Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 37/38 (1901)

Heft: 21

Artikel: Elektrische Eisenbahn Freiburg-Murten

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-22713

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

lung von Ross-

Nachweis ver-

gemeinen zu

die Praxis wider-

plötzliches Einstürzen durch Ueberwindung der Scherfestigkeit, indem die Schubspannungen allein vom Beton, der hierfür nicht die genügende Sicherheit bietet, aufgenommen werden. Bei der zweiten Klasse hat der Beton ausschliesslich Druckspannungen aufzunehmen; demnach

Das Hennebique-System und seine Anwendungen.

Fig. 6. Kohlen-Silos in Aniche.

legt sind. Wenn Rosshändler ferner findet, die Hourdis nach System Hennebique seien zu dünn, so sollte er sich in erster Linie gegen Systeme wenden, die in dieser Beziehung noch viel weiter gehen.

Die Arbeit von Prof. Schüle handelt hauptsächlich von der Möglichkeit einer vollständigen Einspannung von Trägern und Balken. Er gelangt zu dem Schluss, dass auf eine vollständige Einspannung nicht gerechnet werden darf. Wenn also Platten nach der Formel $M = \frac{\cancel{p} \cdot \cancel{l}^2}{24}$ berechnet werden, wie es beim System Koenen üblich ist, so kann dies nicht gebilligt werden.

Im Anschluss an seine Ausführungen brachte der Vortragende in einer grossen Anzahl von Projektionsbildern nach System Hennebique hergestellte Bauwerke zur Darstellung, deren Mannigfaltigkeit und Kühnheit die Leistungen Hennebique's in das beste Licht zu setzen geeignet waren und allgemein den Eindruck bekräftigten, dass der "Grand prix", den er an der letztjährigen Weltausstellung erhielt, ein wohlverdienter war.

Die Textfiguren zeigen einige dieser Ausführungen nach System Hennebique und sind den verschiedenen Anwendungsgebieten des armierten Betons entnommen. Fig. 1 ist charakteristisch für die Innenansicht eines Gebäudes aus armiertem Beton: Alles Sichtbare ist ausschliesslich Beton; dabei macht das Ganze einen mit Rücksicht auf dieses Baumaterial ungewöhnlich leichten Eindruck. Fig. 2 zeigt einen Shedbau; Dächer dieser Art sind wegen des geringen Wärmeleitungsvermögens des Betons sehr beliebt. Die weitgespannten Dachbinder in Fig. 3 be-

Die neuen Markthallen von Genua sind in Fig. 4 dargestellt: Mauern, Pfeiler und Dächer bestehen ausschliesslich aus armiertem Beton; dass die Temperatur in diesem bietet diese Klas-Gebäude bedeutend gleichmässiger ist, als in solchen aus Eisen, wird allgemein anerkannt. Wie der armierte Beton nicht nur bei reinen Nutzbauten Anwendung findet, zeigt se grössere Sicherheit und hat ausserdem den Fig. 5. Einen eigentümlichen Eindruck werden die in Fig. 6 dargestellten Kohlen-Silos auf jeden machen, der Vorteil, dass bei grosser Uebermit dem Wesen des armierten Betons nicht vertraut ist. lastung der Bruch Die vier Behälter von je 90 m3 Inhalt sitzen auf einer nicht plötzlich sehr gewagt aussehenden Tragkonstruktion; obwohl keine erfolgt. Die dritte Streben vorhanden sind, hält das über 20 m hohe Bauwerk Klasse ergiebt allen Einflüssen stand, ohne auch nur nennenswerte Schwanebenfalls günstikungen aufzuweisen. Das in Fig. 7 dargestellte elegant ge Resultate, die konstruierte Reservoir von 80 m3 Inhalt steht auf dem Dach Armatur in der eines Spinnereigebäudes. Fig. 8 zeigt die Brücke von Druckzone hat Chatellerault1), das bedeutendste Ingenieur-Bauwerk, das aber keinen grosbisher aus armiertem Beton erstellt worden ist; sowohl sen Wert und es die Fundamente und Pfeiler, als auch die 40 und 50 m weit kommen daher gespannten Gewölbe bestehen aus armiertem Beton. Die die Bauten dieser Gewölbe setzen sich aus vier Rippen zusammen, die oben durch eine Platte verbunden sind. Auf derselben stehen Klasse bei gleicher Festigkeit leichte Pfeiler, welche die Fahrbahn tragen. Die Brücke teurer zu stehen hat ein gefälliges Aussehen und es ist bei den Belastungsals die der zweiproben mit der doppelten vorgesehenen Last ihre Festigkeit glänzend bestätigt worden. Dabei sind ihre Herstellungs-kosten erheblich niedriger als diejenigen für eine Eisenten Klasse. In der Abhand-

Elektrische Eisenbahn Freiburg-Murten.

oder Steinbrücke gleicher Abmessungen.

weisen, dass auch für derartige Konstruktionen der armierte

Beton dem Eisen mit Erfolg Konkurrenz machen kann.

