Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 35/36 (1900)

Heft: 3

Artikel: Flussverbauung nach dem Pfahlbau-System

Autor: Schindler, A.

DOI: https://doi.org/10.5169/seals-21932

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

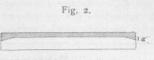
ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Der Verschleiss ist bei beiden Profilen ein gleichmässiger, wenn sich die theoretischen Verschleissflächen ebenso verhalten wie die Flächen des praktischen Verschleisses. Es ist klar, dass noch eine Reihe Schlüsse aus den geometrischen Beziehungen der Figuren bezw. Lage der Verschleissresultante gezogen werden kann; da aber die gewonnenen Resultate immerhin nur auf Annahme basieren, so möge zunächst ein anderer Faktor Berücksichtigung finden: die absolute Festigkeit der Schiene. Sobald sich ein Rad auf der Schiene fortbewegt, kommen im wesentlichen zwei Kräfte in Betracht: eine vertikal abwärts gerichtete und eine horizontale in der Ebene des Schienenkopfes. Die erste in Grösse des Raddruckes wird durch die Schiene selbst auf die Bettung übertragen, während die zweite in der Ebene der Lauffläche wirkt und den Verschleiss hervorruft, bezw. könnte man auch diese beiden Kräfte ersetzende Resultante in Betracht ziehen. Es handelt sich nun um Bestimmung der horizontalen Kraft. Nehmen wir an, die Schiene bestände aus einem vollkommen elastischen Material, das dem Verschleiss nicht ausgesetzt wäre, so können wir die durch die Verschleisskraft hervorgerufene Aenderung des Schienenprofils als eine Arbeit der Schiene betrachten, die analog der Ausdehnung bei Erwärmung vor sich geht, mit dem Unterschied, dass eine Verlängerung der Schiene bei gleichzeitiger Verminderung des Schienenprofils stattfindet, während der räumliche Inhalt der Schiene sich gleich bleibt. Bezeichnen wir den ursprünglichen Querschnitt der Schiene mit Q, den verschleissten mit Q,, die ursprüngliche Länge der Schiene mit L, die Länge nach dem Verschleiss mit L, so würde sich der Verschleiss in n Jahren einfach als $V_n = \frac{Q_r(L-L)}{r} \cdot n$,

darstellen. Diese Formel giebt bei entsprechend festgestellten Q_i brauchbare Resultate, wie wir sehen werden. Nehmen wir z. B. eine Phönixrillenschiene $a5^b$ mit einer Festigkeit von 60 kg pro mm^2 , einem Gewicht von 40,2 kg pro If. m, die sich in bestimmten Zeiträumen von ihrem ursprünglichen Querschnitt $5230 \ mm^2$ um je $233 \ mm^2$ vermindert, so müsste die entsprechende Länge statt 1000 mm auf $1047 \ mm$ wachsen. Wenn der Elasticitätsmodul der Schiene $20000000 \ kg/cm^2$ betrüge, so ist die jeweilig geleistete

Arbeit der Profileinheit (1 cm^2) $\frac{2000000.47}{1000} = 94000 kg$, wo-

bei die Annahme gemacht ist, dass die Verschleisskraft in der Lauffläche der Schiene mit der absoluten Festigkeit derselben gegen Zug identisch ist, was sich von der Wirklichkeit nicht weit entfernen dürfte. — Im Ganzen beträgt die Arbeit der Schiene für den cm² Einheit 94 000 kg; es können jedoch pro cm² und die gewählte Zeiteinheit nur 6000 kg in Betracht kommen, und es müssen also 15—16 der gewählten Zeiteinheiten (Jahre) erforderlich sein, um den vollkommenen Verschleiss der Schiene herbeizuführen. In der angegebenen Formel können variieren der Elasticitätsmodul und die Festigkeit bezw. der Koefficient der Längenausdehnung; je nachdem wird sich das Resultat ändern. Daraus lassen sich folgende Schlüsse ableiten:


1. Der Verschleiss einer Schiene muss procentual zum Querschnitt unter genauer Beobachtung der Profile und Betriebsart jedes Jahr in der Mitte und am Stoss der Schiene aufs genaueste gemessen werden. Als Messsungseinheit kann der Jahreskubikcentimeter gelten.

