem darunterliegenden Ankerstern der Gleichstrommaschine verschraubt ist und den lamellierten und genuteten Eisenkörper trägt. Die 320 Nuten, welche die kurzgeschlossene Wicklung aufnehmen, sind halb geschlossen und enthalten je zwei Spulenhälften. Jede Spule bildet eine in sich selbst geschlossene Schleife aus 3 parallelen Kup-

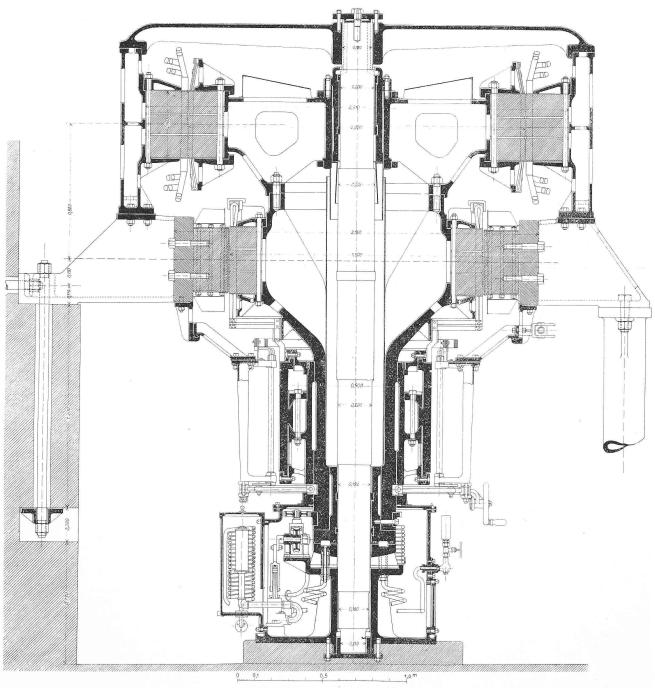
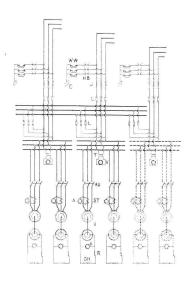
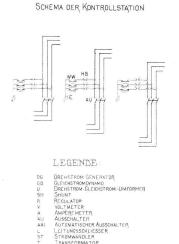


Abb. 13. Drehstrom-Gleichstrom-Umformer von 560 kw Gleichstromleistung, erbaut von der Maschinenfabrik Oerlikon.

Vertikalschnitt. — Masstab I:20.

runterliegenden und auf die Steinsockel und Säulen gelagerten Gleichstromgehäuse verschraubt ist, anderseits den lamellierten Eisenkörper des Stators hält und oben den vierarmigen gusseisernen Tragstern des oberen Führungslagers trägt. Der Stator ist 16polig gewickelt und dessen Hochspannungswicklung liegt in 192 Nuten. Jede Nute enthält 18 parallel geschaltete Drähte von 4 mm Durchmesser, die in einem nahtlosen Micanitkanal von 25 mm


ferstäben von $8 \times 2,5$ mm bezw. 20 mm² Querschnitt. Durch Fiberkeile in den Nuten werden die Spulen festgehalten. Das Kupfer der Wicklung ist nackt und liegt ohne weitere Isolation im Eisenkörper.


Obgleich der Luftspalt des Drehstrommotors 2,5 mm

beträgt, steigt der $\cos \varphi$ desselben bis 0,94. Ueber die charakteristischen Versuchsdaten des Motors gibt die Kurve Abbildung 14 (S. 89) Aufschluss.

Die elektrische Kraftübertragung Rauris-Lend.

SCHEMA DER UMFORMERSTATION LEND

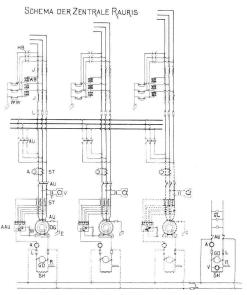


Abb. 9. Schema der Generator-, Kontroll- und Umformerstation.

Die Gleichstromdynamo ist 12polig; ihre Pole sind radial auf der Innenseite eines zweiteiligen Gussgehäuses aufgeschraubt. Jeder Gehäuseteil bildet mit je zwei Trag-

füssen ein Stück. Die aus weichem Eisenblech bestehenden lamellierten Pole tragen die Nebenschlussmagnetwicklung in Form von 12 einzeln auswechselbaren, hintereinander-

geschalteten Spulen, die je aus 350 Windungen von 5,5 mm Kupferdraht bestehen. Die Bohrung des Magnetfeldes beträgt 1516 mm, der äussere Durchmesser der Armatur 1500 mm, deren Eisenbreite 400 mm. Die 204 offenen Nuten der Armatur tragen vier voneinander isolierte Kupferleiter von 3×17 bezw. 51 mm² Querschnitt. Die Wicklung ist eine Schleifenparallelwicklung und auf beiden Stirnseiten als Gittertrommel ausgebildet.

