Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 33/34 (1899)

Heft: 5

Artikel: Le laboratoire de mécanique de l'Ecole polytechnique fédérale à Zurich

Autor: Recordon, B.

DOI: https://doi.org/10.5169/seals-21307

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Bei längeren Balken wird die Schalung durch untergestellte Pfosten vor dem Einschlagen geschützt. Zuerst wird am Boden eine dünne Schicht Beton aufgetragen. Hierauf werden die Stangen und Bügel eingelegt und dann folgt das Einbringen des übrigen Betons. Die Bügel werden hierbei mit der Hand leicht angezogen und in richtiger Lage erhalten, bis sie im Beton selbst genügenden Halt finden. Grosses Gewicht wird darauf gelegt, dass der Beton gut am Eisen haftet. Zu diesem Zwecke werden die Eisenteile mit Cementmilch oder dünnem Cementbrei überstrichen. Um möglichst dichten Beton und engen Anschluss an die Eisenteile zu erzielen, wird der Beton stets in schwachen Schichten eingebracht und auf das sorgfältigste festgestampft. Zum Stampfen verwendet man besondere, an den Enden rechtwinklig abgebogene Eisenstäbe

Zum Beton wird ausschliesslich feiner Kies (Gartenkies) verwendet. Das übliche Mischungsverhältnis ist 1:4 (etwa 350 kg Cement auf einen Kubikmeter Beton).

Dass die Eisenteile vor der Verwendung durchaus rein sein müssen, ist selbstverständlich. Auch der etwa vorhandene Rost sollte entfernt werden. Angestellte Beobachtungen haben gezeigt, dass sich zwar der Beton gut mit dem Rost verbindet, dass aber die Adhäsion des Rostes am Eisen ungenügend ist, so dass die Eisenstäbe bei starker Beanspruchung ins Rutschen kommen können, während der Rost am Beton haften bleibt.

Nach Versuchen von Bauschinger beträgt die Adhäsionskraft des Betons am Eisen 40–47 kg/cm^2 . Nimmt man die zulässige Inanspruchnahme des Eisens zu 1000 kg und die zulässige Adhäsionsspannung zu 10 kg an, so folgt, dass eine Stangenlänge gleich dem 25fachen Durchmesser genügt, um der Stange im Beton sicheren Halt zu geben. Denn die Adhäsionskraft beträgt in diesem Falle 10. π d.l, die Zugfestigkeit der Stange 1000. $^{1}\!\!/4\,\pi$ d^2 . Setzt man beide Werte einander gleich, so wird l=25d. Eine so grosse Adhäsionslänge ist nicht immer vorhanden; die gabel- oder hakenförmigen Enden der Stangen sollte man demnach, namentlich angesichts der Unvollkommenheit aller menschlichen Arbeit niemals bei Seite lassen.

Die Frage der Adhäsionskraft ist übrigens nach meiner Ansicht noch nicht genügend untersucht. Es scheinen sich unter Umständen an der Berührungsfläche chemische Vorgänge abzuspielen, die die Adhäsionskraft begünstigen. Eine allseitige sorgfältige Prüfung dieser Frage wäre daher zu begrüssen.

Ein grosser Vorzug der Hennebique-Bauwerke besteht in deren Zähigkeit. Bei richtiger Ausführung nimmt der Beton eine Konsistenz an, die an die des Filzes erinnert. Im Jahre 1894 wurde in Zürich eine Hennebique-Decke abgebrochen, die während der kantonalen Ausstellung als Boden eines Wasserbehälters gedient hatte. Die Decke besass eine Dicke von 12 cm und war in Abständen von 3 m durch Säulen unterstützt. Die Zerstörung dieser Decke verursachte unerwartet grosse Mühe; es waren 6—10 Schläge mit einer Zugramme nötig, um nur ein kleines Loch zu erzeugen.

Hiermit steht auch der Vorgang im Einklang, der sich bei Belastungs- und Bruchversuchen abspielt. Ein plötzlicher Bruch des Trägers oder der Decke ist so gut wie ausgeschlossen. Bei kleinen Belastungen biegt sich der Träger wie ein eiserner elastisch durch; bei Wegnahme der Last kehrt er vollständig in seine alte Form zurück. Wird die Belastung vergrössert, so stellen sich nach einiger Zeit an der Zugseite kleine Risse ein, die sich langsam erweitern und nach der Druckseite hin verlängern. In der Mitte der Spannweite verlaufen die Risse annähernd lotrecht, an der Seite steigen sie in krummen, schiefen Linien an, die annähernd den Verlauf der Drucktrajektorien besitzen. Bei noch grösseren Belastungen treten endlich auf der Druckseite Abbröckelungen des Betons ein; die Eisenstangen strecken sich und fangen auch zuweilen im Beton zu rutschen an. Damit verliert der Träger seine Tragkraft, ohne dass er jedoch in Stücke zerbricht.