 Die Verschleissarbeit eines Schienenprofils kann mit der eines anderen in der Weise, wie in der beigegebenen Zeichnung Fig. 1 erläutert, verglichen werden.

3. Der mehr oder minder grosse Verschleiss einer Schiene wird im allgemeinen weniger von der Art des gewählten Schienenprofils oder der Form der Betriebsmittel, als von der absoluten Festigkeit des Materials bezw. dessen Elasticitätsmodul abhängen.

Wie bereits erwähnt, ist dem Verschleiss am Stoss eine ganz besondere Beachtung zu schenken, weil, so lange eine vollständige Kontinuität nicht erreicht ist, er dem Angriff der vertikal wirkenden, durch die Radlast bedingten Kraft fortwährend ausgesetzt ist. Der Verschleiss der ganzen Schiene wird die in Fig. 2 skizzierte Gestalt annehmen. Die Grösse des Winkels α würde sich nach der Grösse des

Raddruckes, der Festigkeit des Materials etwa bestimmen lassen und eine Prüfung der Güte einer Laschenverbindung gestatten. Sie wird in

gleicher Weise angeben, ob ein verschweisster Stoss einem schon länger liegenden Betriebsgeleise noch zum Vorteil gereichen kann; sie wird aber auch ohne weiters zeigen, dass für eine ökonomische Ausnutzung der Schiene der Winkel $\alpha=$ o werden muss, mit anderen Worten: Sie weist auf die ausserordentlichen Vorteile eines verschweissten Stosses hin. Diese Betrachtungen hier weiter zu führen, könnte nur im Verein mit Versuchen geschehen, die wir zum Studium des geschweissten Stosses z. Z. noch anstellen; sie mögen späteren Veröffentlichungen vorbehalten bleiben 1).

Flussverbauung nach dem Pfahlbau-System.

Von A. Schindler in Basel.

III. (Schluss.)

Die Wirkung des Hochwassers auf die Korrektion. Zwei Monate nach der (teilweisen) Vollendung erfuhr die Korrektion nach mehreren geringern Wasserproben die erste Hochwasserprobe. Der Wasserstand stieg genau auf 5 m unter die Dammkrone, also 2 m höher als das obere ausgepflasterte Gürtelende. Da dieser Punkt eine Höhe von 2.30 m über Sohlenniveau bedeutet, so ergiebt sich für die Mittelströmung ein Hochwasserniveau von etwa $2^{1}/_{2}$ m. Am obersten Prallkopf, welcher die ganze Wucht eines unregulierten und schiefgebetteten Flusses aufzunehmen und abzuweisen die Aufgabe hatte, scheint die Wasserhöhe mindestens 3 m betragen zu haben.

Die allgemeine Uebersicht während des Hochwassers bot das Bild einer starken, an mehreren Gürteln wellenschlagenden, an andern völlig sanft vorüberfliessenden Mittelströmung in der Flussachse, während die Uferlinien auf mehrere Meter Breite einen durchaus glatten und glänzenden Spiegel zeigten. Ein nennenswerter Defekt liess sich vorläufig nirgends konstatieren, wohl aber erwies sich die Kraft der Gürtelkonstruktion in sehr auffälliger Deutlichkeit durch die Energie, mit welcher der oberste Gürtel die volle Wucht der linksseitig vorhandenen Hochströmung in die Flussachse abwies, ohne, wie sich nachher zeigte, den geringsten Schaden zu nehmen. Es ist damit wohl der Beweis geleistet, dass die neue Bauart, was übrigens schon mehrfach bestätigt wurde, auch die stärkste Kurve zu schützen im stande ist, die Kosten einer Geradlegung der Flussläufe daher erspart werden können.

