Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 27/28 (1896)

Heft: 25

Artikel: Die Turbinen und deren Regulatoren auf der schweiz.

Landesausstellung in Genf 1896

Autor: Prášil, Franz

DOI: https://doi.org/10.5169/seals-82424

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

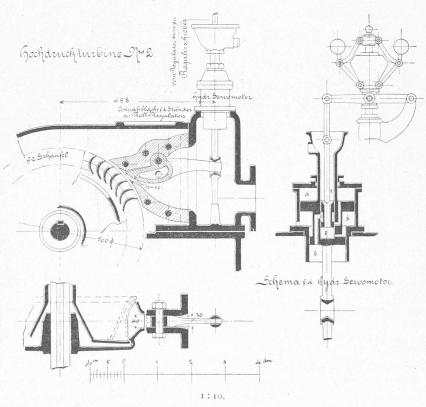
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Die Turbinen und deren Regulatoren auf der schweiz. Landesaussellung in Genf 1896. VI. — Zur Zürcher Bahnhoffrage. — Miscellanea: Acetylenexplosion in Berlin. — Statistik der eidgenössischen polytechnischen Schule in Zürich. — Konkurrenzen: Neubau einer zweiten protestantischen Kirche in der St. Leonhards-Gemeinde in Basel. Bebauung eines Grundstückblockes auf dem Bahnhofplatz zu Altona a. Elbe.

Regulierung des Neugebäude-Terrains in Budapest. Monumentaler Brunnen auf einem öffentlichen Platz in Altona. — Preisausschreiben: Preisaufgaben anlässlich der internationalen Ausstellung in Brüssel 1897. — Nekrologie: † Francesco Salverio Cavallari. † Th. Gossweiler. — Vereinsnachrichten: Zürcher Ingenieur- und Architekten-Verein. Stellenvermittelung.


Die Turbinen und deren Regulatoren auf der schweiz. Landesausstellung in Genf 1896.

Von Franz Prásil, Professor am eidg. Polytechnikum.

VI.

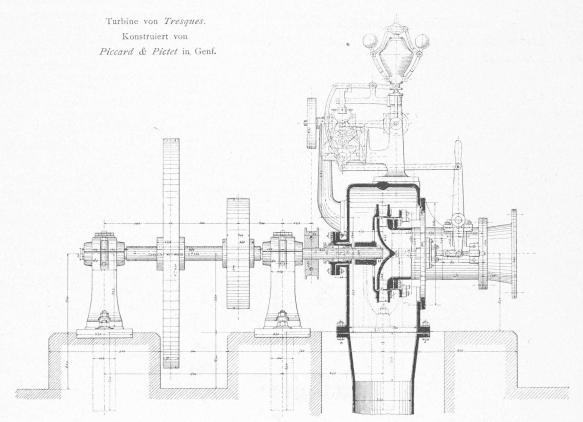
Piccard & Pictet, vorm. Fäsch & Piccard in Genf. Eine nach Grösse und Konstruktion gut geordnete Kollektion, sowie einige in Betrieb befindliche Ausführungen veranschaulichten des hydraulischen Servomotors in Verbindung. Letzterer besteht aus einem, auf das Leitapparatgehäuse aufgesetzten, gegen dasselbe offenen und nach oben geschlossenen Cylinder, in welchem durch den Differentialkolben drei Räume $a,\ d,\ b$ abgeschieden sind. Der Raum b steht mit dem Innern des Leitapparatgehäuses in Verbindung; die dem letzteren zugekehrte Fläche des Kolbens steht daher unter der im Gehäuse herrschenden Pressung; im Raum d herrscht der äussere Luftdruck, im Raum a veränderliche Pressung, je nach der Stellung des im Kolben coaxial mit demselben

Hochdruck-Turbine, konstruiert von Piccard & Pictet in Genf.

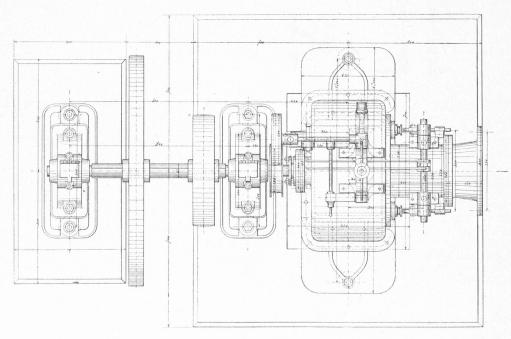
die von obiger Firma systematisch durchgebildete Entwickelung ihrer Radialturbinen.