Die Eisenbahn zwischen den Städten Freiburg und Murten, welche die beiden Hauptbahnen Olten-Bern-Lausanne und Olten-Solothurn-Lausanne mit einander verbindet und die bis jetzt mit Dampfkraft betrieben wurde, wird gegenwärtig für elektrischen Betrieb umgebaut. Gleichzeitig

wird sie bis zur Station Anet der "Direkten Bern-Neuchâtel" verlängert, sodass sie fertig ausgebaut eine totale Länge von etwa 33.9 km erhalten wird, wovon auf die

Hauptstrecke Freiburg - Anet rund 32,4 km und auf eine Abzweigung von Freiburg nach Perolles ausschliesslich für Gütertransport bestimmt -1,5 kmentfallen.

Die Steigungsverhältnisse sind für elektrischen Betrieb ziemlich ungünstig. Die Bahn steigt von Anet bis Freiburg um zusammen 195 m; diese Höhendifferenz wird

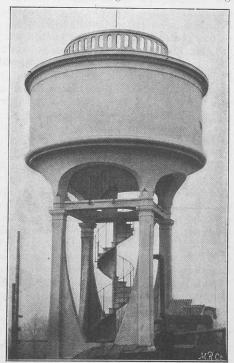


Fig. 7. Reservoir in Scafati.

aber nicht in einer gleichmässigen Steigung überwunden, sondern es wechseln Steigungen mit Gegengefällen ab, wobei die Steigungen untereinander sehr verschieden sind.

¹⁾ Schweiz. Bauztg. Bd. XXXVI S. 156.

Die maximale Steigung erreicht 30 $^{0}/_{00}$ und die mittlere Steigung beträgt für Strecken von 3,3 bis 3,7 km bis zu 20 $^{0}/_{00}$. (Die Figur auf Seite 228 zeigt das schematische Längen-Profil der Bahn mit Angabe der mittleren Steigungen.)

Das Hennebique-System und seine Anwendungen.

Fig. 5. Säulen und Deckendekoration in Genua.

Diese Verhältnisse sind naturgemäss von entscheidendem Einfluss auf die Wahl des Stromsystems gewesen. Als Betriebskraft stand hochgespannter Dreiphasenstrom von 8000 Volt verk. Spannung aus den staatlichen Elektricitätswerken der "Administration des eaux et forêts" des Kantons Freiburg zur Verfügung. Die direkte Benützung dieses Stromsystems unter Vermittelung von Transformatoren hätte indessen bei den sehr schwankenden Belastungen hohe Betriebskosten ergeben und es wurde daher schon im Programm die Anwendung des Gleichstrom-Systems vorgesehen.

Es war verlangt, die Bahn solle imstande sein in einer 18-stündigen Betriebszeit zehn Züge von 70 t Totalgewicht in jeder Richtung zu befördern. Bei der Aufstellung des Fahrtenplans war darauf Rücksicht zu nehmen, möglichst guten Anschluss an die Züge in Freiburg, Murten und Anet zu erhalten und gleichzeitig den Energieverbrauch in der für die Unterstationen vorteilhaftesten Weise zu verteilen.

Auf Grund der eingereichten Projekte wurde die Ausführung der Anlagen der Maschinenfabrik Oerlikon übertragen, nach deren Vorschlägen die Bahn nun in der weiter unten beschriebenen Weise ausgeführt wird.

