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INHALT: Graphische Methode der Berechnung des flachen Fuss-

ringes räumlicher Fachwerke. — Das Elektricitätswerk der Societe des

Forces motrices de l'Avancon in Bex (Waadt). IV. (Fortsetzung statt Schluss).

— Wettbewerb für eine evangelische Kirche in Rorschach. I. —¦ Mis-
cellanea: Solothurn-Münster-Bahn. Asynchrone Motoren auf der Pariser

Weltausstellung. Magnalium. Grosse Dampfmaschinen. Eine elektrische
Eisenbahn von Kairo nach den Pyramiden von Gizeh. Brennbarer Beton.

— Konkurrenzen: Ueberbauung des Bellevaux-Areals in Lausanne. Bauten
für die Basler Gewerbe-Ausstellung 1901. — Nekrologie: f Felix Jasinski.
— Vereinsnachrichten: G. e. P.: Stellenvermittelung.

Graphische Methode der Berechnung
des flachen Fussringes räumlicher Fachwerke.

Von f Professor Felix Jasinski in Petersburg.1)

Fig. 1.

EN d

Fig. 2.

§ 1. Es ist bekannt, dass jegliches System steifer Stäbe2),
welches ein in der Ebene oder im Räume liegendes,
geschlossenes, mit Gelenken in den Stützpunkten versehenes
Polygon bildel, geometrisch veränderlich ist, d. h. bei
konstanter Länge der Stäbe seine Winkel verändern kann.

Wenn man aber das Polygon

der Bedingung unterordnet,
dass alle seine Eckpunkte ohne
Reibung längs unbeweglichen
Graden aa, hb.... (Fig. 1), ohne
sich von ihnen zu entfernen,
gleiten können, so wird dieses
System geometrisch unveränderlich

und statisch bestimmbar.3)
Mit andern Worten, dieses System behält das Gleich¬

gewicht unter Einwirkung jeglicher,
auf die Eckpunkte des Polygons
wirkender, aktiver Kräfte, wobei die
Spannungen in den Stäben und die
Reaktionen der Stützpunkte aus den
Gleichungen der Statik bestimmt
werden können.

Die analytische Berechnung des
obigen Systems ist im Princip mit
keinen besonderen Schwierigkeiten
verknüpft, erfordert jedoch in

Wirklichkeit bei grosser Seitenanzahl recht
komplicierte Berechnungen.

In vorliegender Abhandlung geben
wir eine rein graphische Methode der
Berechnung eines in einer Ebene liegenden,

mit Gelenken und gleitenden
Stützpunkten versehenen Polygons und eine übersichtliche
Methode der Kontrolle, ob die Determinante der Gleichungen

des Gleichgewichtes eines derartigen

Polygons nicht gleich Null
sei. Zum Schluss führen wir noch
einige Daten an, wie man die
Gleitlinien des mit Scharnieren
versehenen Polygons richten muss,
um Spannungen in der auf dem
Polygon basierenden Konstruktion
in Folge gleichmässiger
Temperaturveränderung zu verhüten.

§ 2. Betrachte man das in der
Fläche liegende, mit längs den Geraden aa, bb gleitenden
Gelenken versehene Polygon (Fig. 4^). In den Eckpunkten
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») Leider ist der Verfasser vor der Drucklegung obigen
Artikels gestorben. (Siehe den Nachruf auf Seite 198 dieser Nummer).

2) Mit mehr als drei Seiten.

") Mit Ausnahme einiger besonderer Fälle, in denen die Determinante

der Gleichgewichts-Gleichungen gleich Null ist. So zum Beispiel:
Bei Anordnung der Gleitlinien in der Richtung der Bisektoren in einem

regelmässigen Polygon mit gerader Seitenanzahl (Fig. 2). Oder bei An-

- Ordnung in einem beliebigen, in der Ebene oder im Räume liegenden

Polygon der Gleitlinien aa, bb (Fig. 3) senkrecht zu den Flächen

O Nv O N% welche sich längs einer gemeinsamen Geraden O schneiden;

die Determinante ist im letzteren Falle gleich Null, wie daraus hervorgeht,

dass das Moment der Stützpunkts-Reaktionen, welche in den

Flächen ONx, O iV2.... liegen, in Beziehung auf die Achse O gleich Null

ist, was für beliebige äussere aktive Kräfte im allgemeinen nicht zutrifft.