Eine Hochdruckturbine, Modell Nr. 1, mit Handregulierung, konstruiert für eine Leistung von 5 P.S. bei 13 Atmosphären Druck in der Zuleitung und 1500 minutlichen Umdrehungen der horizontalen Welle, ferner eine Hochdruckturbine, Modell Nr. 2, mit automatischer Regulierung, konstruiert auf 15 Pferdekräfte bei demselben Druck und 900 minutlichen Umdrehungen, waren als Tangentialräder ausgebaut.

Die Konstruktion der Turbine, Modell Nr. 2, ist aus obenstehenden Schnittfiguren, die der automatischen Regulierung aus dem Schema zu ersehen. Die beiden Modelle unterscheiden sich im wesentlichen darin, dass die Schaufelung des Turbinenrades am kleineren Modell bei 300 mm äusserem Durchmesser symmetrisch in Bezug auf die vertikale Mittelebene geformt ist, während dasjenige des grösseren Modelles der besseren Wasserabführung halber unsymmetrisch ausgebildet ist.


Die Beaufschlagung erfolgt durch einen Leitapparat mit Regulierzunge, welche bei Modell Nr. 1 durch ein Schraubengetriebe von einem Handrad aus bewegt wird. Bei Modell Nr. 2 ist dieselbe mit dem Differentialkolben angeordneten und unter dem Einfluss des Pr"oll'schen Centrifugalregulators stehenden Steuerschiebers.

Die im Schema gezeichnete Stellung der einzelnen Teile entspricht der relativen Mittellage des Steuerschiebers gegen den Kolben und hiemit der Wirkungslosigkeit des Servomotors; die Räume a und b sind hiebei weder unter einander, noch mit dem Freien in Verbindurg.


Wird bei eintretender Geschwindigkeitsvermehrung der Turbinenwelle durch den Centrifugalregulator der Schieber derart gehoben, dass eine Verbindung von a mit e und hiedurch mit dem Freien hergestellt wird, so vermindert sich die Pressung in a, der Kolben steigt, die Austrittsöffnung aus dem Leitapparat wird verkleinert. Indem bei dieser Bewegung der Kolben dem Schieber nacheilt, wird der Raum a ausser Verbindung mit e gebracht und das Gleichgewicht am Servomotor wieder hergestellt. Die Rückführung erfolgt daher unmittelbar durch diese Nacheilung des Kolbens.

Sinkt der Steuerschieber, so tritt a durch den ringförmigen Raum ε des Schiebers mit b in Kommunikation, es entsteht ein auf den Kolben nach abwärts gerichteter Ueberdruck, welcher eine gleich gerichtete Bewegung des Kolbens, und damit eine Vergrösserung des Austrittsquerschnittes am Leitapparat erzeugt; gleichzeitig eilt der Kolben dem Schieber wieder nach, die Verbindung zwischen a und c bzw. b wird unterbrochen; der Servomotor wird wirkungslos. Der letztere ist mithin ein richtiger Kolbenmotor mit innerer Steuerung.

Das Gegenstück zur Hochdruckturbine Modell Nr. 2 bildete eine Mitteldruckturbine mit Klinkenregulator. Dieselbe ist für eine Leistung von $3^{1}/2$ P.S. bei 6 m Gefälle und 350 minutlichen Umdrehungen der Turbinenwelle berechnet und als innen und voll beaufschlagte Radialturbine

Längenschnitt 1:15.

Grundriss 1:15.

Auf der Ausstellung war diese Turbine, ebenso wie Modell Nr. 1 nicht im Betrieb; doch konnte die Wirksamkeit der Regulierung in der elektrischen Abteilung des Wasserwerkes an einer für den Dynamobetrieb installierten Turbine beobachtet werden.

auf horizontaler Achse konstruiert; die Regulierung erfolgt gleichzeitig an allen Leitradzellen, indem im Spalt ein Ringschieber verschoben und so am ganzen Umfang der Austrittsquerschnitt aus dem Leitapparat und der Eintrittsquerschnitt in das Laufrad verändert wird; die Turbine

Querschnitt 1:15.

ist mit einem gusseisernen Gehäuse umgeben, aus dem die

Turbine von Tresques.

