Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 37/38 (1901)

Heft: 11

Artikel: Graphische Lösung höherer algebraischer Gleichungen

Autor: Sieber, A.

DOI: https://doi.org/10.5169/seals-22684

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

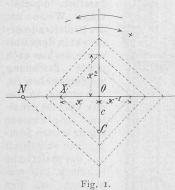
Download PDF: 26.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Graphische Lösung höherer algebraischer Gleichungen.

Einleitung. Unter ähnlichem Titel hat Hr. Ing. Smreker in Band XVII Nr. 7 der "Eisenbahn" einen interessanten Artikel veröffentlicht, worin er besonders die Lösung der Gleichungen zweiten und dritten Grades mittelst einer im Band XIV der "Eisenbahn" von ihm besprochenen Kurvengattung erörterte. Diese Kurven geben jedoch nur die Wurzeln drei- bezw. viergliedriger Gleichungen, versagen also bei vollständigen Gleichungen vierten und höhern Grades. Es soll deshalb in folgendem, aufbauend auf das nämliche Fundament wie Herr Smreker, ein allgemeiner Weg zur Konstruktion der höhern Gleichungen mit einer Unbekannten, deren Exponenten als positive ganze Zahlen

vorausgesetzt sind, gesucht werden.



Trägt man in Figur 1 auf dem einen Schenkel. zweier sich unter rechtem Winkel kreuzenden Achsen vom Durchschnittspunkte O aus die Länge c nach C, auf dem benachbarten Schenkel die Länge x nach X auf und konstruiert von X aus, an die Richtung CX anschliessend einen fortlaufenden Senkrechtenzug, dessen Scheitelpunkte auf den Achsen liegen, so

schneidet die n^{te} Strecke dieses Linienzuges, also nach n-1maliger Anlegung des rechten Winkels, auf dem treffenden Achsenschenkel die Länge ON ab und es ist $\frac{ON}{c} = \left(\frac{x}{c}\right)^n.$

$$\frac{\partial N}{\partial c} = \left(\frac{x}{c}\right)^n$$
.

Betrachtet man die Grösse c als Masseinheit, setzt somit c = 1, so wird

$$ON = x^n$$
.

Für die Folge wird daher c nicht evident erhalten, also stillschweigend = 1 genommen, und im weitern festgesetzt, dass die positive nte Potenz beim Durchlaufen des Senkrechtenzuges in dem in der Figur als + angegebenen Drehungssinne stets auf der linken Seite der Horizontalachse abgeschnitten werden soll. Bezeichnet μ eine reelle ganze Zahl \overline 0, so fällt dann der Punkt C

wenn
$$n = 4 \mu$$
 links
 $= 4 \mu + 1$ unterhalb
 $= 4 \mu + 2$ rechts
 $= 4 \mu + 3$ oberhalb

Indem man den Senkrechtenzug an CX anschliessend rückwärts über C fortsetzt, erhält man successive $\frac{1}{x} = x^{-1}$,

$$\frac{\mathbf{1}}{x^2} = x^{-2}, \text{ etc.}$$

Zur Konstruktion von $(-x)^n$ hätte man sich in entgegengesetztem Sinne von C aus um den Ursprung O zu bewegen, d. h. auch -x in entgegengesetztem Sinne von +x aufzuzeichnen und es läge sonach $(-x)^n$ bei ungeradem n rechts von o.

Konstruiert man ferner aus den Strecken ao, a1, a2, \cdots a_{n-1} , welche als Werte der Verhältnisse

$$\frac{A_0}{c}$$
, $\frac{A_1}{c}$, $\frac{A_2}{c}$, \dots $\frac{A_{n-1}}{c}$

zu betrachten sind, in Figur 1a von O_1 ausgehend, den Senkrechtenzug O, A in der Weise, dass bei positiven Werten ao auf der Horizontalen nach rechts von O1 aus, daran anschliessend a_1 vertikal aufwärts, hierauf weiter a_2 nach links, dann a_3 vertikal abwärts, u. s. f., negative Werte aber je in entgegengesetztem Sinne der +a mit gleichen Indexen aufgezeichnet werden, so kann man vom Endpunkte A der letzten Strecke a_{n-1} , mit dieser den gleichen Winkel in gleichem Sinne einschliessend, welchen CX mit CO in

