Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 33/34 (1899)

Heft: 1

Sonstiges

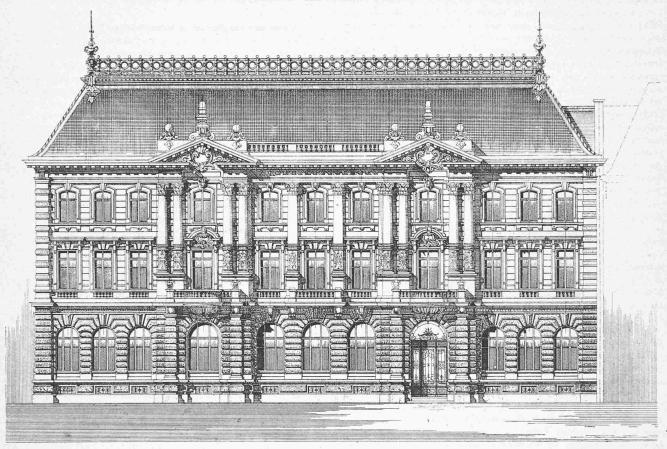
Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use


The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Neubau der Zürcher Kantonalbank in Zürich.

Architekt: Ad. Brunner in Zürich.

Ansicht der Hauptfassade an der Bahnhofstrasse.

1:250

steigt in je vier Läufen per Stockwerk vom Erdgeschoss bis in den dritten Stock.

Ueber dem Treppenhaus ist ein grosses Oberlicht angeordnet, die Treppe erhält zudem in den obern Stockwerken noch Licht durch die Korridorfenster vom Hofe her. Ausser der Haupttreppe führt eine Servicetreppe vom Erdgeschoss bis in den Dachboden. Auf der Hofseite (im Abtrittanbau) ist ein Notausgang vorgesehen.

Die Kasse ist, wie es in den modernen Anlagen überall üblich, in ganz grossen Abmessungen angelegt; ihre Länge beträgt 27 m, die mittlere Breite 12,50 m; sie bietet für 10—12 Kassierer genügend Raum. Ein über dem Publikumraum liegendes Oberlicht und acht seitliche Fenster sorgen für ausreichende Tagesbeleuchtung. Die Höhe dieses Raumes beträgt im Publikumraum 11,00 m; in den seitlichen, in zwei Geschosse geteilten Räumen, unter der Galerie 5,80 m, über derselben 4,60 m. Der Publikumraum misst bis zu den Kassentischen 8 auf 16,50 m, bis zu den Schaltern 8,50 auf 17,50 m.

Bei dieser Grundriss-Disposition hat das Publikum ausschliesslich nur im Erdgeschoss (ausgenommen mit der Direktion der Handelsabteilung, die sich im ersten Stock befindet) zu verkehren.

Unter der Kasse und dem Archiv liegen im Untergeschoss die Gewölbe für die Barschaft, die Wertschriften und ein Gewölbe mit eisernen Schrankfächern (Safes) zur Vermietung an das Publikum. Diese Gewölbe sind von den übrigen Kellerräumlichkeiten durch einen zwischen ihnen liegenden Wächtergang vollkommen getrennt; das Barschaftsgewölbe ist nur mit der Kasse, das Wertschriftengewölbe nur mit dem Archiv in Verbindung. Eine direkte Treppe führt vom Vestibule aus, an der Kasse vorbei, zu den Safes im Untergeschoss. Mit Ausnahme des Wertschriften gewölbe im Untergeschoss. Mit Ausnahme des Wertschriften den Safes im Untergeschoss.

schriftengewölbes an der Bahnhofstrasse liegen sämtliche Gewölbe nirgends an den Fassadenmauern. Sie sind zum grossen Teil von doppelten Mauern umgeben und je mit starken eisernen Panzerthüren und innern Gitterthüren abschlossen.

Für das ganze Gebäude ist Centralheizung (Warmwasser- oder Niederdruckdampf) angenommen mit drei Heizapparaten, wovon der eine für den Kassa-Anbau und die beiden andern für das Hauptgebäude bestimmt sind. Sämtliche Arbeitsräume erhalten in den Mauern Ventilationskanäle.