Konstruiert von

Piccard & Pictet in Genf.

ist; durch diese Anordnung sind einerseits Ungleichmässigkeiten der Wasserwirkung an verschiedenen hochgelegenen Punkten des beaufschlagten Umfanges eliminiert, so lange der Wasserspiegel im Gehäuse über dem höchsten Punkt des Laufrades liegt, anderseits ist eine Disposition in bequemer Höhenlage über dem Unterwasserspiegelermöglicht. Zur Vermeidung grösserer hydraulischer Verluste ist

die Schaufelung im Sinne einer Grenzturbine durchgeführt und die Regulierung am ganzen Umfange angeordnet. Der Ringschieber ist mit Stangen versehen, welche durch Stopfbüchsen nach aussen geführt und durch ein Hebelwerk, als Reguliergetriebe, mit dem Servomotor desKlinkenregulators verbunden sind. Die Konstruktion des letzteren ist aus den Darstellungen auf S. 179 und 180 zu ersehen.

Von der vertikalen Spindel des Centrifugalregulators wird mit-

telst Kegelgetriebe, Excenter und Schubstange eine schildförmige Platte in konstante, schwingende Bewegung mit beidseitig gegen die vertikale Mittellage gleich grossem Ausschlag versetzt; auf dieser Platte befinden sich in symmetrischer Anordnung zwei Schaltklinken, die jede für sich durch eine Sperrklinke für gewöhnlich in einer bestimmten Lage erhalten wird. Unterhalb dieser Platte befindet sich, um eine horizontale Achse drehbar, ein symmetrisch ausgebildetes Schaltsegment mit Schaltzähnen, deren Arbeitsflächen der Symmetrielinie des Segmentes zugekehrt sind; an letzteres greift das Reguliergetriebe an. Das von der Regulierspindel zur schildförmigen Platte führende Getriebe, diese Platte mit ihren Klinken und das Segment bilden den

Oberhalb der schwingenden Platte befindet sich zwischen zwei, an den nach aufwärts gerichteten Armen der Sperrklinken einstellbar angebrachten Anschlägen eine Stahlplatte, welche durch ein gleichzeitig mit der Hülse des Centrifugalregulators und mit dem Schaltsegment verbundenes Hebelwerk die für die Bestimmung der Wirksamkeit des Servomotors nötige Lageveränderung erhält und somit das Hilfsorgan für die Steuerung des Servomotors bildet. Der Vorgang ist nun folgender: Befindet sich die Stahlplatte in einer solchen Lage, dass die Anschläge der Sperrklinken bei der schwingenden Bewegung der schildförmigen Platte mit ihr nicht in Berührung kommen, so bleiben die Schaltklinken gesperrt; sowie aber durch eine Bewegung der Hülse des Centrifugalregulators die Anschlagplatte aus ihrer Mittellage gebracht wird, findet eine Auslösung der auf der betreffenden Seite befindlichen Schaltklinke statt, welche dann in intermittierender Wirkungsweise die Bewegung der schildförmigen Platte auf das Schaltsegment so lange über-

trägt, bis durch die gebogene Stange vom Segment aus die Welle durch eine Stopfbüchse nach aussen geführt und Rückführung der Anschlagplatte in die Mittellage bewerkwelches in dichtem Anschluss mit einem Saugrohr versehen | stelligt ist. Mit diesem Mechanismus ist noch ein Hebel-

werk für die Abstellung des Regulators, z. B. bei Regulierung von Hand, verbunden. Der Centrifugalregulator ist in der Pröll'schen Anordnung als Gewichtsregulator durchgeführt und von der Turbinenwelle aus mit Riemen und Winkelrädern in Umdrehung versetzt.

Die ausgestellte Turbine war für eine Installation in Tresques bestimmt.

In der nämlichen

Dieselbe ist eine Radial - Aktionsturbine auf horizontaler Achse, deren Beaufschlagung

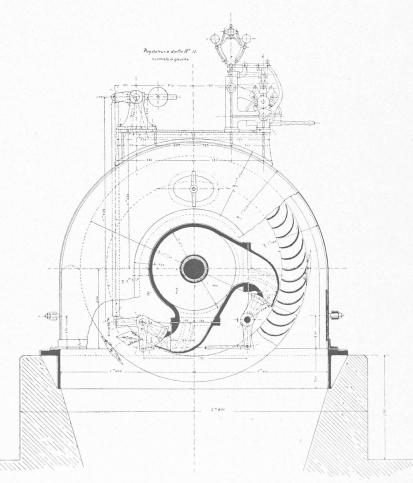
Gruppe mit den bisher beschriebenen Turbinen befand sich noch eine Hochdruckturbine mit automatischer Regulierung, welche für eine Leistung von 400 P.S. bei 88 m Gefälle und 310 minutlichen Umdrehungen der Turbinenwelle berechnet und für den Betrieb von Dynamomaschinen in der elektr.Centrale..Combe-Garrot" der Orte "La Chaux-de-Fonds" und "Locle" bestimmt ist (s. S. 180 u. 181).

