Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 37/38 (1901)

Heft: 2

Artikel: Die Christuskirche in Karlsruhe: Architekten: Curjel & Moser in

Karlsruhe

Autor: Gull, Gustav

DOI: https://doi.org/10.5169/seals-22734

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

1NHALT: Die Christuskirche in Karlsruhe. (Schluss.) — Beitrag zur Theorie der Bewegung des Wassers in geschiebeführenden Rinnen. — Die neuen Linien der Rhätischen Bahn. (Fortsetzung.) — Die Mehrphasen-Kraftverteilung der Deering Harvester Co. in Chicago. — Miscellanea: Gemäldegalerie in Whitechapel. Monatsausweis über die Arbeiten im Albula-Tunnel. Die Parsons Dampfturbine. Der Verein deutscher Ingenieure. Elektricitätswerk der Stadt Zürich. Kongress der Heizungs- und Lüftungs-Fachmänner. Ingenieur-Kongress in Glasgow. — Kon-

kurrenzen: Moderne Fassaden-Entwürfe. Entwürfe zu einer Arbeiterkolonie bei Bernburg. Concours pour un monument commémoratif du premier mars 1848 à La Chaux-de-Fonds. Primarschulhaus in Davos-Platz. — Nekrologie: † Arnold Bernet. † Hektor Egger. — Litteratur: Dynamik der Kurbelgetriebe, mit besonderer Berücksichtigung der Schiffsmaschinen. Eingangene litterarische Neuigkeiten. — Korrespondenz: Vergossener und verschweisster oder verlaschter Stoss. – Vereinsnachrichten: Gesellschaft ehemaliger Studierender: XXXII. Adressverzeichnis.

Die Christuskirche in Karlsruhe.

Architekten: Curjel & Moser in Karlsruhe.

(Schluss.)

Die dominierende Hauptpartie des Innern, gegen welche die Blicke aller Kirchenbesucher gerichtet sind, der Altarraum mit der Kanzelwand, ist besonders liebevoll und sorgfältig durchgebildet. Ueber dem mit weissen Marmorplatten belegten Boden des Altarraumes erhebt sich die Kanzelwand aus weissgelbem Pfälzer-Sandstein. Sie enthält zu den Seiten der mit Goldmosaik ausgelegten Kanzelnische zwei, aus Savonnières-Sandstein gearbeitete, grosse Reliefdarstellungen der Geburt und der Auferstehung Christi und ist über ihrem energisch umrissenen giebelförmigen Aufbau bekrönt durch ein (ebenfalls aus Savonnières-Sandstein gemeisseltes) Kruzifix, das sich leuchtend von der in blaugrünem Gesamtton gehaltenen Orgelnische abhebt. Die auf einem Säulen-Sockel aus poliertem braunem Muschelkalk ruhende Kanzelbrüstung ist aus Bronze gegossen und mit einem Relief, den Einzug Christi in Jerusalem darstellend, geschmückt. Aus Bronzeguss sind auch die Thüren, die seitlich unter den grossen Reliefs zu Sakristei und Konfirmations-Saal führen, sowie die mit den Evangelisten-Symbolen geschmückten Untersätze des Altartisches, dessen Platte und Sockel wieder aus poliertem braunem Muschelkalk bestehen. Mit grossem Geschick ist die Orgel

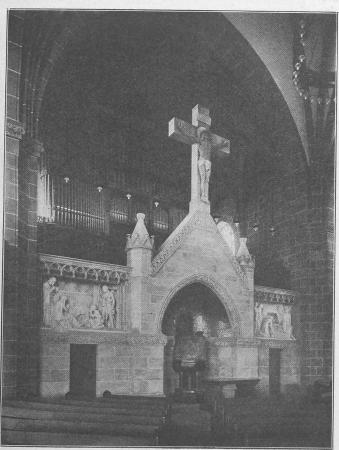


Abb. 9. Kanzelwand und Orgelempore.

ausgebildet, indem die Pfeifen, die in passender architektonischer Gruppierung durch getriebene Bronzebänder zusammengehalten werden, zu einem charakteristischen Gebilde vereinigt sind, das sich in Form und Farbe in ungezwungener und zweckmässiger Weise dem Raum an-

schmiegt, der den stimmungsvollen Hintergrund der Kanzelwand bildet. Die Akustik des Baues ist eine ganz vortreffliche, was neben den günstigen Raumverhältnissen wohl hauptsächlich dem reichen Rippensystem der Gewölbe zuzuschreiben ist.