in der Ebene des Polygons, senk¬

wirken die Kräfte Rv R2 *) in beliebiger Richtung im
Raum; man zerlege jede dieser Kräfte in zwei Komponenten
Vt, V2 senkrecht zur Ebene des Polygons, und Plt P2....
in der Ebene des Polygons. Die Komponenten Vl,V2....
wiiken direkt auf die Auflager, die Komponenten P1, P2

rufen die Spannungen St, S2... in den Stäben I, II und die
Reaktionen Nt, N2.
recht zu den Gleitlinen aa, bb.... hervor.

Das Polygon kann man als
ein freies, in einer Ebene
liegendes und mit Gelenken
versehenes System betrachten,

welches sich in
Gleichgewicht bei Einwirkung
folgender äusseren Kräfte
befindet: bekannter Px. Pa....
und der Grösse nach
unbekannter Ni, N2.... Ein
derartiges Polygon ist
augenscheinlich ein Seilpolygon für
das System von Kräften P1(

Nlt P2,N2....
Benutzen wir diese Eigenschaft unseres Polygonsfzur

Bestimmung der Reaktionen Nl7 N2... und der Spannungen

Fig. 4B.
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Gleitlinjen aa, bb

Fig. 4C

Setzen wir fürs erste den Fall, dass keine der
perpendikulär den im selben Knoten¬

punkte sich treffenden Stäben

sei, oder mit anderen
Worten, dass keine der
Reaktionen in die Richtung eines
in diesem Punkte angeschlossenen

Stabes falle.

Fig. 4D.
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In diesem Falle genügt es zur Konstruktion des

entsprechenden WarinJon''sehen Kräfte-Polygons samt Pol und

Strahlen, wenn eine der Spannungen S in einem beliebigen
Stabe bekannt ist.

Aus dem beliebig gewählten Pol 0 (Fig. 4 B) ziehe

man unbegrenzte Strahlen Ol, 0 11.... parallel den Stäben
des Polygons. Setze man willkürlich den Fall, dass der
Stab I gedehnt und die Kraft in ihm gleich O A sei.

Zur Konstruktion des Kräftepolygons ziehe man aus

') In Fig. 4 A sind die Projektionen P,

Rt, P2 auf die Ebene des Polygons angegeben.

der Kräfte
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Punkt A (Fig. 4 B) eine den Strahl O II schneidende Parallele

zur Resultierenden der Kräfte P2 und A^.
Zu diesem Zweck trage man1) aus Punkt A einen der

Kraft P2 parallelen, gleich langen und der Richtung nach
gleichnamigen Vektor auf, aus seinem Endpunkte ziehe man
eine 0II schneidende Parallele zu N2. Darauf ziehe man
aus dem Schnittpunkte der Richtungen O II und N2 einen
der Kraft P3 gleichen, parallelen und gleichnamigen Vektor
und aus seinem Endpunkte eine den Strahl 0 III schneidende

Parallele zu Ns. Führt man eine derartige
Konstruktion weiter, so langt man zum Schluss beim Px an;
die aus seinem Endpunkte gezogene Parallele zu h\ muss
den Strahl 0 I im Ausgangspunkte A schneiden, da das
Polygon der äusseren aktiven und passiven Kräfte
Pj, JVj, P2, AT, ein geschlossenes sein muss.

Wenn die Spannung im Stabe I wirklich dem
aufgetragenen Vektor 0 A gleich wäre, so würde unser
Kräftepolygon sich im Punkte A schliessen. Aber die Spannung
im Stabe I ist uns unbekannt, wir nahmen sie willkürlich
und unrichtig als gleich 0 A an, folglich kann auch die aus
dem Endpunkte des Vektors P1 zu Ar2 gezogene Parallele
den Strahl 01 nicht in A schneiden, sondern schneidet
ihn (Fig. 4 B) in B.