Dass Hennebique-Träger und -Decken gegenüber reinen Eisenkonstruktionen den Vorteil grösserer Feuersicherheit besitzen, liegt auf der Hand, ebenso dass sie infolge ihres grösseren Gewichtes unter den Verkehrslasten weniger in Erschütterungen geraten. Die elastischen Durchbiegungen sind etwa 1/3 so gross wie bei eisernen Trägern von gleicher Tragkraft.

Ueber die Dauer der Hennebique'schen Bauwerke ein absolut sicheres Urteil abzugeben, ist zur Zeit kaum möglich, da die Beobachtungszeit noch zu kurz ist. Ein Rosten des Eisens ist ausgeschlossen, so lange das Bauwerk beständig trocken bleibt. Auch vorübergehendes Feuchtoder Nasswerden kann schwerlich schaden. Dagegen dürfte beständige Feuchtigkeit, namentlich wenn noch Säuren hinzutreten, nicht ganz gefahrlos sein. Ebenso können saure Dämpfe (Steinkohlenrauch) dem Eisen schaden, wenngleich lange nicht in dem Masse wie bei offenen Eisenbauten.

Ob die Adhäsion zwischen Eisen und Beton mit der Zeit abnimmt, sei es infolge von Erschütterungen oder infolge von Temperaturschwankungen, muss die Zukunft lehren; die bisherigen Erfahrungen lassen hierüber noch kein abschliessendes Urteil zu

Ob ein Bauwerk nach Hennebiques Verfahren bei gleicher Tragfähigkeit billiger wird als ein solches aus Eisen, lässt sich ohne Kostenberechnung schwer zum voraus sagen. Doch zeigen die bisherigen Vergleiche, dass Hennebique-Bauten bei schweren Belastungen gewöhnlich im Vorteil sind; die Ersparnis beträgt im Durchschnitt etwa 25 %. Freilich gilt dies zunächst nur von Bauten, die nach Hennebique'scher Weise berechnet worden sind. (Vgl. das folgende Kapitel.) Berechnet man die Bauten nach richtigeren Grundsätzen, und verlangt man gleiche Tragsicherheit wie bei Eisenbauwerken, so können sich leicht letztere als billiger herausstellen. Immerhin bleibt den Bauwerken nach Hennebique stets noch der Vorteil der grösseren Feuersicherheit und der der geringeren Empfindlichkeit gegen Erschütterungen gewahrt. (Forts. folgt.)

Le laboratoire de mécanique de l'Ecole polytechnique fédérale à Zurich.

II (fin).

A l'exception d'une partie de la charpente de la toiture, le gros œuvre du bâtiment est entièrement construit en maçonnerie et fer.

Les fondations, ainsi que les murs en élévation, jusqu'en dessous du soubassement sont en béton de ciment Portland, dosé à raison de 200, 250 ou 300 kg de ciment par mètre cube de gravier, suivant les circonstances.

Le terrain était bon en somme, quoique de nature variable; c'était une roche molassique tendre, dont la surface présentait des stries glaciaires intéressantes; mais très souvent cette roche disparaissait subitement pour faire place à une marne, très compacte sans doute, mais susceptible de se diluer dans l'eau.

La largeur de l'empattement a été calculée de manière que la pression sur le sol ne dépasse nulle part 3 kg par centimètre carré.

Sous la façade à l'Ouest, dont la hauteur atteint 26 m, j'ai fait noyer dans le béton des fers I afin de remédier à l'inégalité du sol.

La tour repose sur une dalle de béton de $8 \times 9 m$ et de 1 m d'épaisseur, de même avec grillage en fer. Sur cette dalle s'élèvent les fondations proprement dites, de 2 m d'épaisseur.

Les murs en élévation sont en grès de Bollingen et maçonnerie de moellons jusqu'au niveau du bandeau sur le rez-de-chaussée; certains piliers très chargés sont en granit.