Die Inspektion des Flusslaufes nach Verlauf der Hochwasserperiode ergab ein durchaus zufriedenstellendes Resultat. Die mit jungem Grün bekleideten Flächen waren, mit Ausnahme ganz kleiner Schürfungen durch zufällige Veranlassungen, ganz intakt; nicht minder der Bodenschutz durch Tannreiserbelag, welcher sich schön verschlammt hat und für die Grassaat gut vorbereitet ist. Sämtliche Gürtel zeigten sich ohne jeden Defekt, mit Ausnahme einer Anzahl von Füllsteinen der obern Gürtelflucht, welche an mehreren Gürteln ausgehoben und weggespült wurden, Diese etwas unerklärliche und noch nie konstatierte Erscheinung ist ohne Zweifel dem Umstand zuzuschreiben, dass die Steine in Folge schlechter Unterfüllung und unrichtiger Stellung unterwaschen und durch den Wellenschlag aus dem Pfahlnetz hinausgehoben werden konnten. Es geschah dies namentlich da, wo die Gürtel näher beisammenstanden und zu hoch gepflästert waren, wodurch der Wellenschlag verstärkt und in dem noch verkolkten Flussbett bis zum nächsten Gürtel fortgesetzt wurde.

¹) Es sei bemerkt, dass die «Chemische Thermo-Industrie» in Essen (Ruhr) den verschweissten Schienenstoss nach dem bekannten Goldschmidtschen Verfahren (Erzeugung hoher Temperaturen durch Verbrennen von Aluminium) herstellt. (S. Schweiz. Bauztg. Bd. XXXIV, S. 21.)

Ein anderer kleiner Defekt zeigte sich, wie schon oben berührt, darin, dass die Gürtel (mit Ausnahme der zwei ersterstellten) nicht ganz so hoch an die Dammkrone geführt worden waren, als anfänglich vorgesehen war. Dass Humuserde und Sand dem fliessenden Wasser ohne Deckschutz nicht Widerstand leisten können, ist klar und es müssen die kleinen Verluste an Ackererde eben ersetzt und dann rasch besät werden. Ebenso verlangen die noch nicht planierten obersten fünf Zwischenfelder noch die Auffüllung und zweite Faschinierung, um Begrasung zu empfangen. Auch diese noch unvollendeten Felder sind durch den Faschinen-Unterbau vollständig unbeschädigt geblieben.

Einen überraschenden Beleg für die ausserordentliche Solidität des neuen Pfahl- und Faschinenbaues lieferte ausser dem obersten auch der am untern Ende stehende letzte Gürtel. An seinem unmittelbaren Fuss hatte das Hochwasser einen Kolk von 21/2 m Tiefe ausgewühlt, so dass der betreffende Gürtel sozusagen in freier Luft über diesem Abgrund schwebte. Trotzdem wich er nicht von der Stelle und blieb, vielleicht unter Verlust einiger Faschinen des Vorbaues, ruhig stehen. Es muss noch bemerkt werden, dass die Herstellung dieses Gürtels in Folge hohen Wasserstandes und starker Strömung mit besondern Schwierigkeiten verknüpft und eine genaue Kontrolle über die Ausführung beinah unmöglich war.

Die chronologische Reihenfolge, nach welcher die Korrektionsarbeit, d. h. die Gürtelbildung, in Angriff genommen und durchgeführt wurde, war keine fortlaufende oder successive sondern eine irreguläre, den Umständen angepasste. Bei der Unsicherheit der Wasserverhältnisse wurde der schlimmste Punkt des Uferbruches zuerst bestellt und zwar, da eine ziemliche Wassermasse abgedämmt werden musste, nur die linke Hälfte des Profils. Es fand sich hiebei die Gelegenheit, unsere neue Stauvorrichtung mittels stehenden Pendelwehrs und für die jenseitige Vertiefung den neuen Wühlapparat zum ersten Mal zu erproben und deren Zweckmässigkeit zu konstatieren.

Die grössten Kosten in der Gürtelanlage verursacht die Grabenaushebung und es wird in dieser Beziehung der

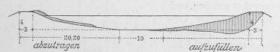


Fig. 10. Vor der Korrektion. - Grösste Bruchstelle, 1:800.

Ersatz der Handarbeit durch eine viel raschere und billigere Arbeitsmethode nicht nur als sehr wünschenswert, sondern auch als leicht ausführbar vorgesehen.