an zwei Stellen des inneren Umfanges durch Leitapparate erfolgt; die Austrittsquerschnitte der letzteren werden durch drehbare Schieber reguliert, welche so angeordnet sind, dass ihre Drehachsen ausserhalb des Leitradgehäuses liegen und der Wasserdruck an allen wasserberührten Stellen des Schiebers gegen die Drehachse gerichtet ist. Die für den richtigen Einfluss des Wassers in das Laufrad nötige Führung desselben erfolgt an der dem Laufrad zugekehrten Seite des Strahles durch eine feste, entsprechend gekrümmt ausgebildete Leitfläche, an der entgegengesetzten Seite dadurch, dass die beim Austritt stattfindende Kontraktion des Strahles durch scharfe Ausbildung der kontrahierenden Schieberkante zu einer bestimmten, für die verschiedenen Schieberlagen möglichst konstanten gemacht ist.

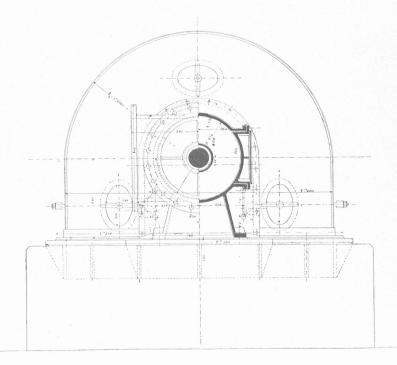
Die Schieber sind durch ein Hebelwerk untereinander und mit einem Klinkenregulator gleicher Konstruktion, jedoch grösserer Dimensionierung, wie der vorher beschriebene gekuppelt; das Turbinengehäuse ist in Blechkonstruktion mit gusseiserner Grundplatte ausgeführt, die langen Lager der Turbinenwelle sind mit automatischer Ringschmierung ausgerüstet.

Eine Turbine ähnlicher Konstruktion war mit einer Dynamomaschine von Alioth in Basel, eine zweite in der von der Firma A. Friedli, Ingenieur in Bern, ausgestellten Sägeanlage in Acacias im Betrieb zu beobachten. Ein mit der ersten angestellter Versuch über die Leistungsfähigkeit der Regulierung ergab folgende Resultate:

Bei plötzlicher Belastungssteigerung von 8,4 auf 15,4 kw sank die Tourenzahl des Tachometers von 812 zuerst auf 787 und ging ohne weitere Schwingung auf 795 über, so dass die schliessliche Geschwindigkeitsvariation 2,09% betrug; bei plötzlicher Wiederentlastung auf 8,4 kw erreichte die Tourenzahl zuerst den Maximalwert von 815 und ging dann auf 812 zurück.


An der Anlage in Acacias wurde ein praktischer Versuch insofern durchgeführt,dass während des Betriebes, wobei die ganze Transmission der Sägeanlage mitlief und mit einer grossen Cirkularsäge ein Block geschnitten wurde, der Hauptriemen zwischen Turbine u. Transmission plötzlich abgeworfen wurde; der Regulator trat sofort und derart energisch in Wirksamkeit, dass die entlastete Turbine ruhig, ohne merkliche Geschwindigkeits. erhöhung weiter-

EineRadial-Aktionsturbine mit innerer und partialer Beaufschlagung, berechnet für eine Leistung von 300 P.S. bei 56 m Gefälle und 330 minutlichen

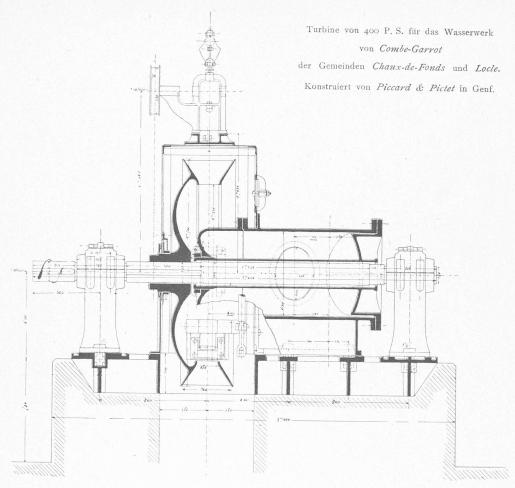

Umdrehungen der Turbinenwelle, bildete mit einer direkt gekuppelten Dynamomaschine von Alioth in Basel eine der für die Installation in Pré aux Clées bestimmten Gruppen der elektrischen Centrale für Neuchâtel.