Les étages supérieurs sont en maçonnerie de briques, le tout hourdé en mortier de chaux hydraulique. Les trumeaux en briques de la façade principale, de section très réduite, 1,40.0,77 m, chargés à raison de 7 à 8 kg par centimètre carré, sont construits en briques pleines et mortier additionné de ciment Portland; il en est de même des trumeaux à l'Ouest supportant la tour.

Les planchers sont construits suivant divers systèmes: en béton armé, système Hennebique, sur les sous-sols; d'après le système Schürmann au-dessus du logement du concierge, partout ailleurs en voûtes Monnier à flèche très réduite. Ces dernières, de 1,40 m d'ouverture et de 45 mm d'épaisseur à la clef, ont été calculées pour une charge de 700 kg par mètre carré; peu de jours après leur achèvement elles ont été chargées de 1200 kg sans qu'aucune déformation se soit produite.

Celui qui fréquente les salles de dessin du Polytechnikum déplore la présence des colonnes; elles obstruent les passages et s'opposent à une distribution rationnelle des tables à dessin.

Aussi ai-je cru devoir les proscrire dans le nouveau bâtiment. Les planchers, de plus de 10 m de portée, reposent sur des filets en tôle et cornières de $0.77\,m$ de hauteur, semelles comprises, noyés en partie dans la construction. Ils sont calculés pour une charge de $27\,000\,kg$, le fer travaillant à $750\,kg$ seulement par centimètre carré.

Remarquons aussi les fermes en arc de la toiture, construites de façon à encombrer le moins possible la salle de dessin supérieure.

Je dois ajouter quelques mots concernant la tour.

On s'est demandé assez longtemps si elle se ferait ou si elle ne se ferait pas. Une fois décidée j'ai dû aviser aux moyens de la réaliser sans apporter au projet des modifications profondes. Désireux d'autre part de ménager autant que possible l'espace déjà si restreint consacré aux dégagements, c'est-à-dire de ne pas l'encombrer par de gros murs, je me suis décidé à remplacer ces derniers par des montants en fer partant de fond et aboutissant dans les combles.

Les montants sont construits en fer \bigsqcup solidement moisés à chaque étage; ils supportent des caissons en tôle et cornières sur lesquels s'élèvent les murs latéraux.

La tour elle-même est légèrement construite; la maçonnerie, de deux briques d'épaisseur seulement, s'appuie en effet à un bâti intérieur en fer.

La liaison est assurée par les solivages en fer et surtout par une dalle de béton armé de 0,35 m d'épaisseur sur laquelle repose le réservoir en tôle, de 26 m cubes de capacité.

La partie supérieure est en tuf de 0,50 m d'épaisseur, la corniche est en granit.

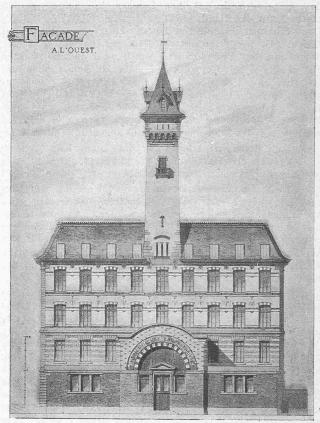
La hauteur de la tour, jusqu'à l'arête de la corniche, est de $46\ m$, elle est de $60\ m$ jusqu'au sommet de la flèche.

Encore quelques détails concernant l'aménagement intérieur:

Le sol de toutes les salles est prévu en corticine posée sur une aire de plâtre dur. L'escalier est en fer; les foulées en dalles de granit de 6 centimètres d'épaisseur.

Les fenêtres sont en fer, afin de ménager la lumière dans la mesure du possible; elles sont pourvues de fenêtres doubles subsistant toute l'année; les deux fenêtres sont montées sur le même châssis.

Le chauffage est à vapeur à basse pression, la vapeur est fournie par les générateurs du laboratoire et fonctionne au préalable comme force motrice.


Au point de vue constructif, la halle aux machines est intéressante par sa ferme en arc à trois rotules, proposée et exécutée par la maison Th. Bell & Cie.

L'architecture est sans prétentions. Sur un soubassement en granit, à vigoureux bossages, s'élève le rez-de-chaussée en grès de Bollingen appareillé en assises régulières à refends bien accentués.