Augenscheinlich ist die eben gefundene Lösung falsch.
Setzt man aber im Knotenpunkt 2 noch eine dem Abschnitt
BA gleiche, parallele und in der auf Fig. 4 B bezeichneten

Richtung wirkende äussere Kraft an, so wäre das
Kräftepolygon geschlossen, unsere Konstruktion wäre die
vollständige Lösung der Aufgabe für diesen Fall, und es

wäre die Spannung in Stab I gleich 0 B.
Die Richtung des Wirkungssinnes der Stabkraft I

auf den Knotenpunkt 2 wird aus dem geschlossenen
Kräftepolygon aller auf diesen Knotenpunkt wirkenden Kräfte
BA, P2, N2, II, OB (Fig. 4 B) bestimmt.

Um zur gesuchten Lösung zu gelangen, bemerke man.
dass die Spannungen der Stäbe und die Reaktionen der
Auflager lineare Funktionen der aktiven Kräfte sind, folglich

ist die Spannung im Stabe I bei Einwirkung der
Kräfte P1, P2.... und BA gleich der geometrischen Summe
der Spannungen bei Einwirkung der Kräfte Pt, P2 und
der Spannung bei Einwirkung der Kraft B A. Also ist
die gesuchte Spannung im Stab I gleich der geometrischen
Differenz der obigen Spannung O B und der Spannung im
Stab I, welche durch die alleinige Einwirkung der äusseren
Kraft B A im Knotenpunkt 2 hervorgerufen wurde. Zur
Bestimmung letztgenannter Spannung ziehe man aus
beliebigem Pol 0' (Fig. 4 C) den Seiten des Vielecks parallele
Strahlen. Auf dem Strahl I trage man einen beliebigen
Abschnitt 0' A' auf, von dessen Endpunkte ziehe man die
Gerade N'2, welche den Strahl Ö II schneidet, darauf ziehe
man Ng bis O'lIIu. s. w.; schliesslich ziehe man N', welche
den Strahl 0' I in B' schneidet. Es ist klar, dass der
Vektor 0' B' die Spannung im Stab I bei Einwirkung
der einzigen aktiven Kraft B' Ä auf den Knotenpunkt 2 in
angegebener (Fig. 4 C) Richtung darstellt.

Die aktive Kraft B A würde in Stab I eine Spannung
hervorrufen, welche sich zu 0' B' so verhalten würde, wie
B A zu B' A': diese Spannung kann durch Konstruktion
der vierten Proportionalen bestimmt werden (Fig. 4 D).
Die gefundene Grösse 0' B" muss von 0 B subtrahiert
werden, da im gegebenen Falle die Kraft B A im Stab I,
ebenso wie die Kraft OB, Zugspannung hervorruft, wovon
man sich leicht aus dem Polygon der auf den Knotenpunkt

2 wirkenden Kräfte B' Ä, N'2, D' Ö', 0' B' (Fig. 4 C)
überzeugen kann. Trägt man auf Fig. 4 B den Abschnitt
3 C 0' B' auf, so findet man, dass die gesuchte Spannung

im Stab I gleich 0 C ist. Wiederholt man die obige
Konstruktion des Kräftepolygons, vom Punkte C ausgehend,
so erhält man die endgültige, gesuchte Lösung in der
Form eines Diagramms, welches auf der Fig. 4 B mit
starken Linien bezeichnet ist. Den Spannungen in den
Stäben gleichen die Längen der entsprechenden Strahlen

') In Fig. 4 B in punktierten Linien ausgeführt.

und die Reaktionen der Auflager gleichen den Vektoren
Nlt N2... Zur Bestimmung, ob Druck- oder Zugspannung
im gegebenen Stabe herrschen, genügt es, die
ununterbrochene Richtung des Polygons aller auf einen Knotenpunkt

wirkenden Kräfte zu betrachten. So herscht zum
Beispiel im Stab III Zugspannung, was aus dem geschlossenen

Polygon (Fig. 4 B) aller auf den Knotenpunkt 4
wirkenden Kräfte 0 III, P4, Nt, O IV zu ersehen ist.