Der Raum über dem Vierungsgewölbe ist von den Empore-Treppen aus bequem zugänglich. Dort sind die

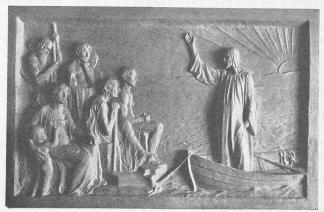


Abb. 10. Relief: Die Seepredigt.

gewaltigen Vierungsbogen sichtbar, welche den durch Auskragung des Mauerwerks in die Achteckform übergeleiteten Vierungsturm tragen. Im offenen Glockengeschoss dieses Turmes hängt das Kirchengeläute (Akkord: b, des, e, g).

Am ganzen Bau geht eine sorgfältige und gediegene konstruktive Durchbildung Hand in Hand mit einer in zweckangemessener und schöner Weise auf mittelalterlicher Grundlage frei entwickelten Formgebung, wobei für die ornamentalen Teile durchweg der Natur entnommene Motive in fein empfundener Stilisierung Verwendung fanden. Der an den bedeutungsvollsten Stellen angebrachte figürliche Schmuck fügt sich überall harmonisch ein; man fühlt, dass das beste Einvernehmen zwischen den Architekten und ihren künstlerischen Mitarbeitern bestanden hat. -Die von Prof. F. Dietsche in Karlsruhe modellierten ornamentalen und figürlichen Teile des Altarraumes und der Kanzelwand, die von den Bildhauern W. Sauer und Bing jr. in Karlsruhe modellierten ornamentalen und figürlichen Bildhauerarbeiten am Aeussern und im Innern der Kirche, das Wandgemälde im Konfirmanden-Saal von H. Eichrodt und die prachtvollen figürlichen Glasmalereien der Masswerkfenster von Architekt und Glasmaler A. Lüthi in Frankfurt a. M. wirken alle zusammen zur Steigerung des Gesamteindruckes mit. In weniger als vier Jahren, nämlich in der Zeit vom 2. November 1896 bis zum 7. Oktober 1900 wurde das schöne Werk vollendet, das einschliesslich der Architekten- und Bauführer-Honorare eine Bausumme von rund 675 000 Fr. erforderte. Am 14. Oktober 1900 erfolgte die feierliche Einweihung des Baues. Neben der Kirche ist von Oktober 1897 bis Oktober 1898, ebenfalls durch die Architekten Curjel & Moser, das zugehörige Pfarrhaus aus gleichem Material wie die Kirche und in vorzüglich dazu passender Gestaltung mit einem Kostenaufwand von ungefähr 110000 Fr. erbaut worden.

Es ist interessant zu beobachten, inwieweit die Grundsätze, die Semper im Jahre 1875 bei der Verteidigung seines Entwurfes für die Nikolai-Kirche in Hamburg, in seiner Abhandlung: "Ueber den Bau evangelischer Kirchen" aufstellte, durch die Entwickelung des protestantischen Kirchenbaues seither bestätigt worden sind. — Das Werk von Curjel & Moser bildet in seiner amphitheatralischen Anordnung der Sitzplätze, in der Ausbildung von Altarraum,

Kanzel und Orgel ein wichtiges und hervorragendes Glied dieser Entwickelung und beweist in schönster Weise, wie durch eine aus den Anforderungen des Gottesdienstes ideal entwickelte, zweckmässige Gestaltung der prägnante Ausdruck des protestantischen Gotteshauses zu gewinnen ist.

Gustav Gull.

Beitrag zur Theorie der Bewegung des Wassers in geschiebeführenden Rinnen.