Die Baukosten, nach kubischem Inhalt berechnet, werden per m^3 40—42 Fr. betragen. Das Gebäude hat einen Kubikinhalt von 21054 m^3 , was zu 42 Fr. per m^3 eine Bausumme von 884000 Fr. ergiebt.

Miscellanea.

Die Anwendung mechanischer Motoren für den Strassenbahnbetrieb. Am Schlusse des umfassenden Berichtes, den Civilingenieur E. A. Ziffer von Wien auf der vorjährigen Generalversammlung des internationalen permanenten Strassenbahnvereins in Genf über obiges Thema erstattet und vor kurzem veröffentlicht hat, werden die von ihm besprochenen fachmännischen Studien und die mit den mechanischen Motoren beim Strassenbahn- und Kleinbahnbetriebe erzielten Resultate in folgender Uebersicht zusammengefasst:

Die Dampfwagen wurden in letzterer Zeit in Amerika wesentlich verbessert und finden daher wieder eine grössere Beachtung, namentlich für Seitenlinien von Hauptbahnen und für Strassenbahnen, bei welchen der Verkehr für den Betrieb mit Dampflokomotiven und ganzen Zügen nicht gross genug ist, um denselben ertragsfähig zu gestalten, und die lokalen Verhältnisse die Anwendung anderer Motoren und selbst jener für

den elektrischen Betrieb nicht geeignet erscheinen lassen. In diesen Fällen kann der Dampfwagen empfehlenswert sein. Von den Dampfmotoren überhaupt hat auch das System Serpollet1) mit überhitztem Dampf einige Verbesserungen und infolgedessen namentlich in Frankreich auch eine weitere Verbreitung gefunden, aber trotzdem besitzt dieses System noch einige der bekannten Uebelstände und Mängel, welche die «Société des Générateurs à Vaporisation instantanée, Système Serpollet» zu beseitigen bestrebt ist. Als ein kaum zu vermeidender Nachteil muss der Umstand angesehen werden, dass der Kessel gegen die für die Fahrgäste bestimmte Wagenabteilung gelegen ist und dieselben von den Verbrennungsgasen und der warmen Luft oder von dem aus den Cylindern entweichenden Dampf belästigt werden. Dieses System wäre nach Beseitigung seiner Mängel sodann geeignet, nicht nur den Strassenbahnen für den Vorortverkehr, sondern auch den Eisenbahnen für den Nahverkehr, sowohl für die Personen-, Eilgut- und Gepäckbeförderung, als auch für den Postdienst in ökonomischer Weise gute Dienste zu leisten: doch lässt der versuchsweise. wenn auch regelmässige Betrieb mit den für diesen Zweck eigens gebauten Dampfwagen wegen der verhältnismässig noch zu kurzen Betriebsdauer über die praktische Verwendbarkeit und den ökonomischen Wert derselben ein abschliessendes Urteil noch nicht zu.

Die feuerlose Lokomotive²) hat in den letzten beiden Jahren eine weitere Verbreitung nicht gefunden, auch sind die Betriebsergebnisse nicht als sehr günstige zu bezeichnen; sie eignet sich besonders für die Vermittelung des Personenverkehres in der Umgebung grösserer Städte. Das in diese Kategorie fallende Heisswassersystem Dodge oder der sogenannte Kinetic-Motor, welches auf einigen Bahnen in Amerika versuchsweise im Betriebe ist, besitzt nebst den Vorzügen der feuerlosen Lokomotive noch eine grösserer Einfachheit und dass das Fahrzeug als Motorwagen gleichzeitig 60 Sitzplätze für die Aufnahme der Fahrgäste enthält. Die Versuche können jedoch nicht als abgeschlossen betrachtet werden, immerhin verspricht dieses System durch die in Amerika auf mehreren Bahnen durchgeführten Versuchsfahrten einigen Erfolg, und es sind weitere Betriebsresultate noch abzuwarten.