Die gefundenen Spannungen in den Stäben und
Reaktionen der Autlager stellen die einzig mögliche Lösung
der Aufgabe dar, da diese passiven Kräfte samt den
gegebenen aktiven Kräften P den Gleichgewichts-Bedingungen
aller Knotenpunkte des Polygons genügen, und statisch
bestimmbare Systeme nur eine derartige Lösung zulassen.

§ 3. Die Konstruktion in Fig. 4 C zeigt, ob die
Determinante der Gleichgewichts-Gleichungen des Polygons
gleich oder nicht gleich Null ist, d. h., ob unser System
bei gewöhnlicher Richtung der Gleitlinien geometrisch
veränderlich ist oder nicht. Wir ziehen hier zuerst nur
den Fall in Betracht, in dem die Gleitlinien nicht
senkrecht zu den entsprechenden Seiten des Polygons sind. In
diesem Falle ist es leicht zu beweisen, dass: die
Determinante der Gleichgewichts-Gleichungen eines mit
Gelenken versehenen Polygons gleich-Null ist,-falls die Punkte
B' und Ä (Fig. 4 C) einander decken, andernfalls ist sie
nicht gleich Null.

Das Diagramm in Fig. 4 C stellt die Spannungen
in den Stäben und die Reaktionen der Auflager unter
Einwirkung auf den Knotenpunkt 2 einer einzigen aktiven,
in die Richtung des Stabes I fallenden und B' A gleichenden
Kraft dar. Wenn der Punkt B' den Punkt A' decken würde,
so würde die Null gleichende Kraft B' Ä endlich grosse
Spannungen in den Stäben und endlich grosse Reaktionen
der Auflager hervorrufen'); folglich würde die in dieselbe
Richtung fallende, auf denselben Knotenpunkt 2 wirkende
und nicht Null gleichende Kraft K um so viel Mal
grössere Spannungen und Reaktionen, wie die für die Null
gleichende Kraft gefundenen in den Stäben und Auflagern
hervorrufen, als die Kraft K grösser wie Null ist, d. h.
unendlich grosse. Es ist klar, dass das System in diesem
Falle beweglich und seine Determinante gleich Null ist.

Zum Beweis, dass das gegenseitige Nichtdecken der
Punkte Ä und B' ein genügendes Kennzeichen eines von
Null verschiedenen Wertes der Determinanten der
Gleichgewichts-Gleichungen des Polygons ist, genügt es zu zeigen,
dass bei obigem Nichtdecken eine beliebige, auf beliebigen
Eckpunkt, zum Beispiel 4, wirkende aktive Kraft Q endlich
grosse Spannungen in den Stäben und Reaktionen in den
Auflagern hervorruft.

Fällt die Kraft O in die Richtung der Stützpunkts-
Reaktion N4, so überträgt sie sich direkt auf den Stützpunkt

4, ohne die Stäbe des Vielecks zu beanspruchen,
folglich genügt es, nur den Fall zu betrachten, in dem die
Kraft O nicht in die Richtung A/4 fällt.

Aus beliebigem Pol 0,
(Fig. 5) ziehe man - Strahlen,
parallel den Seiten I, II....
des Polygons (Fig. 4 A), trage
0, B, 0' B' (Fig. 4 C) auf,
ziehe aus. B, eine zu A^ Parallele

bis 0, II, darauf eine
Parallele zu N3, welche 0, III
im Punkte C, schneidet. Aus
demselben Punkt B, ziehe
man eine Parallele zu N, bis
0, IV und darauf, aufeinanderfolgend,

die Parallelen zu N6
bis O, V und zu N5 bis 0, IV.
Aus den Punkten A, und C,

ziehe man Parallelen zu Ar4

und Q. welche sich im Punkte b schneiden. Das derartig
konstruierte Diagramm stellt die Lösung der Frage für

') Selbstverständlich muss der beliebig gewählte Punkte nicht den
Pol O decken.