Die Zuggeschwindigkeit soll auf der maximalen Steigung von 30 % noch 23 km per Stunde betragen; infolge der Eigenschaften der Gleichstrom-Motoren mit Seriewickelung wächst dieselbe von selbst bei kleineren Steigungen und wird auf horizontaler Bahn rund 35 km per Stunde erreichen; im Gefälle ist eine noch etwas höhere Geschwindigkeit bis auf 45 km zugelassen. Hieraus berechnet sich unter Berücksichtigung des Bahnprofils die Fahrzeit zu ungefähr 66 Minuten in der Richtung Freiburg-Anet und zu ungefähr 80 Minuten in der Richtung Anet-Freiburg, die

Aufenthalte auf den Stationen inbegriffen. Diese Fahrgeschwindigkeiten entsprechen ungefähr jenen, die bei Dampfbetrieb gegenwärtig zur Anwendung kommen.

Die elektrische Energie wird von zwei an der Linie in Pensier und in Murten errichteten Unterstationen geliefert. Für die Lage der letztern waren folgende Erwägungen massgebend: Es sollte einerseits der Aufwand an Leitungsmaterial möglichst gering sein, anderseits aber sollten die beiden Stationen nicht zu weit auseinander liegen, um im Notfalle noch als Reserve für einander dienen zu können — zwei Bedingungen, die zu einander gewissermassen in Widerspruch stehen. Die beiden gewählten Orte haben ausserdem den Vorteil, dass eine Hauptleitung der erwähnten Elektricitätswerke sie schon berührt, sodass keine besonderen Hochspannungsleitungen notwendig werden.

Die Leistungsfähigkeit der Unterstationen entspricht dem Energieverbrauch eines Zuges. Es konnte nämlich der Fahrtenplan so eingerichtet werden, dass alle Zugkreuzungen zwischen den beiden Unterstationen vor sich gehen, sodass eine Station nie durch mehr als einen Zug belastet wird. Falls die eine Station ausser Betrieb käme, müsste die Anzahl der Züge vermindert werden.

Die grösste Leistung, die ein Zug beansprucht, erreicht rund 240 P. S. am Radumfang, entsprechend einem Energieverbrauch von etwa 300 P. S. in der Unterstation; die mittlere erforderliche Leistung dagegen beträgt nur ungefähr die Hälfte davon. Dementsprechend erhält jede Unterstation eine Umformergruppe von 150 P. S. Leistung und eine Accumulatorenbatterie von genügender Kapacität, um die bei grösserem Kraftverbrauch erforderliche Energie abzugeben.

Jede Umformergruppe wird aus einem Synchron-Motor für 8000 Volt und 150 P. S. Leistung und einem direkt damit gekuppelten Gleichstrom-Generator für 800 Volt Spannung gebildet. Auf Verlangen der stromliefernden Centrale wurden Synchron-Motoren gewählt, da deren Anlaufen bei dem Vorhandensein einer Accumulatorenbatterie keine Schwierigkeit verursacht.

Wie aus dem Gesagten hervorgeht, ist als Stromsystem für die Bahn Gleichstrom von 750 Volt vorgesehen, die höchste Spannung die nach den gegenwärtigen schweizerischen Vorschriften zulässig ist. Die Stromzuführung geschieht durch eine dritte Schiene neben dem Geleise, ein System, das schon mehrfach erprobt worden ist und das bei Vollbahnen vor demjenigen mit aufgehängtem Kontaktdraht bedeutende Vorteile besitzt. Es werden, da das Eisen für gleiche Leitungsfähigkeit nur etwa die Hälfte der Kosten für eine Kupferleitung beansprucht, sowohl die Anlage-

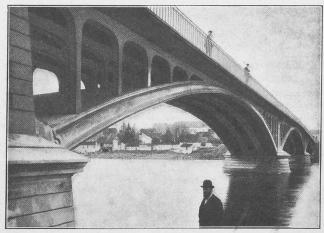
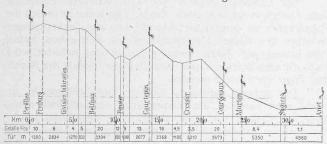


Fig. 8. Brücke über die Vienne bei Chatellerault.

kosten ermässigt, wie auch zugleich die Betriebssicherheit erhöht und die Montage vereinfacht. Der letztere Umstand spielt bei der in Frage kommenden Bahnanlage eine grosse Rolle, da der Umbau ohne Störungen im gegenwärtigen Betriebe vor sich gehen muss.


Zur dritten Schiene werden gewöhnliche Eisenbahn-

schienen verwendet; als Rückleitung dient das Geleise. An den Schienenstössen sind, wie üblich, zur Verbindung der Schienen untereinander Kupferkabel vorgesehen.