Die Verbreitung des Press oder Druckluftbetriebes³) hat in den letzten Jahren in Europa — obwohl derselbe mehrfache Vorzüge besitzt — keine nennenswerten Fortschritte zu verzeichnen, dagegen werden in Amerika Anstrengungen gemacht, dieses System durch den Bau von Druckluftlokomotiven besonders für Hochbahnen auszugestalten. Ueber den Wert der ersteren sind die Meinungen in den Fachkreisen, mit Rücksicht auf die nicht ausreichenden Erfahrungen, noch geteilt. Der Druckluftbetrieb besitzt wohl mancherlei gute Eigenschaften und könnte infolgedessen auch mit dem ihm ähnlichen Dampfwagenbetrieb konkurrieren, wenn sich ersterer ökonomischer gestalten würde.

Der Seilbetrieb⁴) kann nicht als vollkommen aufgegeben betrachtet werden, derselbe findet vielmehr in letzterer Zeit in England, trotz der hohen Anlagekosten, der raschen Seilabnützung und der grossen Reibungsverluste, bei schwierigen Terrainverhältnissen besonders wegen seiner grossen Leistungsfähigkeit und des billigen Betriebes bei sehr starkem Verkehre in vorteilhafter Weise erneuerte Anwendung.

Die Gas-,⁵) Benzin- und Petroleum-Motorwagen haben erhebliche Verbesserungen erfahren, besonders sind es aber die in letzter Zeit für Klein- und Strassenbahnen gebauten Gaslokomotiven, welche einige Beachtung verdienen, da sie bei grösserer Leistungsfähigkeit ökonomischer als Gaswagen arbeiten. Namentlich eignet sich dieses System für den Tramwaybetrieb kleinerer Städte, da allerorts Gas erhältlich und die gesamten Einrichtungen einfach und nicht kostspielig sind, ferner auch für lange Linien mit schwachem Verkehre. Der Gasmotor erregt auch ausserhalb Deutschlands einiges Interesse, obwohl die unangenehmen Erschütterungen, sowie das Eindringen der Verbrennungsgase in den Wagen noch nicht als ganz beseitigt anzusehen sind und hierdurch die Fahrgäste zuweilen belästigt werden.

Der Betrieb von Tramways mit Gasolinmotoren System Hoskins in Amerika ist noch nicht über das Versuchsstadium gekommen.

Die Daimler-Benzinmotorwagen wurden etwas verbessert, doch sind die bei den württembergischen Staatsbahnen gemachten Erfahrungen über

1) S. Schweiz, Bauztg. Jahrg. 1895 Bd. XXV S. 170.

die Verwendung derselben für den Nahverkehr noch nicht ausreichend genug, um ein entsprechendes Urteil abgeben zu können.

Der Motorenbetrieb mittels Acetylengas²) befindet sich noch im Versuchsstadium. (Schluss folgt.)

Einspritzen von Cement in wasserhaltigen Boden. In letzter Zeit ist mehrfach in technischen und auch in Tagesblättern die Frage besprochen worden, ob es nicht möglich sei, durch Einspritzen von Cement in wasserhaltigen Boden diesen wasserundurchlässig und standfest zu machen, so dass er ohne weiteres als Sohle oder als Seitenwand einer herzustellenden Baugrube benutzt werden kann. Die folgenden Aufzeichnungen, welche Herr Lauter-Frankfurt a. M. im Centralbl. d. Bauverwaltg. über einige in dieser Hinsicht gemachte Erfahrungen veröffentlicht, dürften daher von Wert sein.

Bei der Gründung des Oberhauptes der Schleuse Nr. 85 des Rhein-Rhone-Kanals, die mittels Pressluftverfahrens erfolgte, handelte es sich nach der Versenkung darum, dieses neue Oberhaupt mit der bestehenden alten Betonsohle in Verbindung zu bringen und den entstandenen Schlitz wasserdicht auszufüllen. Zu dem Zwecke wurden in die eiserne Senkkastenwand Löcher gebohrt und durch diese vom Innenraum aus Cementeinspritzungen in den unter dem Schlitz lagernden groben Kies gemacht. Die Löcher waren in etwa 50 cm Entfernung von einander angeordnet. Die durch die Einspritzung entstandene betonartige Dichtungsmasse, welche wohl eine prismatische Gestalt angenommen haben dürfte, war im stande, ein Eindringen des Wassers abzuhalten, und unter Zuhilfenahme eines Balkenversatzes konnte der obere Teil der Schleuse ausgepumpt und der Schlitz von oben durch Einstampfen von trockenem Cementmörtel mit Erfolg gedichtet werden.