Figur 1 bildet, den Strahl AB ziehen, welcher auf der Linie der a_{n-2} mit Berücksichtigung des Vorzeichens das Produkt $a_{n-1}x$ abschneidet. Konstruiert man weiter anschliessend an AB einen neuen fortlaufenden Senkrechtenzug, dessen Scheitelpunkte der Reihe nach auf den Linien der a_{n-2} , $a_{n-3} \cdot \cdot \cdot \cdot a_1$ liegen, so erhält man auf der Linie der a_0 den Punkt N_1 und man findet, dass $O_1 N_1 = a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots \cdot a_2 x^2 + a_1 x + a_0$. Legt man jetzt die Figuren 1 und 1a so aufeinander.

dass die Punkte O und O_1 und die Horizontalachsen zusammenfallen, so wird die Strecke NN_1 den Wert der Gleichung:

$$x^{n} + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_{2} x^{2} + a_{1} x + a_{0} = y$$
 repräsentieren.

Würden auch die Punkte N und N1 zusammenfallen,

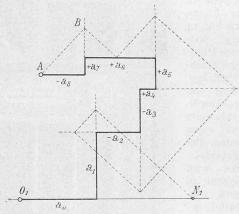
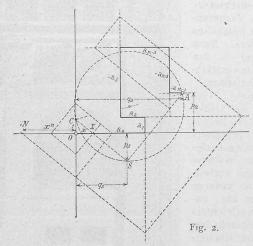


Fig. 1a.

d. h. würde $NN_1=0$ sein, so hätte man also $x^n+a_{n-1}\,x^{n-1}+a_{n-2}\,x^{n-2}+\cdots+a_2\,x^2+a_1\,x+a_0=o\,(1)$ und es müsste somit die Strecke OX = x in Figur 1 einer Wurzel dieser Gleichung entsprechen.

Es stelle nun die Figur 2 eine solche Kombination der Figuren 1 und 1a dar, und es sei die Grösse x so bestimmt, dass die Punkte \tilde{N} und N_1 zusammenfallen, dass somit x als eine Wurzel der die Koeffizienten $a_0, a_1 \cdot \cdot \cdot \cdot a_{n-1}$ enthaltenden Gleichung nten Grades zu betrachten ist. Infolge der getroffenen Anordnung würden sich unter allen

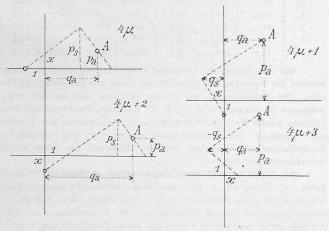


Umständen, wie man auch die Grösse x versuchsweise wählen möchte, die ersten von C und A ausgehenden Strahlen CX und AB in einem Punkt S schneiden, welcher der über AC als Durchmesser beschriebenen Kreislinie angehört. Im Weitern hat der Punkt 5 gewisse Bedingungen zu erfüllen, damit der durch ihn von C ausgehende Strahl eine der Gleichung (1) Genüge leistende Wurzel OX abschneide. Diese Bedingungen sind jetzt zu formulieren.

Aus den Figuren 1 a und 2 ersieht man, dass die a mit geradem Indexe auf Horizontalen, diejenigen mit ungeradem auf Vertikallinien liegen. Die Koordinaten p_a und qa des Punktes A von Horizontal- und Vertikalachse aus sind;

$$p_a = a_1 - a_3 + a_5 - \dots + \dots
 q_a = a_0 - a_2 + a_4 - \dots + \dots
 (2)
 (3)$$

 $p_a = a_1 - a_3 + a_5 - \cdots + \cdots \qquad (2)$ $q_a = a_0 - a_2 + a_4 - \cdots + \cdots \qquad (3)$ Das letzte Glied für p_a ist positiv bei $n = 4 \mu + 2$ oder $4 \mu + 3$, für q_a ist das letzte Glied positiv bei $n = 4 \mu + 1$ oder $4 \mu + 2$. Der Punkt A liegt bei positive Ativen p_a und q_a über der horizontalen und rechts der vertikalen Achse.



