Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 33/34 (1899)

Heft: 15

Artikel: Die elektrische Bahn Stansstad-Engelberg

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-21325

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Die elektrische Bahn Stansstad-Engelberg. I. — Theorie - Das neue Musikschulgebäude in Wettbewerb für den Neubau einer Kantonsschule in Schaffhausen. II (Schluss). - Miscellanea: Die Nernst'sche Glühlampe. Prüfungsanstalt für angeblich feuerfeste Materialien und Baukonstruktionssysteme. Magnetische Ziegelsteine. Wasserhebung mittelst Pressluft. Die Capella Pazzi in Florenz. Die inter-

nationale Motorwagen-Ausstellung in Berlin 1899. Die Fernsprechverbindung Berlin-Brüssel-Antwerpen. — Konkurrenzen: Fassaden-Entwürfe für den Umbau eines Hauses in Moskau. Kunstausstellungs-Gebäude in Düsseldorf. Eissport-Pavillon in Troppau. — Litteratur: Die mittelalterlichen Architekturund Kunstdenkmäler des Kantons Thurgau. - Nekrologie: † Rudolph Ray. -Vereinsnachrichten: Zürch. Ing.- u. Arch.-Verein, G. e. P.: Stellenvermittelung.

Die elektrische Bahn Stansstad-Engelberg.

Einleitung. Das Jahr 1898 mag auch denjenigen, welche sich bisher zweifelnd verhielten, den Beweis erbracht haben,

dass die direkte Verwendung von Mehrphasen - Motoren für Traktionszwecke praktische Resultate gezeitigt hat, die dem Mehrphasen-Wechselstrom-System ein neues Wirkungsfeld eröffnen. Nachdem im Sommer vorigen Jahres die bereits in unserer Zeitschrift beschriebene Bergbahn Zermatt-Gornergrat1) und die erste Sektion der Jungfraubahn dem Betriebe übergeben worden waren, ist kurz darauf auch die Eröffnung der kombinierten Adhäsions-und Zahnradbahn Stansstad - Engelberg erfolgt. Auch die Anlage dieser letzteren Dreiphasen - Wechselstrombahn verdient Beachtung, einmal, weil sich die Bahn in Form und Betriebsverhältnissen ihrer Automobilwagen bereits dem Typus einer Normalspurbahn nähert und weil anderseits der Ausführung derselben sich eine Reihe Schwierigkeiten entgegen-

stellte, deren Ueberwindung, in der Art, wie dies geschah, einiges Interesse bietet.

Der Plan, den bedeutenden Fremdenplatz Engelberg mit dem Gestade des Vier-

Hereiswy Stanssta Dallenwyl

Fig. 1. Tracé.

I: 100 000.

Mit Bewillig, des eidg, topogr, Bureaus.

waldstättersees durch eine Bahn zu verbinden, wurde schon

Bearbeitet nach der Dufour-Karte,

tungen des Landes ganz abseits lagen, befinden sich nun in der Lage, zwischen zwei elektrischen Bahnen wählen zu können; denn Stans ist mit den Ufern des Vierwaldstätter-

vor mehreren Jahren gefasst; bereits im Jahre 1890 hatte ein Initiativkomitee die bezügliche Konzession erworben. Es lag nahe, von Anfang an die Ausnutzung der Wasserkräfte des Engelbergerthales für diesen Zweck ins Auge zu fassen. Ursprünglich war dem Projekte die Verwendung des Gleichstromsystems zu Grunde gelegt worden; aber erst die Fort-

schritte der letzten Jahre auf dem Gebiete der Bahntraktion vermittels des Mehrphasen - Wechselstromes gestatteten, zur Verwirklichung des Projekteszuschreiten. Eine im Herbst 1896 mit einem

Kapital von 2 000 000 Fr. gebildete Aktiengesellschaft übertrug die Ausführung der ganzen Anlage der Firma Locher & Cie. in Zürich, die im Mai 1897 den Bau begann. Der hydraulische Teil wurde von der Firma Bell & Cie^{*} in Kriens ausgeführt, mit dem Rollmaterial befassten sich die Schweizerische Lokomotiv- & Maschinenfabrik in Winterthur und die Schweizerische Industriegesellschaft in Neuhausen, während die vollständige elektrische Ausrüstung der Firma Brown, Boveri & Cie. in Baden übertragen worden war.

