Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 33/34 (1899)

Heft: 2

Inhaltsverzeichnis

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Bauausführung des Tunnels Turchino auf der Bahnlinie Genua-Ovada-Asti. III. — Wettbewerb für den Neubau einer Oberen Realschule in Basel. I. — Das neue Parlamentsgebäude in Budapest. II. — Neue Laschenform für Schienenstösse. — Miscellanea: Die Anwendung mechanischer Motoren für den Strassenbahnbetrieb. Neubau einer mittleren Rheinbrücke in Basel. Monatsausweis über die Arbeiten im SimplonTunnel. Groupe vaudois de la société des anciens élèves de l'école polytechnique de Zurich. — Konkurrenzen: Bauten für die kantonale Strafanstalt in Payerne (Waadt). — Preisausschreiben: Ein Umschlag für die Berliner Architekturwelt. — Vereinsnachrichten: Zürcher Ingenieurund Architekten-Verein. Gesellschaft ehemaliger Polytechniker: Stellenvermittelung.

Bauausführung des Tunnels Turchino auf der Bahnlinie Genua-Ovada-Asti.

Der Fortgang der Arbeit ist aus Fig. 2-10 ersichtlich und wurde nach dem in Fig. 2 dargestellten Diagramm

Fig. 2. Arbeitsdiagramm. 2 1.3 4 5

ausgeführt. Die maschinelle Bohrung beschränkte sich auf den Sohlenschlitz; der trapezförmige Ausbau (Fig. 3) hatte eine Breite von 3,00 m unten, und 2,70 m oben, und eine lichte Höhe von 2.60 m, und wurde auf seine ganze Länge ausgepölzt. In Zwischenräumen von etwa 40 m Entfernung trieb man einen Aufbruch hinauf (Fig. 4, 5 und 6), aus welchem dann ein Firststollen in zwei Richtungen

vor- und rückwärts mit Handarbeit geführt wurde. Diese doppelte Stollenarbeit gestattete den Abbau der Kalotte mittels seitlicher Ausweitung (Fig. 7) und das sofortige Einziehen des Deckengewölbes (Fig. 8), ohne dass der Richtstollen zu sehr voraneilte. Die Strosse (Fig. 9) wurde dann unter dem Schutze des Gewölbes abgebaut und der Richtstollen immer durch Verzimmerung verbaut. Fig. 10 stellt den fertigen Tunnel im Querschnitt dar, und zwar mit und ohne Sohlengewölbe, je nachdem Auftrieb vorhanden war oder nicht. Im Längenprofil (Fig. 1 S. 4 Nr. 1) sind durch dicke Linien die Strecken angegeben, auf denen das Sohlengewölbe ausgeführt wurde. Die Zahlen bezeichnen die Gewölbestärken.

Durchschnittlich waren per Monat im Tunnel während der Zeit der Maschinenbohrung 4426-35337 Mann beschäftigt.

Die Förderung der Berge geschah mittels kleiner, 75 P. S. leistenden Krauslokomotiven; dies aber erst vom 19. November 1891 an, d. h. als der Stollen 1100 m vom Eingang entfernt war; vorher verwendete man Pferde und ganz im Anfang Menschenkraft. Obschon drei solche Lokomotiven vorhanden waren, befuhr immer nur eine einzige den Stollen; in seltenen Fällen sind auch zwei im Betriebe gewesen. Ein gewöhnlicher Zug bestand aus etwa 60 leeren und vollen Wagen. Auf der Baustelle waren im ganzen 144 derartige Wagen vorhanden.

Beim Bohren fanden zwei Maschinensysteme Verwendung: Blanchods und Segalas Gesteinsbohrmaschine. Auf der Nordseite aber, wo der maschinelle Bohrbetrieb erst später zu stande kam, d. h. nach dem Durchschlag des Cremolino-Tunnels, benutzte man Ferroux' und Séguins Der Umstand, dass vier verschiedene Bohrmaschinen. Systeme verwendet wurden, gestattete einige lehrreiche. vergleichende Beobachtungen zu machen, deren Resultate in folgender Zusammenstellung enthalten sind:

System der Bohrmaschine	Kolbendurchmesser	Burchmesser der Kolbenstange	Kalbenhub	Kolbenhub			per	SSB	S G	am	der	-in
				bei offener Luft- zuführung	bei veränderl. Luftzuführung	mit Expansion u. geschlossener Luftzuführung	Luftverbrauch p Minute	Doppelte Kolbenstösse pro Minute	Durchschnittliches Vordringen pro Minute	Luftpressung a Bohrgestell	Zeit vor Ort de Bohrmaschine	Tagliche Reparatur Kosten
	mm	mm	mm	mm	mm	mm	m^3	Anzahl	772	Atm.	Tage	Franken
Blanchod	100	65	170	110	10	50	0,594	400	0,060	41/2	7	21,70
Segala	110	65	140	55	Io	75	0,414	400	0,095	3	51	9,40
Ferroux	110	70	120	80	10	30	0,552	405	0,075	3	15	18,75
Séguin	110	60	120	80	Io	30	0,523	362	0,060	31/0	-	-

Aus obigen Zahlen geht hervor, dass die Segala-Bohrmaschine am längsten ohne Reparaturen arbeiten

Fig. 4. Firststollen und Aufbruch für die Zwischenangriffe. Fig. 3. Sohlenstollen.

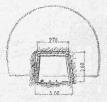


Fig. 5. Erweiterung des Firststollens. (Kleine Kalotte.)

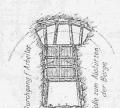
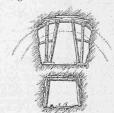



Fig. 6. Kleine Strosse.

Ausweitung der Kalotte.

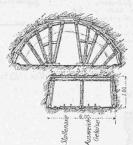


Fig. 8. Gewölbe.

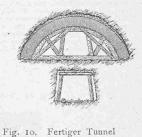
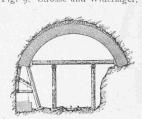



Fig. 9. Strosse und Widerlager.

Masstab für Fig. 3-10 = 1:300.

konnte und somit die kleinsten Reparaturkosten erforderte. Ihre Länge beträgt 2,50 m, der längste Weg auf dem Gestell 0.90 m. Sie ist sehr leicht und von einfacher Handhabung. Wie man aus der Tabelle ersieht, ist der Kolbenhub 55 mm bei offener Luftzuführung, 10 mm bei veränderlicher Luftzuführung und 75 mm mit Expansion, was viel Luftersparnis zur Folge hat und die Stösse in ihrer Bewegung aufhebt; somit kann der Stoss auch bei Expansion erfolgreicher als bei andern Gesteinsbohrmaschinen sein.

Die Blanchod-Maschine wiegt 220 kg; ihr Weg auf dem Gestelle beträgt 0,70 m; sie hat sich aber schlecht bewährt, hauptsächlich weil gewisse Teile fehlerhaft konstruiert waren. Die zwei andern Systeme sind bekannt,

IV. Angriff durch den Schacht Masone.

Wie schon erwähnt, wurden zwei andere Angriffe des Tunnels durch einen Schacht vermittelt. Der Schacht ist in einer Entfernung (Fig. 1) von 3758,84 m von der südlichen