Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 39/40 (1902)

Heft: 26

Artikel: Künstlicher Zug durch Winddruck (System Voet)

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-23472

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

linke Kämpferschnitt des zweiten Bogens muss die nämliche Beweglichkeit besitzen, wie der rechte des ersten Bogens. In dieser Weise von links nach rechts fortschreitend wird für jeden Kämpferschnitt eine Ellipse gefunden, welche dessen Beweglichkeit infolge der Elastizität des gesamten links liegenden Komplexes von Bogen und Pfeilern darstellt. Nachdem man die gleiche Aufgabe von rechts nach links schreitend gelöst hat, besitzt man für die beiden Kämpferschnitte jedes Bogens Elastizitätsellipsen, welche deren elastische Nachgiebigkeit darstellen.

Damit ist die Aufgabe auf diejenige des elastischen Bogens mit starren Enden zurückgeführt, mit dem Unterschied, dass für jedes Ende noch ein ideelles elastisches Element zu der Reihe der übrigen hinzutritt, und dessen Elastizitätsellipse für feste Widerlager verschwand. Im übrigen bleibt die Behandlung des Bogens ganz die frühere, die hier allerdings noch eine Erweiterung für die Unsymmetrie erfahren musste. (Verg. Lexikon der gesamten Technik: Ritter, Bogen, Graphische Berechnung). In prinzipiell höchst einfacher Art ist so eine sehr schwierige Aufgabe gelöst, welche sowohl die Leistungsfähigkeit des Culmann-Ritterschen Werkzeuges der Elastizitätsellipse, daneben aber allerdings auch die Geschicklichkeit des Handhabers desselben in hellem Lichte zeigt. Die graphische Behandlung des kontinuierlichen Bogens reiht sich würdig derjenigen des kontinuierlichen Balkens auf elastischen Stützen an und dürfte sie an Bedeutung für die Praxis noch übertreffen.

Im Gegensatz zu der analytischen Behandlungsweise eignet sich die zeichnerische vor allem für die genaue Erörterung des komplizierten Einzelfalles unter Berücksichtigung aller erschwerenden Nebenumstände: unsymmetrische Anordnung des Bauwerkes, beliebig veränderliche Querschnitte von Pfeilern und Bogen, Einfluss der scherenden und pressenden Kräfte auf die Formänderung u. dergl. Wirklich besteht denn auch das in allen Einzelheiten vorgeführte Beispiel aus einer Gewölbereihe von drei Bogen, die zwar gleiche Weiten von 20 m haben, die aber auf ungleich nohen Pfeilern und elastischen Widerlagern stehen. Für Scheitel und Kämpferquerschnitte des Mittelbogens sind die Einflusslinien der beanspruchenden Momente ermittelt und ihre Spannungen berechnet und verglichen mit denjenigen, welche sich für feste Bogenenden ergeben würden. Wenn auch die aus einem Beispiel allein abgeleiteten Regeln natürlich keine allgemeine Gültigkeit haben können, so geben sie doch bereits wertvolle Anhaltspunkte über den Einfluss der Kontinuität für Eigenlast, verteilte und konzentrierte Einzellast und über die Bedingungen für die Zulässigkeit von verteilten Ersatzlasten.

Die Darstellung des Problems durch Herrn Panetti ist vollständig und fasslich und verdient alles Lob; selbst derjenige, der das Italienische nicht vollkommen beherrscht, kann ihr folgen.

Wir hoffen, dass die beiden so verdienstvollen Arbeiten von Engesser und Ritter-Panetti namentlich dem Bau der steinernen Viaduktbrücken, die so oft die beste und schönste Lösung für die Ueberbrückung hoher Täler bilden, durch die ermöglichte sicherere Beurteilung ihrer Wirkungsweise fördern werden, wozu freilich noch ergänzend gehört. dass durch Messungen mit feinen Libellen (Klynometern) die allerdings zu erwartende genügende Uebereinstimmung zwischen Theorie und Wirklichkeit nachgewiesen werde, da man noch hie und da Zweifeln über die Anwendbarkeit der Grundlagen unserer gebräuchlichen Elastizitätslehre auf Bauten aus Stein und Mörtel begegnet. G. Mantel.

Künstlicher Zug durch Winddruck (System Voet).

Der künstliche Zug zur Verstärkung der Luftzufuhr durch den Rost wird sowohl durch Erhöhung des Luftdruckes unter dem Rost wie auch durch Wegsaugen der Verbrennungsprodukte aus den Rauchkanälen, also durch Verringerung des Luftdrucks daselbst erzielt. Im ersteren Falle werden Dampfstrahlen oder Ventilatoren angewendet, im letztern Fall eben-

falls Dampfstrahlen (Blasrohr) oder Exhaustors. In beiden Fällen wird dabei ein Teil des in dem Kessel entwickelten Dampfes für den künstlichen Zug verbraucht und erhöht deshalb die vermehrte Dampferzeugung nur zum Teil den Nutzeffekt. Dass durch solche Einrichtungen dennoch eine Ersparnis an Brennstoff erzielt wird, ist der besseren und vollständigeren Verbrennung auf dem Rost zuzuschreiben.