Tracé. Die Bahn zieht sich auf eigenem Tracé (Fig. 1) mit 1 m Spurweite vom Dampfschiff-Landungsplatz in Stansstad (Fig. 2) durch eine ebene Gegend nach der Ortschaft Stans. Die Stanser, die vor noch nicht langer Zeit von den modernen Verkehrseinrich-

¹⁾ S. Schweiz. Bauztg., Jahrg. 1898. Bd. XXXI Nr. 16-21.

der Weise der Um-

stand geltend, dass

der Fuhrwerke auf

wendige lichte Höhe

taktleitung vom Geleise bedeutend über-

getroffen werden, die

Kontaktleitung über der Brücke für den

Durchlass von Fuhr-

werken zu heben und

nur bei Oeffnung der

Sees noch durch eine Gleichstrom-Trambahn verbunden. Der Zukunft mag es vorbehalten bleiben, zwischen den beiden Systemen ganz interessante Vergleiche bezüglich ihrer Leistungsfähigkeit anzustellen. Das Tracé wendet sich der Konstruktion derselben machte sich noch in erschweren-

hinter Stans gegen Oberdorf und folgt hierauf dem linken Ufer der Engelberger Aa; hinter der Station Dallenwyl überschreitet die Bahn das genannte Gewässer mittels einer 35 m langen Fachwerkbrücke, um sich über Wolfenschiesen nach Grafenort zu ziehen. Hier beginnt die erste Steigung von maximal 500/00; nachdem der Kaltebach mit einem

Viadukt überschrit-

Die elektrische Bahn Stansstad-Engelberg.

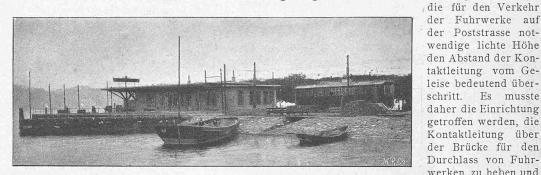


Fig. 2. Station Stansstad mit Dampfschifflandungsplatz.

ten, gelangt man nach der Kraftstation Obermatt, wo die 1,5 km lange Zahnradstrecke mit einer Steigung von 2500/00 ihren Anfang nimmt (Fig. 3). In der Mitte derselben liegt | wobei noch bemerkt werden mag, dass der ganze Betrieb

Klappbrücke zwecks Durchgang des Zuges auf das richtige Niveau zu senken. Fig. 4 und 5 stellen die Anordnung dieser Klappbrücke dar,

à niveau vorzunehmen; da andererseits die Terrainverhältnisse nicht erlaubten, eine richtige Unterführung herzustellen,

so blieb nur der Ausweg einer Klappbrücke übrig. Bei

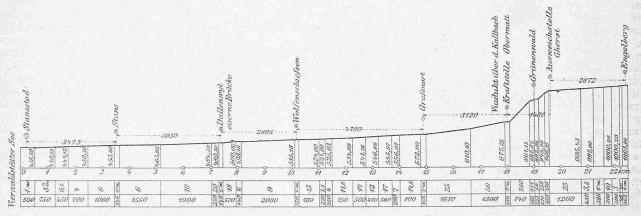


Fig. 7. Längenprofil.

Höhen I: 30 000.

die Haltestelle Grünenwald und hier kreuzt auch die Poststrasse den Bahnkörper, dessen Oberbau ungefähr 1 m unterhalb des Strassenniveaus liegt. Der Umstand, dass Bahn

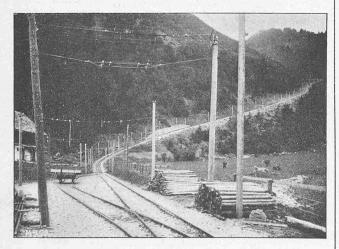


Fig. 3. Beginn der Steilrampe.

und Poststrasse sich in Kurven schneiden und beide gegen den Mittelpunkt der Kurven geneigt sind, sowie die Befürchtung, dass durch den Fuhrwerksverkehr auf der Poststrasse die Instandhaltung der Zahnstange erschwert werden würde, liessen es nicht angängig erscheinen, die Kreuzung

von Hand geschieht und dass zum Heben der Brücke und Herablassen des Kontaktdrahtes etwa eine Minute erforder-

Von Gherst, am oberen Endpunkte der Steilrampe gelegen, zieht sich das Tracé mit geringer Steigung nach der Station Engelberg (Fig. 6). Der notwendige Raum für diesen Teil des Bahnkörpers musste an vielen Stellen durch Absprengen der Felsen gewonnen werden; auch war die Ausführung von einigen Kurven bis zu 50 m Radius und die Anlage einiger 100 m Stütz- und Futtermauern notwendig.