Von Bezirksingenieur Friedrich Karl Meythaler.

Bekannt ist die Erscheinung des Serpentinierens des Wassers im Gerinne mit beweglicher Sohle. Von einem Ufer schlängelt sich der Thalweg in Windungen gegen das andere, am Ufer tiefe Kolke, beim Schnitt mit der Stromachse Erhöhungen — Schwellen — bildend. Noch unvollständig und keineswegs genügend durchgebildet ist die Theorie dieser z. B. im Rheine unterhalb Basel auf einer Länge von über 200 km auftretenden Bewegungsform. Unsere bisherigen Kenntnisse über die Erscheinung sind in dem Handbuch der Geophysik von Dr. Siegmund Günther, Band II, 2. Auflage, Stuttgart 1899 zusammengefasst.

Die Mitteilung einer weiteren, in Flüssen häufig zu beobachtenden Eigentümlichkeit der Bewegung des Wassers dürfte nicht unwillkommen sein. Seit langem benützt der Verfasser bei Untersuchungen in dem Gebiete der Potamologie, besonders bei Studien über die Längenschnitte der Gerinne, die Massenmittelpunkts-Kurve der Wassermasse, d. i. die Verbindungslinie der Massenmittelpunkte der aufeinanderfolgenden Flussquerschnitte. Es wird hierdurch der Querschnittsform der Rinne, welche bekanntlich bei beweglicher Sohle von Punkt zu Punkt des Längenschnittes sich ändert, in einer den Prinzipien der theoretischen Mechanik ent-

Die Christuskirche in Karlsruhe. Architekten: Curjel & Moser.



Abb. 12. Altartisch.

sprechenden Weise Rechnung getragen. Die Untersuchung dieser Kurven an zahlreichen geschiebeführenden Gewässern ergab die überraschende Thatsache, dass die Massenmittelpunkte der Querschnitte nicht nur im Grundriss, sondern auch im Aufriss eine sinusoidale Bewegung beschreiben, dass also die gesamte, vom Flusse abzuführende Wassermasse periodisch sich senkt und hebt, wenn auch der Wasserspiegel eine stetig sich thalwärts neigende Fläche bildet. Gewöhnlich werden bei den auf die Theorie des fliessenden Wassers bezüglichen Rechnungen nur die üblichen Abflussfaktoren - Querschnittsfläche, benetzter Umfang, hydraulischer Radius und Oberflächengefälle -- benützt. Aus diesen Werten lässt sich aber die angeführte, für die Ermittelung der sekundlich zur Abströmung gelangenden Wassermenge äusserst wichtige Eigenschaft nicht ableiten, da die Form des Querschnitts und der Sohle unberücksichtigt bleibt. Bei geschiebeführenden Flüssen versagen daher die Rechnungsmethoden nach den bekannten empirischen Formeln von Bazin, Ganguillet-Kutter u. a. völlig.

Zur Veranschaulichung der Massenmittelpunkts-Kurve — man könnte dieselbe Potamokurve nennen — diene die unten stehende, vom Verfasser nach thatsächlichen Ver-

Die Christuskirche in Karlsruhe. Architekten: Curjel & Moser.

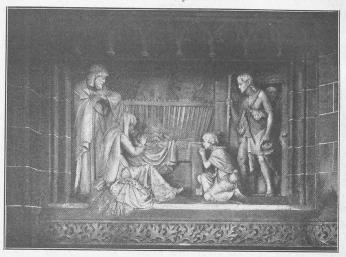
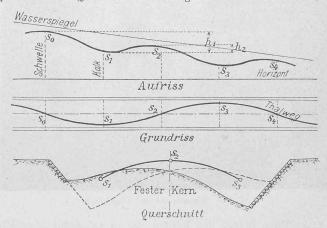



Abb. 11. Relief an der Kanzelwand: Die Geburt Christi.

hältnissen in geschiebeführenden Wasserläufen schematisch zusammengestellte Figur: die Linien S_0 S_1 S_2 .. stellen die Kurve in Grund- und Aufriss, sowie die Projektion auden Flussquerschnitt dar.