Figuren 2a.

Bezeichnet man die Abstände des Schnittpunktes S von der Horizontal- und der Vertikalachse mit p_s und q_s , so ergeben die Figuren 2 und 2 a

wenn
$$n$$
 gerade:
$$p_s = \frac{q_a + p_a x \pm \mathbf{1}}{x + \frac{1}{x}}$$
 (4)

wenn
$$n$$
 ungerade: $-q_s = \frac{p_a + q_a x \pm 1}{x + \frac{1}{x}}$ (5)

Das obere Vorzeichen von 1 ist gültig für $n=4~\mu$ oder 4 μ + 1, das untere für $n=4~\mu$ + 2 oder 4 μ + 3; q_s ist negativ, liegt also links der Vertikalachse, bei ungeradem n und positiven p_a , q_a und x. Ferner ist zu beachten, dass bei n=4 $\mu+1$ oder 4 $\mu+2$ das +x entgegengesetzt, d. h. links der Vertikalachse, resp. unterhalb der Horizontalachse abgeschnitten wird.

Falls nun $NN_1 = 0$, so hat man nach Gleichung (1):

$$a_{n-1}x + a_{n-2} = -\left(\frac{a_0}{x^{n-2}} + \frac{a_1}{x^{n-3}} + \dots + \frac{a_{n-3}}{x} + x^2\right)$$
 (6)

Somit lassen sich in den entwickelten Formeln für p_s und q_s jeweils die Glieder mit a_{n-1} und a_{n-2} vermittelst der übrigen Koeffizienten ausdrücken. Man kann daher die Gleichungen (4) und (5) auch folgenderweise schreiben:

$$p_{s} = \frac{q_{a} \pm a_{n-2} + (p_{a} \pm a_{n-1}) x \pm 1}{x + \frac{1}{x}} \pm \frac{\left(\frac{a_{0}}{x^{n-2}} + \frac{a_{1}}{x^{n-3}} + \dots + \frac{a_{n-3}}{x} + x^{2}\right)}{x + \frac{1}{x}}$$

$$(4^{a})$$

für ungeardes n:

$$-q_s = \frac{p_a \pm a_{n-2} - (q_a \mp a_{n-1}) x \pm 1}{x + \frac{1}{x}} \pm$$

$$\pm \frac{\left(\frac{a_0}{x^{n-2}} + \frac{a_1}{x^{n-3}} + \dots + \frac{a_{n-3}}{x} + x^2\right)}{x + \frac{1}{x}} \tag{5}^{\text{a}}$$

oder
$$p_s = \frac{a_0 - a_2 + \dots - a_{n-1} + x (a_1 - a_3 + \dots + a_{n-3})}{x + \frac{t}{x}} \pm$$

$$= \frac{a_0 - a_2 + \dots - \dots - a_{n-1} + x (a_1 - a_3 + \dots + a_{n-3})}{x + \frac{t}{x}} \pm \frac{\left(\frac{a_0}{x^{n-2}} + \frac{a_1}{x^{n-3}} + \dots + \frac{a_{n-3}}{x} + x^2\right) \pm 1}{x + \frac{t}{x}}$$

$$(4^b)$$

$$-q_{s} = \frac{a_{1} - a_{3} + \cdots + a_{n-4} - x (a_{0} - a_{2} + \cdots + a_{n-3})}{x + \frac{1}{x}} \pm \frac{\left(\frac{a_{0}}{x^{n-2}} + \frac{a_{1}}{x^{n-3}} + \cdots + \frac{a_{n-3}}{x} + x^{2}\right) \pm 1}{x + \frac{1}{x}}$$

$$(5^{b})$$

Die obern Vorzeichen gelten bei $n = 4 \mu$ oder $4 \mu + 1$, die untern bei $n = 4 \mu + 2$ oder $4 \mu + 3$.