Die Erdarbeit zur Abhebung des rechten Ufergeländes (Fig. 10), welche anfänglich auf etwa 8000 m3 berechnet worden

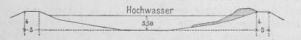


Fig. 11. Wiesenkorrektion. - Grösste Abtragung. I:800.

war, (und bei frühern Aufnahmen noch viel höher) betrug in Wirklichkeit kaum 5000 m3 (Fig. 11), so dass der grosse Fehlbetrag auf dem linken Ufer durch fremde Zufuhr zu decken war. Als brauchbare Neuerung im Erdtransport von Ufer zu Ufer oder zur Steinfüllung der Flussohle erwies sich derjenige mittels Drahtseil, an dem ein Segeltuchbehälter abgelassen und durch einen Federdruck an beliebiger Stelle entleert werden kann. Die Vorrichtung ist höchst einfach, und wo Rollwagengebrauch ausgeschlossen ist, sehr zu empfehlen.

Mit Ausnahme der ersten drei Wochen, in denen das ziemlich hohe Wasser hinderlich war, und viele Arbeit erforderte, war Witterung und Wasserstand bis gegen Mitte Oktober äusserst günstig, so dass Brücken und fliegende Stege meistens an Ort und Stelle gelassen und die Arbeiten ununterbrochen fortgesetzt werden konnten.

Die Kosten. Wir haben oben schon bemerkt, dass bei der Kostenfrage einer Korrektion zu berücksichtigen ist das Mass der Vollendung, welches über die Sicherheitsfrage hinausgehend, als Tribut der Aesthetik gefordert wird.

Die eigentlichen Nettokosten der Gürtel betragen:

(36 m lang 3 m breit) an

Arbeitslöhnen 400 bis 480 Fr. Pfahl und Faschinenholz 140 " 160 " Draht und Heftklammern . , . . 10 " 15 " Steinpflästerung Steinpflästerung 130 " 180 " Füllsteinen zur Unterlage 15 " 695 bis 855 Fr.

im Durchschnitt 771 Fr.

Wird das Gefäll der Wiese also mit etwa 21/2 0/00 als Vergleichgegenstand und eine Anlage von 28 Gürteln auf den km angenommen, so ergiebt sich an Gesamtkorrektionskosten ohne Erdarbeit und Allgemeines ein Betrag von 21580 Fr. oder von 21,50 Fr. per lfd. Meter Flusslänge.

Fasst man die Flussregulierung des freien Feldes ins Auge, so wird kein Grund vorhanden sein, der Schönheit luxuriöse Opfer zu bringen, sobald die Sicherheit selbst es nicht erfordert. Für Wasserläufe in bewohnter Gegend wird der Aesthetik mehr Rechnung getragen werden müssen und um so mehr getragen werden können, als die sanftgestreckten Böschungen des elliptischen Profils einem ganz bedeutenden Nutzungswert dienstbar gemacht werden können und man so die vermehrten Kosten der völligen Planie des Innenraumes wieder einzubringen im stande ist.

Im vorliegenden Fall haben sich die Kosten der Korrektion durch den enormen Ausfall des Materials und anderweitige Zufälligkeiten ungefähr verdoppelt. Immerhin stellt sich die Ersparnis gegenüber der trapezförmigen Streichwuhrmethode durch Quadermauerung als eine sehr grosse heraus. Wahrscheinlich dürften, vielleicht sogar sollten bei Gewässern ohne Geschiebeförderung die Gürteldistanzen grösser bemessen werden.

Schlussfolgerungen. Wie in der menschlichen Arbeit nur die Erreichung des relativ Guten, nicht des absolut Vollkommenen angestrebt werden kann, so unterliegt auch der Pfahlbau als Wildbach- und Flussbautechnik dem gleichen Schicksal der nur relativen Vollkommenheit, sei es für sich selbst, sei es gegenüber oder neben ähnlichen Systemen gleicher Bestimmung. Diese Qualifizierung dürfte jedoch, wenn berechtigt, auch vollkommen genügen, um derselben die ihr gebührende Stellung in der betreffenden Fachwissenschaft zuzuerkennen.