Ein Beispiel, in welcher Weise Cement- oder anderer Mörtel in den umliegenden Kiesboden eindringt, konnte man auch beim Abbruch alter Pfeiler der Moselbrücke bei Longeville sehen. Durch die sehr lückenhafte hölzerne Umschliessungswand war der Mörtel des Betons, auf dem die Gründung der Pfeiler erfolgte, nach aussen zum Teil hinausgedrungen, und die mit dem Mörtel durchdrungenen Kiesmassen bildeten um die Holzwand herum zackenförmige Auswüchse, so dass das Ganze wie die Aussenseite des unter dem Namen «Baumkuchen» bekannten Gebäckes sich darstellte. Die Auswüchse gingen übrigens nicht über ein Mass von 20 bis 30 cm hinaus.

Mit bedeutenden Opfern an Zeit und Geld und mit grosser Sorgfalt sind ferner auf dem Bauplatze der «Gesellschaft für den Bau von Untergrundbahnen» in Treptow bei Berlin Versuche über Cementeinspritzungen in den festgelagerten, wasserdurchdrungenen Fliessand, welcher den Berliner Untergrund bildet, gemacht worden. Anlass zu diesen Versuchen bot die Absicht, die eisernen Tunnelröhren gegen Rost dadurch zu schützen, dass in den umliegenden wasserführenden Sand Cementmörtel eingespritzt und dadurch eine Betonumhüllung geschaffen werden sollte. Auch sollte die Fuge, welche naturgemäss beim Vorschieben des Vortriebschildes zwischen dem endgültigen Tunnel und dem Rohre des Vortriebschildes entsteht, mit Cementeinspritzungen gedichtet werden. Diese Versuche haben einen vollständigen Misserfolg ergeben. Es hat sich gezeigt, dass das Eindringen des flüssigen Mörtels in das umliegende Erdreich nur in geringem Masse stattfindet und dass sich sehr schnell über der Einspritzöffnung ein kurzer kegelförmiger Cementkörper mit stumpfer Spitze bildet, der das weitere Eindringen der Einspritzungen verhindert. Die Versuche sind, wie gesagt, mit besonders zu diesem Zwecke gebauten Maschinen unter Verwendung von starkem Wasserdruck oder starkem Luftdruck gemacht worden, mussten aber als vollständig aussichtslos aufgegeben werden. -

Diese drei Ergebnisse aus der Praxis zeigen, dass in bestimmten Fällen wohl eine Cementeinspritzung als geeignetes Mittel zur Erreichung einer Abdichtung zur Anwendung gebracht werden kann, dass aber, bevor weitere Versuche, und zwar in sehr grossem Masstabe gemacht sein werden, eine Verallgemeinerung des Verfahrens zunächst nicht am Platze ist und dass keine zu grossen Hoffnungen auf dieses Verfahren gesetzt werden sollten. Es geht sehr wohl an, einen bestehenden und zusammenhängenden Hohlraum in Mauerwerk, oder hinter demselben, wie dies beim Tunnelbau vorkommt, mit Cementmörtel zu füllen, ebenso wie man eine Fuge nachträglich ausgiessen kann; auch bei leicht gelagertem, grobem Kies, dessen Zwischenräume hinreichend gross sind, ist vielleicht noch ein Erfolg zu erwarten. Dagegen wird bei festgelagertem und besonders bei feinem sandigem Boden eine weitergehende Durchtränkung mit Cement zu dem eingangs genannten Zwecke nicht möglich sein. Vielmehr werden durch diese Einspritzung nur einzelne, unzusammenhängende Knollen und Nester geringer Ausdehnung von betonartiger Beschaffenheit gebildet.