Die Regulierung derselben erfolgt durch einen entlasteten Schieber, entweder von Hand oder mittelst eines Klinkenregulators der beschriebenen Konstruktion. Das Gehäuse ist in Blechkonstruktion mit gusseiserner Grundplatteausgeführt; die Lager der Turbinenwelle sind mit automatischen Ringschmierungen, der Regulierschiebermit von aussen zu bedienender Centralschmierungversehen, Turbine von 400 P.S. für das Wasserwerk von Combe-Garrot der Gemeinden Chaux-de-Fonds und Locle.

Konstruiert von Piccard & Pictet in Genf.

Querschnitt I: 25.

Ansicht und Schnitt 1:25.


Die Detailkonstruktion der Turbine ist den Abbildungen auf S. 182 zu entnehmen.

Aktiengesellschaft vorm. Joh. Jac. Rieter & Co. in Winterthur. Eine Hochdruckturbine auf horizontaler Achse bildete mit der zugehörigen Zuleitungs- und Regulierungsanlage das Hauptobjekt, welches obige FirmazurIllustration des von ihr gepflegtenTurbinen. baues zur Ausstellung brachte.

Dieselbe ist eine Partial-Girardturbine und für eine Leistung von 400 P. S. bei 174 m Gefälle und 210 minutlichen Umdrehungen berechnet. Das Laufrad hat 2,72 m äusseren Durchmesser und ist mit 110 Stahlschaufeln versehen, welche jedoch nicht, wie die in Nr. 26 folgende Skizze zeigt, einfach sondern doppelt, in dem Sinne ausgeführt sind, dass

sich die eigentliche, die relative Bewegung des Wassers bestimmende Schaufel an eine Rückschaufel anlehnt, welche jedoch nicht den Zweck derRaumausfüllung, wie bei Grenzturbinen hat, sondern lediglich zur Unterstützung der eigenstellen. Schaufel

gentlichen Schaufel dient; die Beaufschlagung erfolgt durch einen einzelligen Leitapparat mit verschiebbarer Vorderschaufel. Die Verschiebung der letzteren kann mittelst Stirnräder, Schnecken- und Kegelrädergetriebe von Hand aus oder durch einen automatischen Regulator erfolgen. Die Wasserzuleitung findet durch eine Rohrleitung statt, in welcher ein Absperrschieber und eine Drosselklappe und vor denselben ein Freilaufschieber mit gebogenem Ablaufrohr eingeschaltet

Längenschnitt 1:25.

sind. Die Bewegung der ersteren kann von Hand oder nach Einrückung entsprechender Kuppelungen durch mechanischen Antrieb erfolgen. Die horizontale Stahlwelle ist in Lagern normaler Konstruktion gelagert, das Laufrad mit einem Blechgehäuse umgeben.

Die ausgestellte Turbine war in der mechanischen Bindfadenfabrik "Immenstadt" durch zehn Jahre im Betrieb und wird demnächst im Wallis für eine Leistung von 1000 Pferdekräften bei 300 m Gefälle und 300 minutlichen Umdrehungen installiert.

Ueber ähnliche Konstruktionen dieser Firma sind nähere Angaben in der "Schweiz. Bauzeitung", Bd. XI Nr. 8 und Bd. XII Nr. 25, sowie in der "Zeitschrift des Vereins deutscher Ingenieure", Jahrgang 1887, S. 405 u. f. zu finden.