Zur Verbindung der Wicklung mit dem Kollektor dienen nach einem neuen System der Maschinenfabrik Oerlikon Ausgleichsleiter in Form von Kupfergabeln, welche je zwei um die doppelte Polteilung von einander entfernte Kollektorlamellen mit der gleichen Armaturspule verbinden. Der Kollektor besteht aus 408 Hartkupferlamellen, die durch Glimmerplatten von 0,8 mm Dicke von einander isoliert sind. Seine Nutzlänge beträgt 600 mm, der äussere Durchmesser 900 mm. Die Lamellen werden durch einzeln nachstellbare Klemmsegmente festgehalten und ausserdem in der Mitte noch durch zwei konische Ringe gehalten. Die Isolationsringe im Innern des Kollektors bestehen ausschliesslich aus Glimmer.

Entsprechend den 12 Polen trägt der Bürstenhalter 12 Bürstenstifte mit je 11 Kohlenhaltern. Die Bürstenstifte sind alle durch ein Handrad gleichzeitig drehbar, um behufs Reinigung oder Nachschleifen des Kollektors alle Bürsten zusammen abheben zu können.

Die Kurve Abbildung 15 gibt alle Versuchsdaten der Gleichstrommaschine und die Kurve Abbildung 16 den totalen Wirkungsgrad der ganzen Gruppe wieder. Seit Sommer 1903 ist die Anlage mit drei Generatoren und vier Umformergruppen im Betrieb.

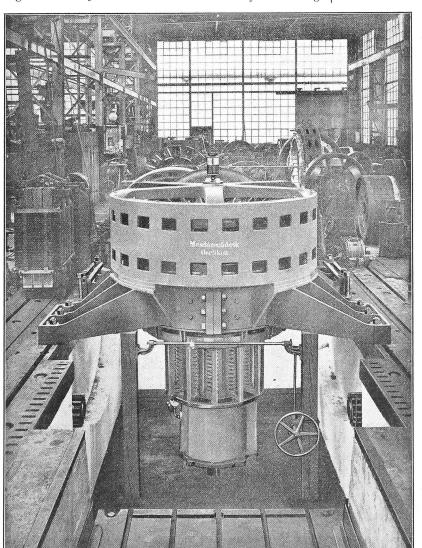


Abb. 10. Drehstrom-Gleichstrom-Umformer von 560 kw Gleichstromleistung.

Wettbewerb zur Erlangung von Projekten und Uebernahmsofferten für die neue Utobrücke über die Sihl in Zürich.

II. (Schluss.)

Mit dem zweiten Teil des Berichtes des Preisgerichtes veröffentlichen wir die wesentlichen Darstellungen zu dem Entwurfe, dem ein dritter Preis zu Teil wurde, mit dem Motto: Goldener Stern (gez.), von den Verfassern J. Jaeger & Cie., Ingenieure in Zürich und Broillet & Wulfleff, Architekten in Freiburg. Desgleichen sind wir durch die Gefälligkeit der Verfasser in den Stand gesetzt, auch einige Pläne der beiden mit Ehrenmeldungen bedachten Entwürfe veröffentlichen zu können. Es sind das die Projekte mit dem Motto: "Bogen" und Kleeblatt (gez.), ersteres von der Brückenbaufirma Th. Bell & Cie. in Kriens im Verein mit den Herren Locher & Cie. und Architekt J. Kunkler in Zürich, letzteres von den beiden zuletzt genannten stammend.

Bericht des Preisgerichtes. (Schluss.)

Nr. 13. «Granit»: Ein eingespanntes Betong wölbe mit einer Oeffnung und Quaderverkleidung. Die Kämpferhöhe ist eingehalten, dagegen wird die maximale Fahrbahnhöhe in der Brückenmitte ein wenig überschritten. Der Ueberbau besteht gegen die Auflager hin aus 0,50 m starken Quermauern in Abständen von 2,0 m, welche eine armierte Fahrbahnplatte tragen. Das Verhältnis von Pfeilhöhe zu Spannweite beträgt

Die elektrische Kraftübertragung Rauris-Lend.