²⁾ System Lamm u. Francq in Betrieb auf den Tramlinien Lille-Roubaix-Tourcoing und St. Germain-Poissy (Paris).

³) S. Schweiz, Bauztg, Jahrg, 1890 Bd, XVI S. 154, 160; 1892 Bd, XIX S. 162; 1897 Bd, XXIX S. 161; 1898 Bd, XXXI S. 194.

S. Schweiz. Bauztg. Jahrg. 1883 Bd. I S. 17; 1884 Bd. III S. 89, Bd. IV S. 80; 1889 Bd. XIII S. 116.

⁵) S. Schweiz, Bauztg, Jahrg, 1893 Bd, XXI S. 27 u. 59; 1894 Bd, XXIV S. 177; 1895 Bd, XXV S. 68, Bd, XXVI S. 161; 1897 Bd, XXX S. 167.

¹⁾ S. Schweiz, Bauztg. Jahrg. 1897 Bd. XXIX S. 160.

Elektrische Licht- und Kraftanlage in Turin. Die «Società Elettrica Alta Italia» mit Siemens & Halske A.-G. als ausführender Firma haben neuerdings die Arbeiten zur Kraftübertragung von Lanzo nach Turin begonnen, über welche in der «Elektr. Zeitschr.» einige Angaben gemacht werden. Die in der Anlage erzeugte Leistung von 4-6000 P. S. ist etwa doppelt so gross wie diejenige, die von Tivoli nach Rom übertragen wird.*) Das zu verwendende Verteilungssystem ist bis jetzt in Italien sonst nirgends zur Ausführung gekommen. Die erforderliche Wasserkraft wird der Stura di Pessinetto und der Stura di Viù in einem gemeinsamen Turbinenhause am Zusammenfluss der beiden Wasserläufe nahe bei Lanzo entnommen. Die Stura di Pessinetto giebt bei niedrigem Wasserstand 3000 l pro Sek. und bei normalen Wasserverhältnissen 5000 l pro Sek. bei einem Gefälle von 63 m, was einer effektiven Leistung von 1890-3150 P. S. entspricht. Die Wassermenge der Stura di Viù schwankt zwischen 1500-2000 / pro Sek. und hat ein Gefälle von 155 m, sodass sich 2320-3100 P. S. ergeben. Das Wasser der erstgenannten Stura wird in einem 4300 m langen Kanal mit verschiedenen Aquädukten und Tunneln, dasjenige der Stura di Viù in einem 6400 m langen Kanal mit einem grossen Siphon zur Ueberführung über das Sturabett einer kurzen Druckleitung aus Stahlblech und damit der Kraftstation zugeführt. Das 70 m lange und 28 m breite Maschinenhaus ist für sechs 1000-pferdige und vier 100-pferdige Reaktionsturbinen mit Saugrohr bestimmt. Erstere werden mit sechs Dreiphasengeneratoren für 500 V, letztere mit den Erregermaschinen gekuppelt. Die Leitungsspannung wird durch Transformatoren auf 12 500 V erhöht. Die 35 km lange Fernleitung besteht aus neun Drähten von 9,5 mm Durchmesser. Vor dem Eintritt in die Stadt wird die ankommende Spannung von 10000 V auf 3000 V umgesetzt. Von dieser Umformerstation geht einerseits das Verteilungsnetz für die Beleuchtung und Kraftversorgung der inneren Stadt, das mit Transformatoren vom Uebersetzungsverhältnis 3000 auf 150 V arbeitet, andererseits die Speiseleitung zu der Hauptstation in der Via Bologna ab. In letzterer werden sechs rotierende Umformer, von denen drei bereits in Arbeit sind, aufgestellt. Die Umformer bestehen aus je einem synchronen Drehstrommotor, der mit einer Innenpolgleichstrommaschine für 420 kw und 500 V direkt gekuppelt ist und machen 150 U. p. M. Im gleichen Gebäude befindet sich auch die Dampfcentrale, welche die Stadt bisher mit Gleichstrom versorgte, sowie eine Akkumulatorenbatterie. Die sechs Röhrendampfkessel von Tosi in Legnano haben je 230 m² Heizfläche und arbeiten mit 10-12 Atm. Die Anlage wird auf zwölf solche Kessel ausgebaut werden. Die drei Tosi-Dampfmaschinen leisten bei 110 U. p. M. 600-900 P. S. Es werden noch zwei weitere ähnliche Maschinen zu 1200 P. S. neben den anderen Aufstellung finden. Die Dampfmaschinen sind mittels Zodel-Kuppelung mit je einer Gleichstrommaschine der Innenpoltype für 500 V und 1000-1200 Amp. gekuppelt. Die Akkumulatorenbatterie setzt sich aus 300 Pollak-Elementen von 1950-2600 Amp-Stunden. Kapacität zusammen. Die Plattendimensionen sind 780, 610, 550. Zum Laden der Akkumulatoren dient eine Zusatzmaschine für 650 Amp. und