Fig

fflYI

Ne
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die auf den Eckpunkt 4 wirkende, in die Richtung Q
fallende und dem Abschnitt C, b gleichende aktive Kraft Q'
dar. Die gesuchten Spannungen in den Stäben und die
Reaktionen der Stützpunke bei Einwirkung der Kraft Q
verhalten sich zu den gefundenen, wie Q sich zu Q_' verhält.
Folglich sind die gesuchten Spannungen und Reaktionen
bestimmt und endliche Grössen bei endlichen Werten für
Q, was auch zu beweisen war.

§ 4. Betrachten wir jetzt den Fall,
in dem eine oder mehrere
Stützpunkts-Reaktionen AT in die Richtung
eines im selben Stützpunkt angeschlossenen

Stabes fallen. Hier können drei
Fälle vorkommen: 1. Alle in die
Richtung der Stäbe fallenden
Reaktionen fallen mit den Stäben zusammen,

welche in Beziehung auf den
Stützpunkt in der Richtung der
Bewegung des Uhrzeigers liegen (Fig. 6)
oder 2. mit den Stäben, die in der
entgegengesetzten Richtung liegen
(Fig. 7) oder 3. mit den Stäben, welche

teilweise in der einen, teilweise
in der andern Richtung liegen (Fig. 8).

Beweisen wir zuerst, dass im letzten

Falle die Determinante der
Gleichgewichts-Gleichungen gleich Null ist.
Man setze den Fall, dass nur auf
den Eckpunkt 4 (Fig. 8) eine aktive
Kraft Q wirkt. Aus den Gleichgewichts-
Bedingungen für den Knotenpunkt 3

folgt, dass die Spannungen II und III
und die Reaktion Ns einzeln gleich
Null sind, da die Kräfte II und N3 in
einer und derselben Geraden, die mit
der Richtung der Kraft III nicht
zusammenfällt, liegen. Wenn die aktive
Kraft Q nicht mit der Richtung IV
zusammenfällt, so ist das

Gleichgewicht des Knotenpunktes 4 unmöglich, folglich ist die
Determinante der Gleichgewichts-Gleichungen des Vielecks
gleich Null.

Im ersten und zweiten Falle wird die Aufgabe nach
den allgemeinen Regeln gelöst, jedoch mit bedeutenden
Vereinfachungen.

Das Polygon (Fig. 9) gehöre zum zweiten Falle.
Man fange die Konstruktion des Diagramms vom Stütz-

Fig. q.

Fig

Ni

Flg.

.'N6

\ VI

F2^'\K
Ni B»5 \

\w / \ 7 »*i' m
N* /*

.-"Na

BA)

punkte 2 an, dessen Reaktion N2 in die Richtung des
Stabes I fällt. Setze man eine beliebige Spannung O A
im Stabe I voraus, ziehe die Linien P2, A^, P3 und finde
den Punkt B. Es ist nicht schwer zu beweisen, dass die
wirkliche Spannung im Stabe I gleich OB ist; wenn man
die Konstruktion vom Punkte B beginnt, so wird sich das
Diagramm schliessen. Und wirklich: ziehe man von dem
Punkt B die Gerade B C, welche gleich lang und parallel
A D ist, und aus ihrem Endpunkte C ziehe man eine Parallele
zu A/2, so wird die letztere die Gerade DE decken und
0II im Punkt E schneiden, folglich ist der weitere Teil
des -Diagramms mit dem vorher Gefundenen identisch und
das Diagramm im Punkte B geschlossen.

§ 5. In Betreff der Unbeweglichkeit und statischen
Bestimmbarkeit eines mit Gelenken versehenen Polygons
können die Gleitlinien beliebiger Richtung sein, wenn nur
die Determinante der Gleichgewichts-Gleichungen nicht
gleich Null ist. Jedoch hängt die Zweckmässigkeit des
Systems von der gelungenen Wahl der Gleitlinien ab.