Die Längen- und Höhenverhältnisse der ganzen Strecke sind aus dem Profil (Fig. 7) ersichtlich. Die ganze Länge der Bahn beträgt 22,5 km, wovon, wie gesagt, 1,5 km auf die Zahnstangenstrecke entfallen.

Oberbau. Zur Verwendung kamen Schienen der Vignol-Type, welche 20 kg pro lfd. Meter wiegen und in Längen von 10,5 m verlegt sind; sie ruhen auf eisernen Schwellen von 30 kg Gewicht, und zwar kommen pro Schienenlänge auf der Adhäsionsstrecke 11, und auf der Steilrampe 12 Stück zu liegen. Fig. 8 (S. 129) veranschaulicht das Oberbauprofil der Steilrampe. Die Zahnstange ist eine sogenannte Leiter-Zahnstange mit trapezförmigen, in die Seitenflanschen eingenieteten Gusstahlzähnen. Das Gewicht der Zahnstange beträgt 52 kg pro 1fd. Meter; dieselbe ist in Segmenten von 3,5 m Länge verlegt. Die Zahnstangeneinfahrt ist beweglich und federnd gelagert.

Hochbauten. Die aus Ziegel und Holz ausgeführten Stationsgebäude enthalten Vorstandszimmer, Gepäckraum, Wartezimmer etc. Die Beleuchtung geschieht von kleineren Transformatoren aus, die den Strom aus der Kontaktleitung abnehmen und auf 100 Volt reducieren. In Stansstad befindet sich eine Wagenremise für acht Automobilwagen mit angebauter Reparaturwerkstätte und Magazin (Fig. 9, S. 129).

Turbinenhaus. Die Verhältnisse gestatteten es, die Stromerzeugungscentrale an einer in Bezug auf die Kraftverteilung günstigen Stelle zu errichten, nämlich am Fusse

der Steilrampe, also in der Nähe des Punktes des grössten Kraftkonsums. Die notwendige Wasserkraft wird durch Zuleitung mehrerer Quellen in ein gedecktes Reservoir von etwa 1000 m3 Inhalt gewonnen, von wo aus eine 1634 m lange Rohrleitung das Wasser zum Turbinenhaus leitet. Diese Rohrleitung ist auf eine Länge von 230 m aus gusseisernen

Röhren von 300 mm lichter Weite und einer Wandstärke von 15–20 mm zusammengesetzt. Der zweite,

längere Teil besteht aus schmiedeisernen Röhren von 300 mm lichter Weite und 7,5—8,5 mm Wandstärke. Das nutzbare Gefälle beträgt 414,8 m.

Das Turbinenhaus in Obermatt (Fig. 10-15, S. 129 u. 130), welchem eine Reparaturwerkstätte und ein Lokomotivschuppen angefügt sind, enthält Platz für drei Generatoren und zwei Erregermaschinen, alle direkt gekuppelt mit den

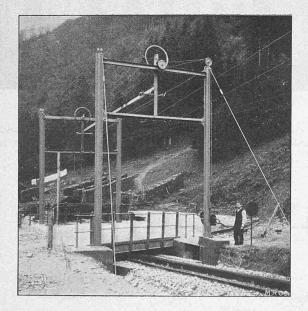


Fig. 4. Klappbrücke geschlossen; Kontaktleitung für Durchlass der Fuhrwerke gehoben.

entsprechenden Wassermotoren. Letztere sind Hochdruckturbinen mit horizontalen Wellen. Die Leistung jeder Drehstromgruppe (Fig. 15), wovon gegenwärtig zwei montiert sind, beträgt 180 P.S. bei 650 Umdrehungen, während die zwei Erregergruppen je eine Leistung von etwa 12 P.S. aufweisen. Die grossen Turbinen besitzen hydraulische Patentregulatoren, bei den Erregerturbinen fehlt ein solcher, indessen sind die Erregermaschinen konstant belastet durch Kompensation des Magnetfeldwider-

standes der Generatoren. Das Schaltbrett, (Fig. 16, S. 131), an einer Querwand des Maschinenhauses montiert, besteht vorderhand aus drei weissen, auf ein Eisengerüst montierten Marmorplatten. Auf der einen derselben finden sich Instrumente und Apparate der Erregermaschinen vereinigt, die beiden andern dienen je für einen Generator; das Schaltbrett ist so disponiert, dass neu hinzukommende Einheiten, ohne Umänderungen zu veranlassen, in der Ver-

längerung angeschoben werden können.