Für die Strassenbahn ist das gemischte System mit Akkumulatoren und Oberleitung angewendet. In jedem Wagen sind 200 Tudor-Akkumulatoren mit 25 Amp.-Stunden Kapacität untergebracht. Mit einer vollen Ladung der Batterie kann jeder Wagen drei volle Fahrten ausführen. Die Arbeitsspannung der Wagenbatterie ist 370 V. Die Licht- und Kraftverteilung im Innern der Stadt erfolgt nach dem Fünfleitersystem mit Unterstation. Letztere steht ziemlich im Mittelpunkte des Netzes und enthält zwei Gruppen Ausgleichsmaschinen, sowie eine Akkumulatorenbatterie derselben Grösse und Ausführung wie in der Centralstation selbst. Zum Laden der zwischen den fünf Leitern liegenden vier Akkumulatorengruppen sind zwei rotierende Umformer aufgestellt, die je auf zwei der Akkumulatorengruppen geschaltet werden können. Bis jetzt sind 20 Speise- und 60-70 Verteilungspunkte angeschlossen. Die grossen Schaltbretter in der Centrale und in der Unterstation gestatten bei der Vielseitigkeit der Anlage, in bequemer Weise die verschiedensten Schaltungen auszuführen. Die Dampfcentrale in Turin wird nach Fertigstellung der hydraulischen Anlage nur noch als Reserve dienen.

Anwendung von Aluminium für elektrische Leitungen. In den Vereinigten Staaten macht man zum ersten Male den interessanten Versuch, für die Leitung einer elektrischen Kraftübertragungsanlage Aluminiumdraht anzuwenden. Der betreffende Draht hat eine Länge von 130 km und wiegt 70 t. Er besteht aus einer Legierung von 1,95% Kupfer, 0,25% Silicium, 0,30% Eisen und 97,50% reinem Aluminium. Von der an den Snoqualmie-Fällen liegenden Kraftstation sollen 10000 P. S.

mittels dieser Leitung nach Seattle und Tacoma im Staate Washington übertragen werden. Der Versuch wird von den amerikanischen Elektrikern mit grossem Interesse verfolgt, da die hohe Leitungsfähigkeit und die ökonomischen Vorteile eines Aluminiumdrahtes geeignet wären, die praktische Lösung des Problems der elektrischen Kraftübertragung auf heute noch nicht erprobte Entfernungen zu erleichtern.

Ladestationen für elektrische Automobile. In Brüssel soll sich eine Gesellschaft gebildet haben, zu dem Zwecke, auf fahrbaren Strassen in Abständen von 15—20 km Ladestationen für die Füllung von Akkumulatoren elektrischer Automobile anzulegen. Ausserdem würde auch für die Bedürfnisse solcher Selbstfahrzeuge gesorgt werden, die Petroleum, Benzin, Gas u. s. w. benutzen. Eine Wirtschaft, eine Station für ärztliche Hilfeleistung, eine Reparaturwerkstatt und eine Niederlage von Ergänzungsteilen für Wagen und Räder sollen damit verbunden werden. Die ersten Netze der in Rede stehenden Anlagen umfassen nach dem im «Electricien» besprochenen Projekt die grossen Landstrassen Belgiens und Frankreichs, zunächst die Strasse von Brüssel nach Paris durch das Thal der Maas. Die genannte Fachschrift erwartet von der Ausführung dieses Planes eine Umwälzung in der Industrie des Selbstfahrwesens.