Eine der Hauptbedingungen, welcher eine gelungene
Anordnung der Gleitlinien genügen muss, ist diejenige, dass
das Polygon die Möglichkeit hat, bei gleichmässiger
Temperaturveränderung seine Form, bei Beibehaltung der
Kongruenz, zu verändern. Bekanntlich erleiden statisch bestimmbare

Konstruktionen keinerlei zusätzliche Beanspruchungen
in Folge von Temperaturwechseln, gleichgültig, ob die
Auflager Veränderungen der Form ohne oder mit
Beibehaltung der Kongruenz zulassen; folglich könnte es
unnütz erscheinen, für unser Vieleck" als statisch bestimmbares

System Auflager zu konstruieren, welche die Erhaltung

der Kongruenz sichern. Jedoch dienen die mit
Scharnieren versehenen Fussringe als Basen für Konstruktionen,
welch fast niemals statisch bestimmbare Systeme
darstellen.

Die im Räume liegenden Systeme von Stäben, wie
Kuppeln, Türme und dgl., stellen in Wirklichkeit keine statisch
bestimmbare Systeme im strengen Sinne dar, sogar wenn
sie der bekannten Bedingung der statischen Bestimmbarkeit1)

3Ä v ~f- m genügen, da in den Knotenpunkten statt
wirklicher Gelenke steife Verbindungen angeordnet werden,
welche eine in allen Richtungen freie Bewegung nicht
zulassen. Umsomehr sind die Systeme mit steifen
Verbindungen, welche der Bedingung 3k < v X m genügen, statisch
unbestimmbar.

Es ist klar, dass, wenn die Auflager des Fussringes
seine Formveränderung bei Beibehaltung der Kongruenz
zulassen, alsdann jeder auf dem Fussringe ruhende Bau,
welcher aus einem gleichmässigen isotropen Material besteht,
das denselben Dehnungscoefficient hat, wie der Fussring,
sich frei dehnen kann, ohne bei gleichmässiger Temperaturveränderung

zusätzlichen Druck auf die Auflager auszuüben

und folglich auch ohne
Zusatzspannungen zu erleiden.

Die einfachste Art der Anordnung

der Gleitlinien AÄ, BB'

(Fig. 10), welche die Erhaltung der
Kongruenz des Polygons ermöglicht,
ist die, dass man sie alle auf einen
beliebigen Punkt O richtet. In
diesem Falle behält das Polygon nicht
nur seine Kongruenz, sondern

auch den Parallelismus der Seiten. Allein die
konstruierten Diagramme zeigen, dass eine derartige
Anordnung der Gleitlinien unvorteilhaft ist, da geringe aktive
Kräfte grosse Spannungen in den Stäben hervorrufen.

In letzterer Beziehung wird es vorteilhafter, die
Gleitlinien AA', BB'.... (Fig. 11)
unter gleichen Winkeln zu, aus
einem beliebigen Punkte O aus-

3 gehenden Geraden anzuordnen.
Mittels elementarer Erwägungen
ist es leicht nachzuweisen, dass

derartig angeordnete Gleitlinien
Veränderungen der Form des

Polygons bei Beibehaltung der
Kongruenz zulassen.

In der elementaren Geometrie D' cryT)

wirdbewiesen.dass man im allgemei- /
nen für jegliche drei Ecken eines l
Polygons beliebige Gleitlinien wählen, und auf Grund dieser
für die andern Ecken die Richtungen der Gleitlinien, welche
Veränderungen des Polygons bei Beibehaltung der

Kongruenz zulassen, bestimmen kann. Diese allbekante einfache
Konstruktion führen wir hier nicht an.

Fig. lo.

C'.'

Fig. ®&
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') Die verdreifachte Zahl der Knotenpunkte gleicht der Summe aus
der Zahl der Stäbe und der zu bestimmenden Komponenten der
Stützpunkts-Reaktionen bezw. Anzahl der Gleitbahnen in den Auflagern.
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In einem regelmässigen Polygon ist es am Besten,
die Gleitlinien unter gleichen Winkeln zu den Radien, d. h.
unter gleichen Winkeln zu den Seiten des Polygons
anzuordnen.