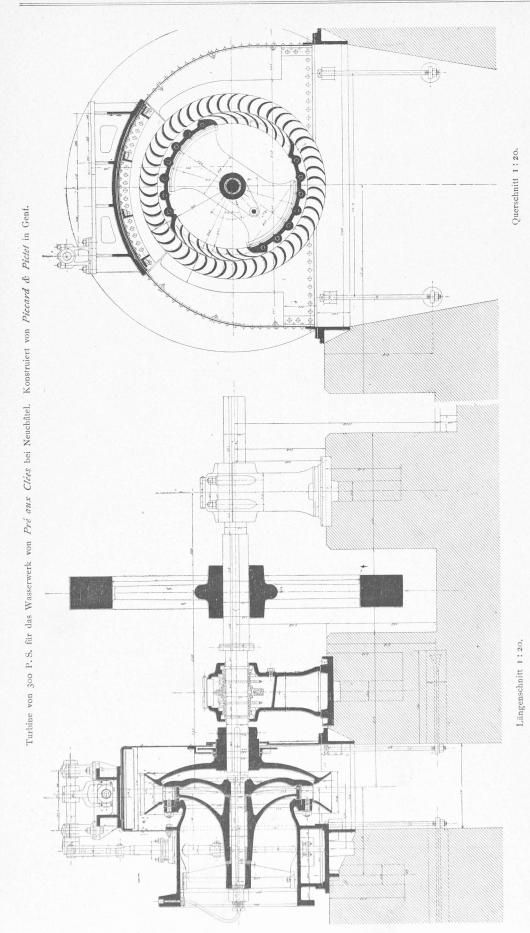
Als Gegenstück war eine kleine Hochdruckturbine ausgestellt; dieselbe ist eine Partial-Girardturbine auf horizontaler Achse mit innerer Beaufschlagung und Handregulierung. Die Abbildung derselben folgt in nächster Nummer.

Das Laufrad hat 375 mm äusseren Durehmesser, der Leitapparat ist einzellig und derart bemessen, dass die Turbine bei 100 m Gefälle etwa 3 lg P.S. leistet

Turbine bei 100 m Gefälle etwa 3 ½ P.S. leistet.

Zur Veranschaulichung einer Niederdruckanlage war noch eine Axial-Girardturbine mit vertikaler Welle ausgestellt; dieselbe war in einem hölzernen Wasserkasten eingebaut und ist für eine Leistung von 9 P.S. bei 2 m Gefälle berechnet. Der Leitapparat ist für und mit einem vierteiligen Flachschieber konstruiert und ausgerüstet, dessen Antrieb von Hand oder mittelst eines automatischen Regulators erfolgen kann.

Die von der Firma J. J. Rieter ausgestellten Regulatoren waren teils solche mit mechanischen, auf das Reguliergetriebe wirkenden Servomotoren, durch welche die


der Turbine zugeführte Energiemenge entsprechend verändert wird, teils Bremsregulatoren, welche bei konstant bleibender Turbinenleistung die überschüssige, für nutzbare Arbeitsleistung nicht verwendete Energie verzehren.

An Hand des Schemas und einer bildlichen Darstellung des Regulators Modell 3 EF, die in nächster Nummer folgen, soll die Wirkungsweise derselben erläutert werden, wobei jedoch bemerkt wird, dass bei Konstruktion des Schemas auf die thatsächliche räumliche Anordnung und Ausgestaltung der einzelnen Details keine Rücksicht genommen ist, sondern dieselben vielmehr in einer der Erklärung der Wirkungsweise dienlichen Anordnung nebeneinander gezeichnet sind.

Von einer Antriebswelle aus wird durch Kegelräder die vertikale Spindel des Centrifugalregulators und von dieser aus durch ein passendes Getriebe eine unrunde Scheibe in konstante Umdrehung versetzt.

Von derselben Antriebswelle aus erfolgt durch ein Kehrgetriebe mit Riemenantrieb der Antrieb einer Regulierwelle — als Hauptwelle des Reguliergetriebes — je nach der Lage des Riemens entweder gleichsinnig oder gegensinnig, oder die Regulierwelle wird, wenn der Riemen in der Mittelstellung ist, gar nicht angetrieben.

Zur Verstellung des Riemens dient ein Riemenschalter R, dessen Bewegungen durch ein Hebelwerk von derjenigen der unrunden Scheibe abgeleitet werden, und zwar erfolgt sowohl diejenige für die Einleitung einer Bewegung der Regulierwelle als auch jene für die Rückführung des Riemens in seine Mittellage unter dem Einfluss des Centrifugalregulators. Hiedurch unterscheiden sich diese Regulatoren wesentlich von den bisher beschriebenen, bei welchen die Rückführung direkt und unbeschadet der Hülsenbewegung des Centrifugalregulators geschieht.

Der Mechanismus für dieBewegungsübertragung von der unrunden Scheibe auf den Riemenschalter ist folgender.

Seitlich der unrunden Scheiben sind zwei schwingende Hebel I und II mit Knaggen a_1 b_1 und b_2 a_2 angeordnet und derart kraftschlüssig an die unrunde Scheibe angedrückt, dass bei der Bewegung der letzteren die Hebel I und II abwechselnd jeder nach einer Seite ausschlagen.