In den Kolken ist die Lage der Massenmittelpunkte am tiefsten, über den Schwellen am höchsten. Ein merkbarer Unterschied der Geschwindigkeiten auf den dem Kolke nach oben und unten benachbarten Schwellen ist nicht zu erkennen. Die Hebung der Wassermasse von S_1 nach S_2 um den Betrag h_2 kann daher nur durch die beim Absturz von S_0 nach S_1 gewonnene lebendige Kraft $\frac{1}{2} \sum m \, v^2 = 1000 \, Q \cdot h_1$ bewirkt werden, wobei Q die sekundliche Wassermenge in Kubikmetern, h_1 die Absturzhöhe in Metern bedeuten.

Ein Grund für die beschriebene Bewegungsform lässt sich nach dem heutigen Stande unserer Kenntnisse über die Bewegung elastischer und stetig sich verändernder Systeme nicht angeben. Angedeutet mag nur werden, dass die folgenden Figuren eine Analogie des Problems des fliessenden Wassers mit jenem schwingender Saiten erkennen lassen. Auch kann hier auf die ähnliche Erscheinung der periodischen Querschnittsänderung eines freien Wasser-

strahls verwiesen werden. Die bisherige, den Grundgesetzen der Mechanik widersprechende und eher in das Gebiet der "mechanischen Mythologie" einzuordnende Erklärung, nach welcher bei niedrigen Wasserständen das Bettf gefälle zu gross sei, der Strom aber das Bestreben habe, diesen

Gefällsüberschuss durch künstliche Vermehrung der Bewegungswiderstände -Eingraben in das diluviale Geschiebe auszugleichen, ist als völlig unhaltbar zu verwerfen. Es ist keineswegs einzusehen, aus welchem Grunde der angebliche Ueberschuss an Gefälle nicht zur Geschwindigkeitsvermehrung verwendet wird.

Am Rheine in der Gegend von Strassburg kommen Werte des absoluten Gefälles h_1 bis zu 1,60 mvor; nimmt man die kleinste Durchflussmenge zu 350 sek./m3 an, so werden innerhalb jedes, etwa 900 m langen Thalwegabschnittes

1000.350.1,6 = 7466P.S.75 erzeugt und zur Hebung der Wassermasse

und Ueberwindung der Reibungswiderstände unmittelbar darauf wieder verwendet.

Hierin dürfte die Erklärung dafür zu suchen sein, dass der

Fluss sich gegenüber künstlichen Eingriffen in das bestehende Regime so ausserordentlich empfindlich zeigt. Abänderungen der Korrektion verändern auch die Beschaffenheit der Potamokurve. Verbauungen nach der Tiefe verringern die Beträge der vertikalen Abstände, Ein-schränkungen der Flussbreite vermindern die horizontale Entfernung der aufeinanderfolgenden Kurvenscheitel. Beide Massnahmen zugleich ausgeführt bewirken unzweifelhaft eine namhafte Vergrösserung der Wellenlängen. Verhindert man den Absturz des Wassers und daher auch die Geschwindigkeitsvermehrung durch passende Verbauung der Kolke, so sind die Vorbedingungen für die Erzielung gleichmässiger Wasserbewegung und regelmässiger Tiefenverhältnisse gegeben.

Bei höheren Wasserständen verflacht sich die Linie $S_0 S_1 S_2 \ldots$ im Grund- und Aufriss; immer aber — selbst bei ausserordentlichen Ständen - lassen sich schwingende Bewegungen der Wassermasse erkennen. Daher kommt es auch, dass nach Abschwellen des Wassers stets wieder die alte Konfiguration - verschoben in der Längsrichtung des Flusses - vorhanden ist. Die Veröffentlichung von Beobachtungen ähnlicher Art an anderen Flüssen wäre im Interesse des Fortschrittes der Potamologie willkommen.