Die Thatsache, dass der Begründer dieser Technik nur Autodidakt ist und der Salbung mit dem Oele fachwissenschaftlicher Schulung und Beglaubigung ermangelt, kann den realen Wert dieser Technik um so weniger beeinträchtigen, als er sich im weitläufigen übrigen Teil des betreffenden Gebietes durchaus keine Kompetenz, geschweige denn Ebenbürtigkeit des Urteils mit dessen Vertretern, anmasst, während in diesem speciellen Teil eine 30-jährige Erfahrung und Beobachtung ohne Zweifel ein Moment bildet, welches auch dem sorgfältigsten theoretischen Studium gegenüber schwer ins Gewicht zu fallen vermag.

Es mag zur vollen Beruhigung derjenigen Herrn Fachgenossen, welche Versuche mit genannten Principien und ihrer Technik zu machen wünschen, noch hervorgehoben werden, dass mehrere der hervorragendsten Ingenieure des Inlandes sich schon bei erster Kenntnisnahme derselben in völlig zustimmendem Sinn darüber ausgesprochen, und dass ausländische Autoritäten auf Grund langjähriger Prüfung der Baumethode ein Urteil darüber fällten, welches dem Pfahlbau eine zwar langsam und mühevoll zu erringende aber unbegrenzte Zukunft der Anerkennung verspricht.

Nachtrag zur "Wiesenkorrektion".

Es mag erwünscht sein, nach Jahresfrist seit der Vollendung dieser Korrektion noch einen kurzen Blick auf den Bestand und das Resultat derselben zu werfen.

Diejenigen Teile des Flussinnern, welche während der letztjährigen Korrektionszeit ganz vollendet, d. h. mit Grasnarbe versehen werden konnten, und welche also allein im stande sind, ein definitives Resultat zu veranschaulichen, lassen an Schönheit und Sicherheitsgewähr nichts zu wünschen übrig. Die dichtgeschlossene pelzartige Rasenbekleidung mit etwa 1/2 m hohen Halmen ist von einer Gleichmässigkeit, die einem Garten zur Zierde gereichen würde. Da dieses Gras schon in den ersten Monaten seines Daseins ein Hochwasser von über 21/2 m Höhe über sich hatte ergehen lassen müssen, so besteht kein Zweifel, dass dasselbe in jetziger Kraft und Dichtheit allen event. Angriffen gegenüber gewachsen ist und dem Wasser einen ausserordentlich ruhigen und glatten Ablauf gestatten wird. Leider ist Frühling und Sommer vorübergegangen, ohne dass man auf den übrigen Böschungsflächen den provisorischen Humusschutz mittels Tannreiser und Steinbeleg durch Grassaat ersetzt hat, wie es notwendig gewesen und selbstverständlich in Aussicht genommen worden war.

Die 15 Pfahlgürtel, - das eigentliche Flussicherungs-

werk - sind in ausgezeichnetem Zustand.

Die ehemals stark verkolkte Soble ist beinah ganz ausgeglichen. Kleine Vollendungsarbeiten sind leider nach meinem Abgang gänzlich unterblieben und unterliegen nun natürlich der nie ruhenden Arbeit des Wassers im entgegengesetzten Sinne des Interessenten.

Die elektrische Vollbahn Burgdorf-Thun.

Von E. Thomann, Ingenieur.

Wir treten im Folgenden auf die einzelnen Bestand-

teile der elektrischen Anlage näher ein.