Les étages supérieurs sont en briques apparentes claires relevées discrètement par quelques assises rouges.

Laboratoire de mécanique de l'Ecole polytechnique fédérale à Zurich.

Architecte: M. B. Recordon, Prof. à Zurich.

Echelle I: 500; 2 mm = 1 m.

La corniche est en bois, avec caissons peints dans le plafond; sa saillie de 1,40 m est un peu faible peut-être, mais il fallait prendre garde de ne pas assombrir la salle de dessin du deuxième étage.

Pour meubler la façade j'ai accusé extérieurement les ancrages des grands filets intérieurs; ce sont des rosaces en fonte peintes en noir avec écrous dorés.

Seule l'entrée est accentuée par un motif un peu luxueux; elle est accompagnée de deux colonnes doriques surmontées de figures, un peu plus grandes que nature, le "forgeron" et "l'ingénieur", dues au ciseau de Monsieur le professeur Graf.

La hauteur des étages est de 5,20 m; elle est égale à celle adoptée au bâtiment principal de l'école polytechnique; les entr'axes mesurent 3,90 m, au Polytechnikum 3,50 m; les fenêtres de la façade principale ont 2,47 m de largeur sur 3,56 m de hauteur; elles montent jusque sous le plafond et, maintenant déjà, il est possible de se rendre compte que l'éclairage sera fort abondant.

Grâce à ces grandes proportions le bâtiment n'est pas dépourvu, je crois, de caractère monumental.

Destinée à ne porter qu'un simple réservoir d'eau la tour devait être traitée très simplement, tout luxe eût été déplacé; l'effet devait donc être cherché uniquement dans les proportions et la silhouette; je n'ai pas à apprécier jusqu'à quel point le problème a été résolu.

L'intérieur du bâtiment sera très simple aussi; les salles seront boisées jusqu'a une hauteur de $2\ m$. Tous les fers, filets ou piliers resteront apparents, mais on cherchera à leur donner quelque cachet par le moyen de la peinture.

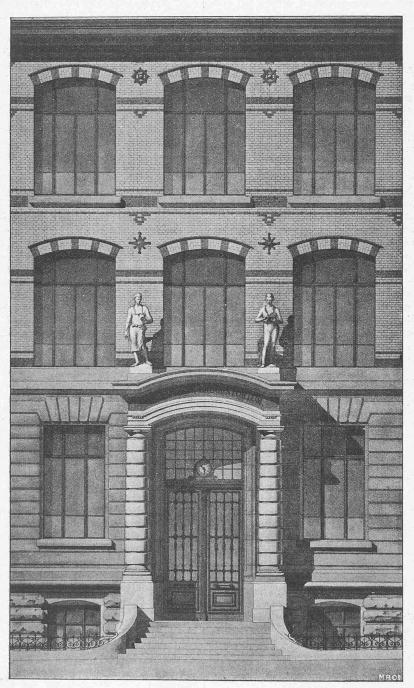
L'ameublement sera traité avec soin.

Pour terminer ce rapide exposé, ajoutons que le devis se monte à 675 000 Fr.; l'ameublement des auditoires et des salles de dessin est compris dans ce chiffre, mais non pas les installations mécaniques (425 000 fr.).

En votant ces importants crédits pour la création de ce nouvel institut, qui n'a pas d'équivalent en Europe,

nos autorités fédérales ont montré, une fois de plus, combien le développement constant de notre grande école technique leur tient à cœur; elles sont prêtes à tous les sacrifices légitimes pour lui assurer le rang fort honorable qu'elle occupe aujourd'hui; le pays leur en sera reconnaissant.

Prof. B. Recordon.


Miscellanea.

Das Park Row-Gebäude in New-York. Ein neues amerikanisches Geschäftshaus, welches alle bisherigen «Himmelskratzer» an Höhe weit übertrifft, ist das von Architekt R. H. Robertson vor kurzem erbaute Park Row-Haus in New-York, über dessen Architektur, Konstruktion und Einrichtung im «Scientific American» näheres berichtet wird. Die Höhe des 29 Stockwerke enthaltenden Gebäudes über dem Strassenniveau beträgt 118,7 m, bei einer Frontlänge von 31,7 m am Park-Row, 6,1 m und 14,6 m an den beiden andern Strassen. Trotz diesem ausserordentlichen Missverhältnis von Höhe und Grundfläche ist es dem Architekten noch gelungen, die einförmige Silhouette eines Turmgebäudes zu vermeiden, indem er je vier oder fünf Stockwerke zusammenfassend, die Breite desselben durch kräftige Horizontalgliederung betonte.