Das System Voet erreicht diesen künstlichen Zug nun ohne Dampfverbrauch, sodass die ganze Vermehrung der Dampferzeugung zur Erhöhung des Nutzeffekts beiträgt. Die Einrichtung besteht, nach einer in «Glasers Annalen» enthaltenen Beschreibung, darin, dass Luft mit erhöhtem Druck unter den Rost geführt wird, die dazu erforderliche Kraft jedoch nicht dem Dampfkessel oder der Maschine entnommen, vielmehr von aussen durch natürlichen Winddruck geliefert wird. Der von dem Heizraum hermetisch abgeschlossene Raum unter dem Rost steht in offener Verbindung mit einer oder mit mehreren Röhren, die aus dem Heizraum bis in die freie Luft aufsteigen und oben mit Kappen versehen sind, deren senkrechte, kreisförmig erweiterte Mündung in die Windrichtung gestellt wird. Bei Landkesseln ragen diese Röhren bis über das Dach des Kesselhauses und ihre leicht drehbaren Kappen stellen sich automatisch nach dem Winde; auf Dampfbooten werden sie von Hand eingestellt.

Die «Werft Conrad» in Haarlem hat das System Voet verschiedentlich zu Lande und besonders auch zu Wasser mit gutem Erfolge eingeführt; so u. a. auf dem Dampfboot «Noord Holland 7». Die daselbst angestellten Versuche erfolgten mit einem Dampfkessel von 80 m2 Heizfläche und $4,75~m^2$ Rostoberfläche, einem alten Kofferkessel mit drei Feuern und einem Dampfdruck von 20 Atm. Die Maschine war eine gewöhnliche vertikale Verbundmaschine mit Einspritz-Kondensator. Der eiserne Kasten unten vor den Aschentüren, der diese ganz von dem Heizraum abschliesst, endigt an beiden Seiten je in ein Rohr, das längs den Seiten der Rauchkammer und weiterhin an beiden Seiten des Schornsteins aufsteigt und auf 2,5 m über Deck, ähnlich wie die auf den Schiffen für Ventilatoren üblichen Aufsätze endigt. Die unteren Enden der Rohre sind rechteckig, die oberen zylindrisch von 0,425 m Durchmesser, während die vertikal gerichteten Oeffnungen der Aufsätze 0,80 m Durchmesser haben. In den beiden rechteckigen Enden der acht aufgehenden Rohre sind drehbare Klappen zur Regelung oder Abschliessung der Luftzufuhr angebracht. Die vordere Wand des Luftzufuhrkastens wird vor jeder der Aschentüren aus einer, um ihren horizontalen oberen Rand drehbaren Platte gebildet, die gegen den Kasten hermetisch schliesst und behufs Herausholen der Asche leicht geöffnet oder entsernt werden kann, wenn die Einrichtung bei Versuchen ausser Wirksamkeit gestellt werden muss.

Die Ergebnisse der mit genanntem Dampfer angestellten Versuchsfahrten sind in folgender Tabelle zusammengefasst:

Versuch	Mittlerer Dampfdruck in Atm.	Mittlere Anzahl Umdrehungen in der Minute	Steinkohlen- verbrauch in <i>kg</i>
I (mit System Voet)	18,3	86,5	262,5
II (ohne » »)	17,5	85	344,5

Durch Anwendung des Systems Voet wurde somit eine Ersparnis erzielt von

82 kg oder
$$\frac{8200}{344.5} = 23.8 \%$$
.

Dieses Ergebnis stimmt mit einer früheren Versuchsfahrt überein, die am 9. Juli 1901 mit demselben Dampfboot unternommen wurde und bei der die Ersparnis 60 kg oder $\frac{6000}{245} = 24,5$ % betrug.

Bereits hat die erwähnte Werft mehrere Dampfboote und Bagger mit diesem System versehen. Auch die niederländische Marine hat dasselbe auf kleinen Dampfern mit Varrow-Kesseln von 23,4 m^2 Heizfläche und 0,56 m^2 Rostfläche und 8 Atm. Dampfdruck angewendet. Die 20 Tage dauernden Versuchsfahrten mit solchen Dampfern haben eine Kohlenersparnis von mehr als 20% ergeben. Fernere Versuche auf dem Dampfer «Dolphin» mit einem Dampfkessel von 50 m^2 Heizfläche und 5 Atm. Dampfdruck haben 23% Ersparnis aufgewiesen.

Es ist selbstverständlich, dass, gleich wie bei bestehenden Kesseln mit geringem oder ungenügendem Zug durch das Anbringen des Systems Voet eine wesentliche Ersparnis an Brennstoff, vollständigere Verbrennung und vermehrte Dampferzeugung erzielt werden können, so auch bei neuen Kesseln gute Erfolge zu erwarten sind.