Zwischen den "aktiven" Knaggen dieser Hebel befinden sich auf einem als Träger fungierenden Teil zwei "passive" Knaggen, deren Träger hiebei einerseits mit der Hülse des Centrifugalregulators, andererseits mit der Riemenschaltung zwangläufig derart verbunden ist, dass die Bewegung der passiven Knaggen, welche dieselben bei Verstellung der Hülse annehmen, unabhängig von der jeweiligen Stellung des Riemenschalters vor sich gehen kann. Bei dieser Anordnung findet die Riemenschaltung in folgender Weise statt.

Bei gleichzeitiger Mittellage des Riemenschalters und der Hülse befinden sich Knaggen k und b einander gegenüber, ohne dass die Bewegung der letzteren auf die ersteren übertragen wird, tritt jedoch durch eine Bewegung der Hülse eine der Knaggen k in den Schwingungsbereich einer der Knaggen a, so wird k von a mitgenommen und damit eine Bewegung des Hebelwerkes eingeleitet, welche wohl auf den Riemenschalter, jedoch nicht auf die Hülse von Einfluss ist.

Nach erfolgter Riemenschaltung beginnt die Bewegung der Regulierwelle, welche so lange andauert, bis die Hülse wieder in die Mittellage und damit die Knaggen k wieder in die Höhe der Knaggen b zurückgeführt sind und letztere die ersteren mit dem Hebelwerk und dem Riemenschalter in die Mittellage verschoben haben.

Um nun die Hülse behufs Verhinderung des Ueberregulierens rechtzeitig in die Mittellage zurückzuführen, muss während

der Bewegung der Regulierwelle auf den Centrifugalregulator ein Zwang ausgeübt werden, der ohne Stösse bei Beginn der Regulierbewegung in Aktion tritt und mit Beendigung derselben aufhört; dies wird erreicht durch einen Katarakt, dessen Kolben mit dem Hülsenhebel in einstellbarer, und dessen Cylinder mit einer Schraubenmutter M in elastischer Verbindung steht, wobei die zugehörige Schraubenspindel von der Regulierwelle angetrieben wird; so wird z. B., wenn bei hochgehobener Hülse die Mutter M und damit der Cylinder nach aufwärts bewegt wird, ein ebenso gerichteter Druck auf den Kolben wirksam, was eine Belastung der Hülse zur Folge hat, welche den Regulator in die Mittellage zurückzuführen strebt.

(Schluss folgt.)

Zur Zürcher Bahnhoffrage.

Der Vorstand des Zürcherischen Ingenieur- und Architekten-Vereins hat in Ausführung eines in der Sitzung vom 16. dieses Monates gefassten Vereinsbeschlusses nachfolgende Eingabe an die städtischen Behörden gerichtet:

An den Stadtrat der Stadt Zürich.

Herr Präsident!

Hochgeachtete Herren!

Wir hatten am 1. Mai dieses Jahres die Ehre, Ihnen den Bericht der Kommission vorzulegen, welche der Zürcherische Ingenieur- und Architekten-Verein mit dem Studium der Frage des Umbaues des Zürcher Hauptbahnhofes beauftragt hatte.

Das Ergebnis dieses Studiums, das auf Seite 6 und Seite 14 und 15 jenes Berichtes sub III und VI zusammengefasst ist,1) deckte sich mit dem Standpunkte, welchen der Stadtrat bereits früher eingenommen und seither wiederholt zum Ausdruck gebracht hat.

Die vom Bundesrate am 4. Juni d. J. erteilte Genehmigung der Pläne, welche von der Nordostbahn für die erste bis zum 1. Juni 1897 reichende Bauperiode eingereicht wurden, hat in den Kreisen der Bevölkerung lebhafte Besorgnis erregt, denn einerseits trifft die damit ausgesprochene definitive Verlegung des Güterbahnhofes die Stadt ganz unvorbereitet, ohne dass die unerlässlichen Zufahrten zum neuen Güterbahnhof geregelt, ja sogar ohne dass die Verpflichtung der Nordostbahn zur Erstellung dieser Zufahrten erkannt wäre, und andererseits war die Befürchtung allgemein, dass das für teilweise Umgestaltung des Personenbahnhofes und der Zufahrten zu demselben genehmigte Provisorium eine erste Etappe zu der Verwirklichung des ganzen Umbauprojektes der Nordostbahn werden könnte, welches alle Rücksichten auf die Bedürfnisse unserer Stadt bei Seite setzend, derselben unberechenbaren Schaden bringen müsste.