§ 6. Im allgemeinen ist es wünschenswert, die Gleitlinien

derartig anzuordnen, dass in den Stäben Zugspannung
herrsche und dabei eine möglichst geringe.

Die hier angeführte graphische Methode zeigt in
übersichtlicher Anordnung, in wiefern die "gewählten
Richtungen der Gleitlinien in dieser Beziehung genügen. Wenn
die Spannungen gross sind, so fliesst das Diagramm
(Fig. 4 B), auf dem diese Spannungen proportional den
Längen der aus dem Pol 0 ausgehenden Strahlen sind.
auseinander und findet auf dem Blatt nicht genügend Raum.

Bei der Anordnung der Gleitlinien muss man auch
die möglichste Verminderung des horizontales Schubes in
den Auflagern auf den Mauern in Betracht ziehen. Zu
diesem Zweck ist es nützlich, die Gleitlinien möglichst
wenig von der Richtung der Normalen zu der cylindrischen
Umfangsfläche der Mauern oder der Bisektoren der
polygonalen Mauern abzulenken, wobei man jedoch beachten
muss, dass bei Aufeinanderfallen der Gleitiinien und der
Bisektoren eines regelmässigen Polygons mit gerader Seitenanzahl

die Determinante der Gleichgewichts-Gleichungen
gleich Null wird.

Das Elektricitätswerk der Societe des
Forces motrices de l'Avancon in Bex (Waadt).

Von K. A. Breuer, Ingenieur.

IV. (Fortsetzung statt Schluss.)
Der Betrieb der Centralstation wird besorgt durch einen

Obermaschinisten, seinen Stellvertreter und vier weitere
Maschinisten und Gehülfen. Ausserdem versieht ein Mann
die Besichtigung der Wehranlage und die Regulierung des
Wasserbedarfs. Die Anlage steht täglich 24 Stunden unter
Strom. Durch entsprechenden Wechsel der Maschinen wird
die erforderliche Reinigung und Besichtigung der Generatoren
und Turbinen erreicht. —

Hochspannungsleitungen. (Primärleitungsnetz.) Die
Hochspannungsleitungen sind durchwegs als blanke Luftleitungen
verlegt. Für Kraft und Lichtkreis ist je ein Leitungsstrang
vorgesehen, an denen die Abzweigungen zu den Transformatoren

jeweilen parallel geschaltet sind. Längenausdehnung
und Kupferdrahtstärken sind aus dem Leitungsschema der
Fig. 22 ersichtlich. — Das Gestänge für die Fernleitung
besteht aus imprägnierten. Holzstangen von etwa 12 m Gesamtlänge

bei einer Kopfstärke von durchschnittlich 17 cm. Die
einzelnen Mäste sind etwa 36 m von einander entfernt und
ungefähr 2 m tief in die Erde eingegraben. Alle Stangen
tragen Schutzkappen aus Zinkblech. Als Isolator wurde eine
Porcellan-Dreifachglocke von 17 cm Höhe bei 11cm grösstem
Basisdurchmesser gewählt (bezogen aus der Porcellanfabrik
Hertnsdorf in Klosterlausitz, Sachsen), welche mittels des

jetzt üblichen „Metallcementes" mit der verzinkten Eisenstütze
vergossen ist. Die Isolatorenstützen sind direkt in die
Holzstangen eingeschraubt. Die Anordnung der Leitungen auf
dem Gestänge ist so getroffen, dass ganz oben die
Kraftleitung mit drei Leitern, darunter die Lichtleitung verläuft;
die vertikale Entfernung der Leiter beträgt 70—85 cm, die
Kraftleitung bildet im Querschnitt ein gleichseitiges Dreieck
von 70 cm Seitenlänge.