Neuerdings hat man versucht, die Lehren der höheren Analysis in die Hydrologie einzuführen, insbesondere funktionentheoretische Betrachtungen über die Formeln von Bazin, Ganguillet-Kutter u. a. anzustellen. 1). Es wurden

Die Christuskirche in Karlsruhe. — Architekten: Curjel & Moser in Karlsruhe.

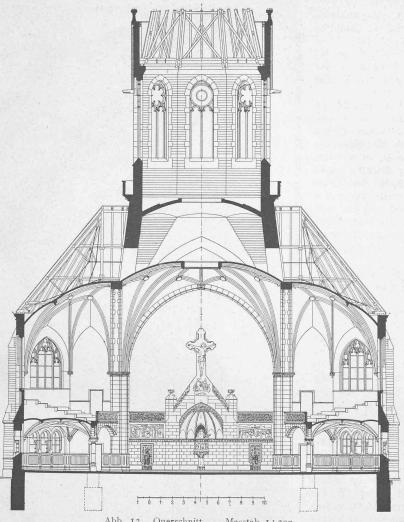


Abb. 13. Querschnitt. — Masstab 1:300.

hierzu die tabellarischen Zusammenstellungen der Pegelbeobachtungen benützt, wie sie für viele Flüsse regelmässig veröffentlicht werden. Aber auch diese sind bei Gerinnen mit beweglicher Sohle nur mit Vorsicht zu benützen. Die relative Lage des feststehenden Pegels zu den einzelnen Punkten der beweglichen Potamokurve verändert sich stetig mit dem Vorrücken der letzteren. Die zu verschiedenen Zeiten beobachteten Pegelstände entsprechen daher stets andern Punkten der Kurve und demgemäss auch andern Abflussverhältnissen. Zum Ausdruck gelangt diese Erscheinung z. B. am Rheine in der Gegend von Strassburg dadurch, dass bei gleicher Wasserführung des Stroms an ein und demselben Pegel die Wasserstände zu verschiedenen Zeiten um Beträge von rd. + 25 cm abweichen.

Karlsruhe,

im April 1901.

Die neuen Linien der Rhätischen Bahn.

Von Oberingenieur Hennings.

(Fortsetzung.)

b. Tiefenkastel-Filisur - km 12,6-23,0.

Ein Teil dieser Strecke, zwischen Tiefenkastel und Alvaneu ist als ziemlich einfach zu bezeichnen, dann folgen bis zur Station Filisur grosse Arbeiten.

Der Unterbau dieses einfachern Teilstückes kostet ungefähr 100000 Fr. per km, während die durchschnittlichen Kosten von Thusis bis Filisur 195000 Fr. betragen.

Zwischen Alvaneu und Filisur liegen die zwei grossen Thalübergänge über das Schmittentobel und das Landwasser, die in Abb. 6 (S. 7) dargestellt sind.

Das Schmittentobel verlangt einen 140 m langen und 35 m hohen Viadukt und gleich darauf folgt der Landwasser-Uebergang, als einer der grössten Viadukte der Albulabahn, welcher sechs gewölbte Oeffnungen zu 20 m erhält, 65 m hoch über dem Wasser liegt und ausnahmsweise in einen Bogen von 100 m R. gelegt werden musste, während sonst der kleinste Halbmesser mit 120 m angenommen ist. Zur Ausgleichung ist in diesem Bogen die Steigung von 25 % auf 20 % ermässigt.

An den Landwasserviadukt schliesst sich ein 217 m langer Tunnel an, worauf bei km 23 die Station Filisur in einer Höhe von 1083 m erreicht wird. Diese Station ist so gelegt, dass der geplante Anschluss von Davos her ohne Schwierigkeit stattfinden kann. - Zwischen-Stationen sind bei Surava und Alvaneu.

Der Bündnerschiefer erstreckt sich bis Surava, dann folgt Muschelkalk, unterste Trias und Rauhwacke.

¹⁾ Es kann hier hingewiesen werden auf die Abhandlung des Verfassers «Berechnung der Abflussmengen in Flüssen», erschienen im Centralblatt der Bauverwaltung, Berlin, Jahrgang 1898, Seite 261 u.f.