Da die Eisenbahnverwaltung, in deren Besitz sich die Hauptstationen Freiburg, Murten und Anet befinden, für diese Bahnhöfe mit Rücksicht auf den übrigen Verkehr das System mit der dritten Schiene nicht zulassen wöllte, ist man genötigt für dieselben Stromzuführung mittels eines aufgehängten Kontaktdrahtes und Bügels anzuwenden.

Das neu anzuschaffende rollende Material besteht aus automobilen, vierachsigen Bogies-Wagen, jeder genügend stark, um den ganzen Zug zu ziehen. An jedem Drehgestell wird eine Achse durch einen Gleichstrom-Motor von 120 P. S. Leistung mittels einfacher Zahnradübersetzung

Schematisches Längenprofil.

Masstab für die Längen 1:400000, für die Höhen 1:8000.

angetrieben. Die Motoren können in gewöhnlicher Weise, in Serie und parallel geschaltet werden.

Der Wagen enthält eine Abteilung für zweite Klasse mit acht Plätzen, eine Abteilung für dritte Klasse mit 32 Plätzen, eine Abteilung für Gepäck und eine eingekleidete Plattform an jedem Ende für den Führer. Das Gesamt-Gewicht einschl. der elektrischen Ausrüstung beträgt rund 32 t.

Die elektrische Ausrüstung besteht aus: Einem Anlassapparat auf jeder Plattform für Serie- und Parallelschaltung der beiden Motoren mit Kontaktstellungen für elektrische Bremsung und Schalttafel mit Volt- und Ampèremeter; ferner Handbremse und Luftdruckbremse für Bedienung von beiden Plattformen aus; Luftpumpe mit Motor in der Gepäckabteilung; den vorschriftsmässigen Signallampen, Glühlampen für die elektrische Beleuchtung, Maximalstromausschalter und Sicherung für die Motoren; zwei Schleifkontakten auf jeder Seite des Wagens zur Abnahme des Stromes von der dritten Schiene.

Der elektrische Betrieb der Linie soll für Neujahr 1902 durchgeführt sein.

Miscellanea.

Statistik der elektrischen Bahnen in Frankreich. Nach der neuesten von «L'Ind. électr.» veröffentlichten Statistik hat auch in Frankreich im vergangenen Jahre ein bedeutender Aufschwung des elektrischen Bahnwesens stattgefunden. Wir geben nachstehend eine auf die letzten fünf Jahre bezügliche Tabelle, welche sich auf den Stand vom I. Januar jeden Lahres bezieht

Janies Dezient.						
		1897	1898	1899	1900	1901
Gesamtlänge der Linie in km		279,3	3 396,8	487,	752,8	1486,3
Gesamtleistungsfähigkeit der C	en-					
tralen in kw		8736	15158	18718	28308	64383
Gesamtzahl der Motorwagen .		432	664	759	1295	2425
Zahl der Linien mit:						
Luftleitung		19	36	42	56	76
unterirdischer Zuleitung		I	I	2	3	6
Teilleiter		I	I	I	I	4
Accumulatoren		- 5	4	6	6	8
gemischter Stromzuführung						
(Acc. u. Oberleitung)		0	2	4	4	6
gemischter Stromzuführung						
(Oberleit. u. Schlitzkanal)		0	0	I	2	2
gemischter Stromzuführung						
(Oberflächenkontaktsystem	u.					
Oberleitung)		0	o	0	0	7

Im allgemeinen geht die Tendenz bezüglich der Stromverteilung für elektrische Bahnen in Frankreich dahin, in grossen und wenigen Centralen Drehstrom hoher Spannung und mit einer Frequenz von 25 Perioden pro Sekunde zu erzeugen, der dann in auf das Versorgungsgebiet passend verteilten Transformatoren-Unterstationen auf niedrige Spannung transformiert und in Gleichstrom umgewandelt wird. Die Verteilungsspannung des letzteren beträgt in der Regel 550 Volt. Als System der Stromzuführung herrscht natürlich das Oberleitungssystem wie überall, so auch in Frankreich vor, indessen besteht in dieser Beziehung daselbst doch eine grössere Mannigfaltigkeit als beispielsweise in Deutschland; namentlich sind in Paris alle möglichen Stromzuführungssysteme in Anwendung; so findet man daselbst ausser den bekannteren Systemen auch die Systeme von Claret-Wuilleumier, von Diatto und von Vedovelli und Dolter.