Die Erregermaschinen, wie auch die Drehstrom-Generatoren, arbeiten unter sich parallel, und zwar letztere auf gemeinschaftliche Sammelschienen, deren eine mit den Bahnschienen in Verbindung steht. An den Sammelschienen sind die Kontakt- und Speiseleitungen durch ausschaltbare Sicherungen und zweipolige Ausschalter angeschlossen. Im ferneren befinden sich hinter der Schalttafel,

Fig. 6. Station Engelberg.

in das Eisengerüst einmontiert, sämtliche Sicherungen für die Transformatorenstation und die Hochspannungsleitung. Hier ist auch eine specielle Vorrichtung angebracht, welche bei Bruch eines Hochspannungsdrahtes durch Ausschalten der Erregung die ganze Centrale stromlos macht.

Transformatoren. Da, wie oben bemerkt, der maximale Strombedarf in der Nähe der Centrale verlangt wird, und

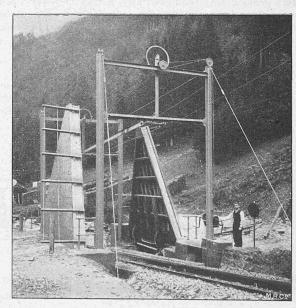


Fig. 5. Klappbrücke geöffnet; Kontaktleitung für Durchlass der Züge gesenkt.

letztere zudem am Bahnkörper selbst gelegen ist, so arbeiten die Generatoren direkt in die Kontakt- und Feederleitungen und nur ein Teil der in der Centrale erzeugten Energie (gegenwärtig etwa ein Drittel) wird durch Herauftransformieren für ökonomische Uebertragung auf grössere Distanz geeignet gemacht. Zu diesem Zwecke befinden sich in der Centrale selbst in einem hinter der Schalttafel gelegenen Raume drei 30 kw Einphasen-Transformatoren, welche, in Sternschaltung verbunden, die Spannung der

Elektrische Bahn Stansstad-Engelberg.

Kontaktleitung (750 Volt) auf 5300 Volt erhöhen. Ungefähr auf Kilometer 7 in unmittelbarer Nähe der Station Dallenwyl liegt eine zweite, aus den gleichen Einheiten zu- | Der passende Wert von p1 kann dabei durch richtige Wahl sammengesetzte Trans-

formatorenstation (Fig. 17, S. 131), welche den hochgespannten Strom wieder auf Kontaktleitungsspannung von 750 Volt reduciert. (Schluss folgt.)

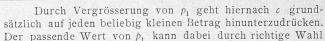
Theorie der Dampf-Turbinen.

Von Professor A. Fliegner.

III. Dampf-Reaktions-Turbinen.

§ 6. Zuleitung des Damfpes.

Beim freien Ausströmen unter grösserem Ueberdrucke stellt sich in der Mündungsebene der Leitvorrichtung und


am Spalte, ziemlich unabhängig vom äusseren Drucke, ein | Druck p1 ein, der angenähert gleich der Hälfte des Kesseldruckes p wird, so dass sich dabei immer die gleiche Austrittsgeschwindigkeit c ergiebt. Zu vergrössern geht diese nicht, dagegen kann sie leicht verkleinert werden, indem bei gleichem Kesseldrucke p_1 grösser genommen wird, und das hätte den Vorteil, dass gleichzeitig die Umfangsgeschwindigkeit und die Umdrehungszahl des Rades mit sinken würden.

Für $p_1 > 0.5 p$ lässt sich das Gewicht des sekundlich ausströmenden Dampfes mit einer für den vorliegenden Zweck genügenden Genauigkeit nach der anderen Napier'schen Formel berechnen, in der nur der Zahlenkoefficient entsprechend Glchg. (12) zu 4 angenommen werden muss. Das giebt:

$$G = 4 F \sqrt{\frac{\cancel{p}_1 (\cancel{p} - \cancel{p}_1)}{(\cancel{p} v)}}. \tag{24}$$

Dieses Gewicht ist auch $G = F c/v_1$, und wenn man wieder eine Zustandsänderung nach Glchg. (6) annimmt, so wird die Austrittsgeschwindigkeit c aus den Leitkanälen:

$$c = 4 \sqrt{\langle p \, v \rangle \left(\frac{p}{p_1} - 1 \right)}$$
 (25)

der Schaufelwinkel und der Umfangsgeschwindigkeit des Laufrades stets leicht hergestellt werden. Wie weit man aber mit diesen Grössen wirklich gehen darf, hängt noch von anderen Umständen ab, die erst später besprochen werden können.