Der Drahtschutz für Wegübergänge und Schwachstromkreuzungen

ist grösstenteils im Doppelgestänge ausgeführt,
derart, dass dabei die Hochspannungsleitungen ringsherum
von Schutzdrähten umgeben sind, welche an Erde liegen.
Zum Schutze gegen direkten Blitzschlag der Primärleitung
sind die Stangen an exponierten Stellen mit Blitzableitern
versehen und diese mittels Kupferdraht geerdet. Unterhalb
der Primärleitung in etwa 1 m Abstand wurde für die Zwecke
des Elekticitätswerkes eine eigene Telephonleitung, bestehend
aus einer Hin- und Rückleitung aus Siliciumbronzedraht
montiert. Durch Kreuzung der Telephondrähte alle 300 m

ist dafür gesorgt, dass störende Induktionswirkungen aufgehoben

werden.
Die Lichtleitung am Hauptgestänge endet nördlich von

Bex beim letzten Transformatorenhäuschen. Die Kraftleitung,
aus 7,5 mm starken Kupferdrähten bestehend, führt für sich
allein, das ganze Rhonethal durchquerend, bis zur
elektrochemischen Fabrik in Monthey, wo ein Kraftbedarf von etwa
650 P. S. für zwei, an die Hochspannung von 5000 Volt

Das Elektricitätswerk in Bex (Waadt).
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Fig. 20. Ansicht eines Transformatorenhauses.

direkt geschaltete Synchronmotoren von je 300 P. S. und
verschiedene kleine asynchrone Motoren erforderlich ist.
Die Ueberführung dieser Leitung bei der Kreuzung mit der
Jura-Simplon-Bahn in der Nähe des Bahnhofes von Bex
erfolgt in üblicher Weise mittels solider, auf Beton fundierter
Gitterpfeiler. Die mit Blitzableitern versehenen Pylonen
und das die Hochspannungsleitungen vollständig umhüllende
Drahtschutznetz sind sorgfältig geerdet. Die primäre
Lichtleitung ist durchschnittlich für 5 °/o, maximal für 8 °/n Verlust,

die Kraftleitung für maximal 8 °/° Verlust berechnet,
wobei 500 kw allein in Monthey abgegeben Werden. Dieser
letztere Verlust fällt so ] gering aus infolge der durch
Verwendung der grossen Synchronmotoren bedingten induktionslosen

Leistung. Es wird dadurch noch der weitere, nicht
zu unterschätzende Vorteil j erzielt, dass die Lichttransformatoren

für Monthey direkt an die Kraftleitung geschaltet werden
können, was bei asynchronen Motoren von dieser grossen
Kapacität nicht gut möglich • gewesen wäre.

Die genannte Länge der verlegten Hochspannungsleitungen

beträgt rund 19,4 km einfacher Primärnetzentwicke-
lung, wovon für Licht allein 12 km mit 46 km Drahtlänge.
Das gesamte Kupfergewicht beläuft sich auf 11 /. Nimmt
man an, dass das verlegte Primärleitungsnetz einen Effekt
von 1300 P.S. überträgt — bei Vollbelastung und mit den
oben angegebenen Verlusten — so erhält man pro Pferdekraft
ein Kupfergewicht von 9,2 kg, also einen sehr niedrigen Wert.

Zur Speisung der elektrischen Trambahn an der Wagenremise

in Bevieux dient eine entlang der im Bau begriffenen
Zahnradbahn nach Gryon und Villars provisorisch verlegte
Luftleitung, bestehend aus zwei 9 mm starken massiven
Kupferdrähten, die später auf die Konsolmaste der Kontaktleitung

definitiv montiert werden.
Transformaiorenstalionen. Alle Transformatoren für Licht

und Kraft sind einzeln mit den erforderlichen Apparaten
in besonderen gemauerten Häuschen untergebracht. Um mit
Rücksicht auf die hohe Betriebsspannung das Einführen der
Hochspannungsleitungen möglichst zu beschränken, wurde
die Zahl der Stationen gering gehalten und mit grössern
Kupferquerschnitten in dem Sekundärnetz gerechnet. Die'
Grösse der in den einzelnen Stationen untergebrachten
Transformatoren richtet sich natürlich nach der Bedeutung, der
einzelnen Ortschaften und giebt hierüber das Leitungsschema
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