Konkurrenzen.

Primarschulgebäude in Winterthur. Zur Erlangung von Planskizzen für ein Primarschulgebäude an der Geiselweid- und Platanenstrasse in Winterthur hat die Schulhausbaukommission unter den schweizerischen Architekten eine schon in letzter Nummer erwähnte Ideenkonkurrenz eröffnet. Dem Programm ist folgendes zu entnehmen: Termin: 15. Februar 1899. Die Baukosten dürfen einschl, ausgebaute Keller- und Dachräume 21 Fr. per m³ nicht überschreiten. Das Preisgericht besteht aus den HH.: Stadtbaum. G. Gull in Zürich, Bauamtmann A. Isler, Baumeister Joh. Lerch, Arch. A. Pfister, Arch. Prof. E. Studer, Dr. Th. Rheinhart-Volkart und Sekundarlehrer H. Bueler, sämtlich in Winterthur. Preise: 1500 Fr., über deren Verteilung keine bestimmten Angaben gemacht werden. Achttägige öffentliche Ausstellung sämtlicher Entwürfe nach erfolgtem preisgerichtlichem Entscheid, der veröffentlicht wird. Die preisgekrönten Entwürfe gehen in den Besitz der Stadtgemeinde Winterthur über, welche sich vorbehält, dieselben für die Ausführung beliebig zu verwenden.

Für die Lage des auf 798 m² Bodenfläche zu beschränkenden Gebäudes sind zwei Varianten vorhanden, über welche die dem Programme beigefügten Situationspläne A und B in I: 500 Aufschluss geben. Die Ausarbeitung der Pläne nach einer der beiden Situationen oder nach beiden bleibt den Bewerbern freigestellt, wobei jedoch unter allen Umständen auf einen Eingang von der Geiselweidstrasse aus (Süden) Bedacht zu nehmen ist. Das Schulhaus soll nebst allen übrigen Räumen enthalten: 14-16 Unterrichtszimmer von 9 m Länge, 7 m Breite und 3,8 m Höhe für die Elementarund Realschule, zwei in länglicher Form angelegte Zimmer von etwa 35 m2 für die weibliche Arbeitsschule, eventuell im Dachgeschoss einen Singsaal, und drei Handfertigkeitsräume im Untergeschoss, wo auch eine kleine Schulküche, die Schulbäder und die Centralheizung anzuordnen sind. Breite der mit je zwei bis drei Wascheinrichtungen, sowie Vorrichtungen für die Garderobe zu versehenden Gänge etwa 4 m. Bezüglich der äusseren Erscheinung wird eine dem Zweck würdige, aber einfache Ausstattung gewünscht. Verlangt werden: ein Situationsplan in 1:500, sämtliche Grundrisse sowie Fassaden in I: 200. Schnitte sind nicht zu liefern. Die Unterlagen des Wettbewerbs können vom städtischen Bauamt in Winterthur bezogen werden.

Städtisches Theater in Varna (Bd. XXXII S. 108, 115). Es sind neun Entwürfe eingegangen. Die auf 3000 Fr. festgesetzte Preissumme fiel zu gleichen Teilen an die Entwürfe der Architekten P. Brang in Wien, H. Rigotti in Turin und Leon Grottia in Rom.

Nekrologie.

† Emil Kern. In der Ehrentafel, welche die Schweizerische Bauzeitung unter der Rubrik «Nekrologie» gesetzt hat, vermisse ich einen Namen, der wohl wie kein anderer allen Technikern bekannt ist, den Namen «Kern». Auf dem ganzen Erdenrunde sind die Erzeugnisse der Firma Kern & Cie. in Aarau bekannt, in Australien, in Südamerika arbeitet der Ingenieur mit Instrumenten, die aus ihrer renommierten Werkstätte hervorgegangen sind.

^{*)} S. Schweiz, Bauzig, Jahrg, 1892 Bd, XX, S. 99.