Man findet durch Ausrechnung dieser Gleichungen bei $n = 2 : p_s = -x$ $n = 3 : q_s = a_0 + x$ $n = 4 : p_s = a_1 + \frac{a_0}{s} + x$ $\begin{array}{l} n=5:q_s=a_0-a_2-\frac{a_1}{x}-\frac{a_0}{x^2}-x\\ \\ n=6:p_s=a_1-a_3-\frac{a_2-a_0}{x}-\frac{a_1}{x^2}-\frac{a_0}{x^3}-x \end{array}$ $n = 7: q_s = a_0 - a_2 + a_4 + \frac{a_3 - a_1}{x} + \frac{a_2 - a_0}{x^2} + \dots$ $n = 8: p_s = a_1 - a_3 + a_5 + \frac{a_4 - a_2 + a_0}{x} + \frac{a_3 - a_1}{x^2} + \frac{a_2 - a_0}{x^3} + \frac{a_1}{x^4} + \frac{a_0}{x^5} + x$

Diese Formeln enthalten nun die Bedingungen, welche der in der Kreislinie über AC liegende Punkt S zu erfüllen hat.

Allgemeiner Gang der Konstruktion. Behufs Konstruktion der Wurzeln einer Gleichung nten Grades ist nun folgender Weg einzuschlagen:

Auf dem rechtwinkligen Achsensystem hat man den Punkt C der eingangs gegebenen Anweisung gemäss und den Punkt A entsprechend den Koordinaten p_a und q_a aufzutragen und hierauf die Kreislinie um AC zu ziehen. Sodann wird in den Figuren 1 und 2 verwandter Weise der für n zutreffende Wert p_s oder q_s für verschiedene willkürlich angenommene x_i konstruiert und die Resultate mit Berücksichtigung des Vorzeichens von der zuständigen Achse aus je in der Vertikalen oder Horizontalen des betreffenden Peripheriepunktes S_i aufgetragen oder auch auf die Strahlen CSi hinüberprojeziert; die so erhaltenen Punkte bestimmen eine Hülfskurve, deren Schnitte mit der Kreislinie AC diejenigen Strahlen CS anzeigen, welche die reellen Wurzeln OX = x auf der OC konjugierten Achse abschneiden. Je nach Umständen wird man zur Erzielung grösserer Genauigkeit x, d. h. das Verhältnis $\frac{OX}{OC}$ auch aus den Koordinatenunterschieden der Punkte S und C oder S und A ermitteln.

(Schluss folgt.)

Miscellanea.

Versuche an einer 300pferdigen de Laval-Dampfturbine. In den Böhm.-Krumenauer Papierfabriken zu Pötschmühle wurden bei Versuchen mit einer de Laval-Dampfturbine von 300 P. S. e., welche einen Drehstrom-Generator von 350 cos \u03c4 K. W. bei 330 Volt Spannung mit ruhenden Ankerwickelungen und umlaufendem Magnetrad in Thätigkeit setzt, nach einem Berichte in der «Zeitschr. d. Vereines deutscher Ing.» folgende Ergebnisse erzielt.

Die Dampfturbine ist für eine Eintrittsspannung an den Düsen von 9 Atm. Ueberdruck eingerichtet und mit 8 Unterdruck- und 4 Hochdruckdüsen ausgerüstet. Beim normalen Betriebe kommen nur die Unterdruckdüsen, welche 9 mm Durchmesser haben, zur Anwendung, während die Hochdruckdüsen mit 20 mm Durchmesser nur bei der Inbetriebsetzung, oder bei sinkender Dampfspannung oder sinkendem Unterdrucke in Wirkung treten, um die Leistung aufrecht zu erhalten.

Das Turbinenrad macht 10500, die beiden Vorgelegewellen 750 Umdrehungen i. d. Minute. Je 10 quadratisch geflochtene Hanfseile von 30 mm² Querschnitt übertragen die Kraft von den beiden Vorgelegewellen auf den Drehstromgenerator mit 350 minutl. Umdrehungen. Der zur An-