§ 7. Bewegung des

Dampfes durch d. Laufrad. Für die Relativbewegung des Dampfes durch das Laufrad und für die Dampfarbeitsleistung gelten die allgemeinen Gleichungen (9) und (11) unverän-

Fig. 10. Ansicht der Centrale in Obermatt.

neben dem Strahle aber als in dem Gesetze der Zustandsänderung pv = const. schon berücksichtigt anzusehen ist.

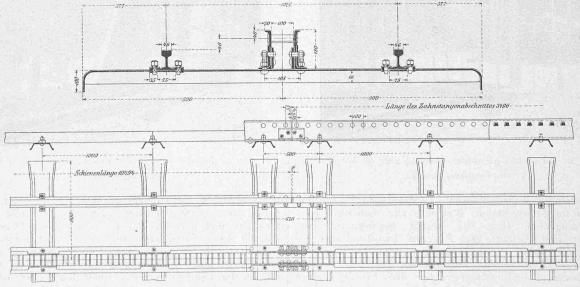


Fig. 8. Anordnung des Zahnstangen-Oberbaues.

Masstab für den Grundriss 1:30.

Masstab für die Schnitte 1:15.

Fig. 11-15. Die elektrische Bahn Stansstad-Engelberg. — Turbinenhaus in Obermatt.

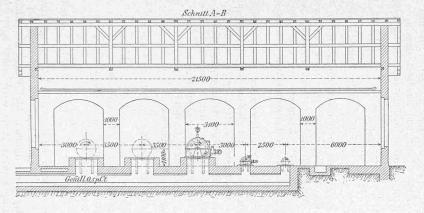


Fig. 11. Längsschnitt.

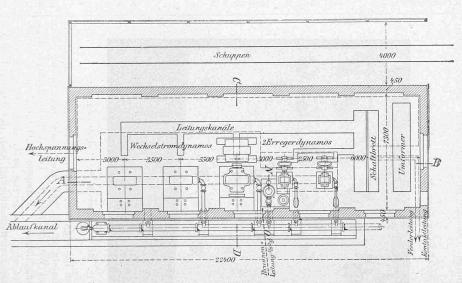


Fig. 12. Grundriss. 1:200.

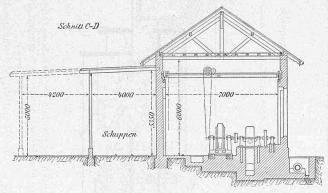


Fig. 13. Querschnitt.

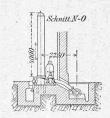


Fig. 14. Windkessel u. Füllflasche.

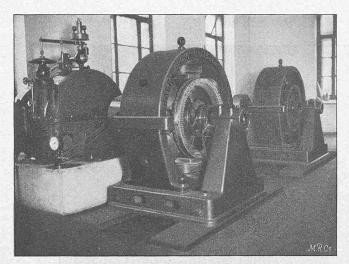


Fig. 15. Hochdruckturbine mit Drehstromgenerator gekuppelt.

Elektrische Bahn Stansstad-Engelberg.

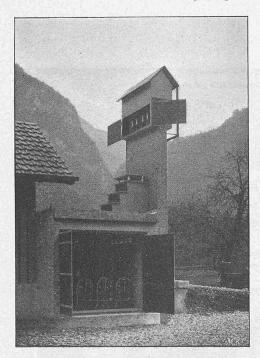


Fig. 17. Transformatoren-Station bei Dallenwyl.

Damit der Dampf möglichst gut ausgenutzt wird, wird man hier auch zunächst günstigsten Eintritt in das Laufrad verlangen müssen. Die Verhältnisse liegen wesentlich gleich wie bei Wasser, und wenn man auch ähnliche Winkel annimmt, so muss die relative Eintrittsgeschwindigkeit w_1 in die Richtung der Schaufeltangente an der Eintrittsseite fallen. Es ist allerdings nicht ausgeschlossen,

Elektrische Bahn Stansstad-Engelberg.