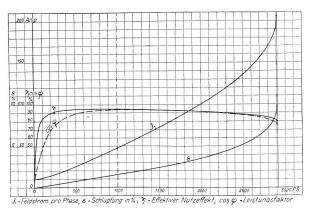
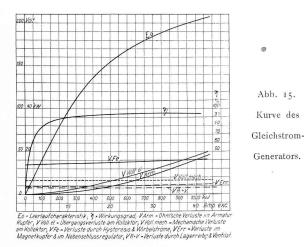



Abb. 14. Kurve des Drehstrom-Asynchronmotors.

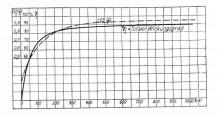
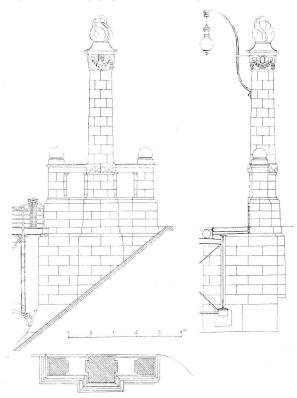



Abb. 16. Kurve des Drehstrom-

Gleichstrom-Umformers. 1:11,5. Die Berechnung ist nach der Elastizitätstheorie richtig durchgeführt und ergibt bei dem, wegen möglichster Einhaltung der zulässigen Fahrbahnhöhe ziemlich knapp dimensionierten Bogen Beanspruchungen, welche die zulässige Grenze überschreiten. Im Scheitel entsteht im ungünstigsten Belastungsfalle ein Druck von 41,4 kg,cm², gegen die Kämpfer hin ein Zug von 2,9 kg/cm². Trotz diesen hohen Spannungen könnte immerhin eine Ausführung ohne Bedenken vorgenommen werden, da selbst bei diesen Werten noch eine genügende Sicherheit besteht. Der Vorschlag des Projektverfassers dagegen, bei der Ausführung den Brückenscheitel noch

Ehrenmeldung mit dem Motto: «Bogen». Verfasser: Th. Bell & Cie. in Kriens, Locher & Cie. in Zürich und Architekt J. Kunkler in Zürich. Aufriss und Grundriss des Widerlagers. — Masstab 1:150.

etwas mehr zu heben, darf unter keinen Umständen Berücksichtigung finden. Das schiefe Gewölbe wird in Lamellen parallel zur Flussachse betoniert und soll ein guter Verband der verschiedenen Lamellen durch eine geeignete Verzahnung der Berührungsflächen erreicht werden.

Das Projekt bietet in architektonischer Beziehung nichts eigenartiges; die glatten Granitwände wirken kalt und sehwer.

Die Einheitspreise sind die üblichen, für die Steinhauerarbeiten eher zu hoch. Die Uebernahmssumme beträgt 152 000 Fr.

No. 9. Kleeblatt (gez.): Ein Betonbogen mit 39,4 m theoretischer Spannweite, mit drei Gelenken und Verkleidung in Sandstein. Der Aufbau ist ebenfalls in Beton und besteht aus Querwänden, welche durch kleine Gewölbe miteinander verbunden, die Fahrbahnplatte tragen. Das Gewölbe wird entsprechend der Schiefe der Brücke in zehn, gegen einander versetzten Streifen ausgeführt Die Gelenke bestehen aus gusseisernen Auflagerstühlen und Bolzen aus Bronzestahl.

Die statische Berechnung ist mit Sorgfalt durchgeführt worden und ergibt Werte, welche unter den max. zulässigen Werten bleiben.

Die Architektur ist fleissig durchgearbeitet, erscheint jedoch für die lokalen Verhältnisse zu opulent, daher auch die hohen Kosten. Unter Einhaltung der sonst üblichen Preise beträgt die Summe der Uebernahmsofferte für dieses Projekt die Höhe von 226000 Fr. und das Projekt ist damit das teuerste des ganzen Wettbewerbes.

No. 8. «Bogen»: Ein Eisenbogenfachwerk mit einer Oeffnung, zwei Gelenken, eisernem Aufbau und Abdeckung mittelst Zoreseisen. Die lichte Weite und Höhe entsprechen den im Programm für Bogenbrücken vorgeschenen Grenzen. Die Oeffnung wird durch fünf Bogenträger überspannt, die an den Kämpfern eine Konstruktionshöhe von 3,5 m und im Scheitel eine solche von 0,75 m besitzen. In der Mitte sind die Träger auf eine Länge von 18,5 m als Vollwandträger ausgebildet. In Entfernungen von 2,312 m sind sämtliche Bogenträger durch Querversteifungen, welche gleich-