Die XXXXI. Jahresversammlung des Deutschen Vereines von Gas- und Wasserfachmännern findet in den Tagen vom 17. bis 19. Juni d. J. in Wien statt. - Das Programm sieht eine Reihe von Vorträgen bekannter Autoritäten des Gas- und Wasserwesens vor. Herr Direktor Peter aus Zürich wird über Wasserreinigung durch kombinierte Grob- und Feinfilter sprechen. Am zweiten Tage sollen die neuen Central-Gaswerke und die in Bau begriffenen Elektricitäts-Werke der Stadt Wien besichtigt werden, tags darauf — in verschiedenen Gruppen — die Wasserhebewerke in Breitensee und im Bezirk Favoriten, die Anlagen der Wienflussregulierung, jene der Wienthal-Wasserleitung im Wolfsgraben und die Schleusenanlagen in Nussdorf. Für die Abende sind in Aussicht genommen: Ein Empfang seitens der Gemeinde Wien im Rathause; ein Besuch des Burgtheaters und des « Englischen Gartens », sowie Ausflüge auf den Kahlenberg, Leopoldsberg und in die Umgebung von Wien. Mit dieser Jahresversammlung verbindet der Verein eine Sonder-Ausstellung von Plänen, Modellen, Projekten und solchen Gegenständen, für deren Betrieb keine besonderen Herrichtungen erforderlich sind. Diese Ausstellung wird anschliessend an den grossen Musikvereins-Saal (Wien I, Dumbagasse), woselbst die Versammlungen abgehalten werden, untergebracht. Anmeldungen für dieselbe sind bis zum I. Juni an Herrn Wilhelm Kefer in Wien X, Erlachgasse 117 zu richten. — Bekanntlich sindet gleichzeitig, und zwar vom 25. Mai bis 25. Juni, im Gebäude der k. k. Gartenbaugesellschaft eine Ausstellung von Gegenständen aus dem Gebiete des Gas- und Wasserfaches1) statt.

Schienengewichte in Amerika. Nach einem Berichte des amerikanischen Vereins für Eisenbahn-Ingenieurwesen und Bahnunterhaltung, den die «Railway and Engineering Review» mitteilt, verwenden von 127 amerikanischen Bahnen 83 die Musterquerschnitte der Gesellschaft amerikanischer Civilingenieure. Die verschiedenen Gattungen dieser Querschnittsreihe verteilen sich wie folgt:

Wenn diese Statistik auch, da die Längen der Strecken nicht angegeben sind, sehr unvollkommen ist, so ersieht man aus den Angaben doch, dass die weit überwiegende Mehrzahl der Strecken noch mit leichteren Schienen ausgerüstet ist, und dass die schwersten, auf nur 8 Strecken vorhandenen Schienen ein Gewicht von $45,4\ kg/m$ nicht übersteigen, was bei den in Amerika üblichen Achsbelastungen für Lokomotiven und Rollmaterial überhaupt, sowie den dort angewendeten Fahrgeschwindigkeiten auffällig erscheint.

Kunstausstellungsgebäude in Düsseldorf. In schöner Lage am Rhein ist unfern der neuen Brücke ein Kunstausstellungsgebäude für die rheinische Künstlerstadt im Bau begriffen, das eine Fläche von 7400 m² bedecken wird. Die Hauptfront hat 132 m Länge, die grösste Tiefe des Baues beträgt 90 m, seine Höhe bis zur Kuppelspitze 39 m. Im Innern sind ausser der unter der Kuppel befindlichen Haupthalle sieben grössere und sieben kleinere zum Teil im Obergeschoss des Vorderbaues gelegene Ausstellungshallen vorhanden; erstere können durch leicht verstellbare Holzwände in beliebig viele Einzelabteilungen getrennt werden. Die Abmessungen der grössten Hallen sind — wie die «Düsseld. Ausstell.-Ztg.» berichtet — 55 bezw. 38 m Länge zu 22 m Breite bei einer mittleren Höhe von 8 m; die des Skulpturensaales an der Rückfront 28 m Länge zu 16 m Breite und 11 m Höhe. Mit einigen Ausnahmen sind für die Beleuchtung der Räume doppelte Oberlichter angeordnet. Um im Winter Ausstellungen,

¹⁾ Bd. XXXVI S. 108.