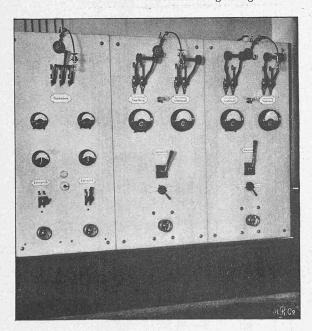
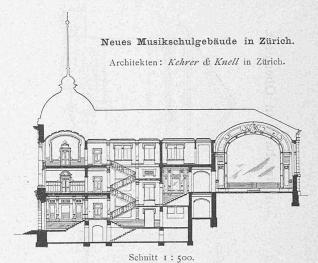



Fig. 16. Schaltbrett in der Centrale Obermatt.

dass die hier im allgemeinen nötige Kranzerweiterung nach der Austrittsseite zu die günstigste Richtung von w_1 ähnlich wie bei Wasser ändert. Da aber für Dampf noch keinerlei einschlagende Versuche vorliegen, so soll der Rechnung die obige Forderung zu Grunde gelegt werden. Das giebt als Eintrittsbedingung nach der Figur (S. 102):

$$\frac{c}{u_1} = \frac{\sin u_1}{\sin (u + u_1)}.$$
 (26)

Bei Reaktions-Turbinen geht auch die Bedingung günstigsten Austrittes gleichzeitig zu erfüllen, wonach die absolute Austrittsgeschwindigkeit ϵ_2 aus Glchg. (10) möglichst klein werden sollte. Wie bei Wasser wird das der Fall sein, wenn zunächst der Winkel α_2 möglichst klein gemacht wird, so klein, als es die Ausführung gut gestattet, aber wahrscheinlich auch nicht zu klein, damit die Kanalwiderstände nicht zu stark zunehmen. Voraussichtlich giebt es auch für Dampf einen günstigsten Wert, der dann durch besondere Versuche bestimmt werden müsste. Wird dieser

Winkel danach als gegeben angesehen, so folgt aus Glchg. (10) als weitere Forderung, damit c_2 möglichst klein wird, dass $w_2 \cos \alpha_2 = u_2$ (27)

werden, die absolute Austrittsgeschwindigkeit also senkrecht zum Umfange gerichtet sein muss.

Setzt man die Bedingungen (26) und (27) in die Glchg. (9) für w_2^2 ein und beachtet, dass $u_2=(r_2/r_1)\;u_1$ ist, so erhält man durch eine einfache Umformung:

$$\left[2\frac{\sin\alpha_1\cos\alpha}{\sin(\alpha+\alpha_1)} - \frac{\sin^2\alpha_1}{\sin^2(\alpha+\alpha_1)} + \left(\frac{r_2}{r_1}\right)^2 \tan^2\alpha_2\right] \frac{u_1^2}{2g} \equiv \frac{1}{\mu} \frac{u_1^2}{2g} = (pv) \lg n \frac{p_1}{p_2}.$$
(28)

Diese Formel stimmt wesentlich mit der Weisbach'schen Formel für die angenähert günstigste Umfangsgeschwindigkeit der Wasser-Reaktionsturbinen überein. Nur das letzte Glied in der eckigen Klammer hat eine abweichende Gestalt, weil hier die Kanalwiderstände anders berücksichtigt sind, wie dort.

Damit der Dampf wirklich entsprechend Glchg. (26) am günstigsten ein- und gleichzeitig entsprechend Glchg. (27) auch am günstigsten austritt, müssen die drei Winkel in bestimmter gegenseitiger Abhängigkeit stehen. Diese findet sich durch Gleichsetzen der beiden Ausdrücke für das sekundlich durchströmende Dampfgewicht beim Austritte aus dem Leit- und dem Laufrade. Das giebt, ohne Berücksichtigung der Schaufeldicken:

$$G = \operatorname{zr}_1\pi \, b \, \sin \alpha \, \frac{c}{v_1} = \operatorname{zr}_2\pi \, b_2 \sin \alpha_2 \, \frac{w_2}{v_2} \cdot$$

Führt man hier ε und w_2 nach Glchg. (26) und (27) ein, beachtet, dass bei Reaktionsturbinen $b=b_1$ sein muss, und ersetzt man noch v_1/v_2 nach Glchg. (6) durch p_2/p_1 , so erhält man endlich:

$$\cot \alpha_2 = \frac{p_2}{p_1} \frac{b_2}{b_1} \left(\frac{r_2}{r_1}\right)^2 (\cot \alpha + \cot \alpha_1). \tag{29}$$

Das ist auch wieder wesentlich der gleiche Zusammenhang wie bei Wasser, nur tritt hier noch der Faktor p_2/p_1 hinzu, der stets kleiner bleibt als die Einheit. Damit trotzdem α_2 nicht zu gross wird, muss $b_2/b_1 > 1$ genommen werden. Namentlich wirksam ist aber eine Vergrösserung von r_2/r_1 , so dass also in dieser Richtung innenschächtige