Kraftstation. Ohne einer ausführlichen Beschreibung der elektrischen Anlage des in mancher Hinsicht interessanten Kanderwerkes vorgreifen zu wollen, mögen nur kurz die hauptsächlichsten Daten angeführt werden. Die Betriebskraft wird gewonnen durch teilweise Ableitung des Kanderflusses oberhalb der Spiezwyler Brücke. Die abgeleitete Kander durchfliesst zunächst ohne Druck einen Stollen und tritt alsdann in eine schmiedeiserne Druckrohrleitung ein, welche das Wasser dem am linken Ufer des Thunersees in der Nähe von Spiez gelegenen Tur-binenhause (Fig. 5) zuführt. Die Wassermenge beträgt normal 7 m3 pro Sek., minimal 4 m3, das Gefälle 63 m. Der vollständige Ausbau wird einschl. Reserve sechs Einheiten zu 900 P. S. umfassen. Die horizontalachsigen Turbinen, (Escher, Wyss & Cie.) sind mit Dreiphasen-Generatoren (Brown, Boveri & Cie.) gekuppelt. Jeder Generator besitzt eine direkt angebaute Erregermaschine, deren Magnetfelder ihrerseits separat von zwei kleinen, durch besondere Turbinen angetriebenen Gleichstrommaschinen erregt werden. Der von den Generatoren mit einer Spannung von 4000 Volt bei 40 Perioden erzeugte Strom wird teilweise direkt mit dieser Spannung in die umliegenden Ortschaften weitergeleitet, zum grösseren Teile jedoch durch stationäre, in einem separaten Raum des Maschinenhauses befindliche Transformatoren auf 16 000 V. hinauf transformiert, um nach den Städten Bern und Burgdorf und zur B. T. B. geleitet zu werden. Die ganze Anlage ist in ruhigen (Licht-) und unruhigen (Bahn- und Kraft-) Betrieb geteilt, und es ist die Schaltanlage so eingerichtet, dass ein jeder der Generatoren sowohl auf ruhigen, als auch auf unruhigen Betrieb arbeiten kann, wodurch die Reserve vereinfacht wird. Die Turbinen besitzen hydraulische Regulatoren, ausserdem sind besondere Vorkehrungen getroffen, um eventuelle Wasserstösse in der Rohrleitung auszugleichen.

Hochspannungsleitung. Von der Kraftstation bis zur Stadt Thun ist die Hochspannungsleitung (16 000 V.) auf eisernen Gittermasten geführt, welche in Abständen von durchschnittlich 50 m auf betonierten Fundamenten stehen. Diese Maste tragen beim gegenwärtigen Ausbau: drei

Drähte für die Stadt Bern (Kraft), zwei Drähte für die Stadt Bern (Licht), drei Drähte für die Stadt Burgdorf

Die elektrische Vollbahn Burgdorf-Thun.

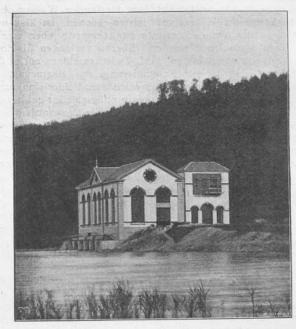


Fig. 5. Kraftstation Kanderwerk.

(Kraft, sowie Licht durch Umformung auf Gleichstrom) und drei Drähte für die B. T. B. Jede dieser Fernleitungen ist in der Kraftstation einzeln ausschaltbar.

In der Nähe von Thun zweigt die Berner-Leitung ab, während die Burgdorf-Stadt- und die B. T. B.-Leitungen gemeinsam weitergeführt werden, und zwar auf hölzernem Gestänge. Für die Bahnleitung war ursprünglich Führung an besondern, mit den Stangen der Kontaktleitung verstrebten, und auf Bahngebiet stehenden Masten vorgesehen. Diese Anordnung wurde von der ausführenden Firma besonders deshalb stark befürwortet, weil einerseits die Erwerbung des Durchgangsrechtes für eine besondere Leitung weggefallen und ausser-

dem die Beaufsichtigung und Instandhaltung der Leitung erheblich erleichtert worden wäre. Da jedoch zu diesem Vorschlage die Zustimmung der Behörden nicht erlangt werden konnte, so musste für die Hochspannungsleitung ein besonderes Tracé gewählt werden, wobei darnach getrachtet wurde, möglichst Die Hochspannungslei- für die Stadt Burgdorf. 4, 5, 6: Drähte zu 5 mm Drm. für die B. T. B.

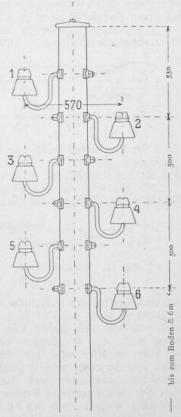


Fig. 6. Anordnung der Hochspannungs-Leitung. 1:20.

Burgdorf (Fig. 3 in Nr. 1) hat eine totale Länge von rd. 48 km; sie besteht aus drei Kupferdrähten von