Infolge der hohen Preisforderungen für einige angrenzende Grundstücke haben sich in der Grundrissform des Bauwerkes Tiefe unter dem Kopf derselben entfernt und durch einen Betonflötz ersetzt hat. Ueber die Betonschicht kamen dann mächtige Granitblöcke, die als Fundament für die gemauerten Pfeiler dienten. Den Abschluss derselben bildete eine Lage Granitdecksteine, und darauf folgte ein Rost aus 0,30 m hohen I-Trägern. Um eine gleichmässige Druckverteilung zu bewirken, wurden zwischen die Fundamente und Säulensockel des

Laboratoire de mécanique de l'école polytechnique fédérale à Zurich.

Architecte: M. B. Recordon, Prof. à Zurich.

Entrée principale. — Echelle 1:100; 10 mm = 1 m.

viele Unregelmässigkeiten ergeben. Es bedeckt eine Fläche von 465 m^2 und die ungeheure Gebäudemasse von 29 Stockwerken darüber, deren Gewicht mit ihrer Höchstbelastung rund 54 000 t beträgt, ist auf etwa 4000 in den Sandboden getriebenen Pfählen von 0,30 m Stärke gegründet. Als Durchschnittsbelastung wurden für jeden Pfahl ungefähr 7 t angenommen, während dessen Höchsttragfähigkeit über 20 t beträgt. Die Pfähle jeder Reihe sind 0,40 m von Mitte zu Mitte entfernt, und die einzelnen Pfahlreihen stehen etwa 0,6 m weit voneinander ab. Unter der Grundwassersohle wurden die Pfähle abgeschnitten, worauf man den Sand bis auf 0,30 m

Bauwerks gewaltige Verteilungsträger verlegt, welche Längen von 2,5 bis 14,3 m bei einer Höhe von 1.2 bis 2.6 m besitzen. Der schwerste derselben wiegt über 53 t. Die Gesamtkosten des Gebäudes, für welches etwa 8000 t Stahl und 12000 t andere Materialien, hauptsächlich Ziegel und Terrakotta verwendet wurden, betragen 121/2 Millionen Franken. Mit seiner bescheidenen Front von 31,7 m am Park Row und von 6,1 m und 14,6 m an einer Seitenstrasse und einer Allee kann dieses ausserordentliche Gebäude die Bevölkerung eines mittleren Landstädtchens beherbergen. Dass dies keine Uebertreibung ist, dürfte die folgende Berechnung ergeben. Das ganze, mit 2095 Fenstern versehene Gebäude enthält 950 Einzel-Geschäftsräume. Die meisten derselben sind derart dimensioniert, dass für ieden Raum durchschnittlich vier Personen als Insassen angenommen werden können. Ferner kann man annehmen, dass zu einer bestimmten Stunde am Tage für jeden Angestellten durchschnittlich ein Besucher geschäftlich das Gebäude betritt. Das würde zu einer gewissen Tageszeit eine im Gebäude anwesende Gesamt-Personenzahl von 8000 ergeben. Setzt man jedoch eine durchschnittliche Besucherzahl von fünf Personen für jeden Geschäftsraum und bei jedem Angestellten täglich voraus, so würde dies eine Gesamtzahl von ungefähr 25000 Personen ausmachen, welche das Gebäude im Laufe eines jeden Arbeitstages im Jahr besuchen.

Die Höhenlage der obersten Geschäftsräume beträgt

104 m über der Strassensohle. Das Hauptgesimse der Park Row-Front befindet sich 103 m über dem Bürgersteig, während der Flaggenstangenknopf 17 m über der Kuppel, d. h. in einer Höhe von 136 m in die Lüfte ragt. Die Unterkante des Pfahlfundaments liegt dagegen 16,5 m unter der Strassensohle. Demnach erreicht das Bauwerk eine Gesamthöhe von 152 m.

Pflästerungen von Fahrbahnen. Einem Bericht über Fahrbahnpflästerungen, den Herr Strasseninspektor A. Stadelmann in Zürich nach mehrwöchentlicher Studienreise in ausländischen Grosstädten¹) kürzlich dem

1) Frankfurt a. M., Köln, Brüssel, London, Paris.