Unter solchen Umständen ist die Nachricht von den Absichten und Gesinnungen, welche das schweiz. Eisenbahndepartement in Behandlung unserer Bahnhoffrage leiten, und welche der Herr Departementschef in der Konferenz mit Abgeordneten des Stadtrates am 8. Oktbr. d. J. darzulegen Anlass nahm,2) mit grossem Interesse entgegengenommen worden. Die Bevölkerung hat aus jener Darlegung geschlossen, dass die Stadt Zürich an den obersten eidgen. Behörden einen sicheren Rückhalt finden wird, wenn sie in Verfechtung ihrer Interessen dem Vorgehen der Bahngesellschaft entgegentritt. Namentlich war man in Zürich befriedigt, zu vernehmen, dass das Departement durchaus an der nur provisorischen Genehmigung der am 4. Juni für den Personenbahnhof bewilligten Umbauten festhalte, so dass "dadurch der Gestaltung des gesamten Bahnhofprojektes, d. h. der definitiven Genehmigung desselben nicht vorgegriffen sein soll", dass sich diese Bedingung insbe-sondere beziehe "auf die Situation und Höhenlage des definitiven Personenbahnhofes auf dem rechten oder linken Sihlufer, die Frage der Zufahrten zum neuen Güterbahnhof und die Feststellung des Niveaus der definitiven Sihlbrücken." Ferner dass das Departement eine nähere Prüfung der definitiven Gestaltung der linksufrigen Zürichseebahn von

der Station Enge bis zum Hauptbahnhofe, namentlich die Tieferlegung dieser Linie nach dem Vorschlag der Kommission unseres Vereines für geboten halte, sowie dass das Departement auf der Vorlage der Studien und Projekte betreffend den Hochbahnhof und die Zufahrtsstrassen zum neuen Güterbahnhofe, die der Nordostbahn auferlegt seien, bestehen und die Gesellschaft veranlassen werde, ebenfalls ein Projekt über die Verlegung des Personenbahnhofes auf das linke Sihlufer auszuarbeiten.

Seither sind mehr als zwei Monate verstrichen. Die definitiven und provisorischen Bauten sind durch die Gesellschaft lebhaft in Angriff genommen worden und die Nordostbahn wird für ihren Teil bei Eröffnung der neuen Linien Zürich-Thalweil-Zug-Gotthard und Schaffhausen-Eglisau-Zürich insoferne gedeckt sein, als sie wohl oder übel für Einführung der vermehrten Züge in den Personenbahnhof gesorgt haben wird. Wie aber wird der Stadt gedient sein mit dem vermehrten Verkehr in und um den provisorisch verbreiterten Personenbahnhof mit seinen schon jetzt ungenügenden Zu- und Abfahrten - mit dem verdoppelten oder verdreifachten Verkehr auf der linksufrigen Seebahn, deren Niveaukreuzungen in Aussersihl, Wiedikon und Enge schon heute für den Strassenverkehr äusserst lästig und gefährlich sind und die Stadt im Ausbau ihrer Strassenbahn nach Wiedikon und in der Umwandlung der Pferdebahn nach Enge und in Aussersihl auf elektrischen Betrieb u. s. w. hindern — mit dem um mehr als einen Kilometer weiter entfernten Güterbahnhof, der jeder rationellen Zufahrtsstrasse nach der innern Stadt und durch dieselbe nach den Kreisen II, IV und V ermangelt?

Die bereits seit dem Mai der Nordostbahn durch das Departement aufgelegten Studien über diese, die Bedürfnisse der Stadt betreffenden Fragen, haben bis heute zu keinem greifbaren Resultat geführt. Denn das jüngst vorgelegte Hochbahnhofprojekt für das Aufnahmegebäude, welches am 16. Dezember ebenfalls dem Ing.- und Arch.-Verein vorlag, ist wohl nur ein neuer Beweis dafür, wie unmöglich es ist, eine ernst durchdachte Arbeit zu erhalten, wenn der damit Beauftragte nicht selbst von deren Richtigkeit überzeugt ist.

In Erwägung dieser Sachlage und in Anbetracht, dass laut den oben erwähnten behördlichen Zusicherungen bis auf die Lage des Güterbahnhofes keine einzige, den Bahnhofumbau betreffende Frage präjudiziert ist, hat der zürcherische Ing .- und Arch .- Verein in einer zahlreich besuchten Sitzung vom 16. Dezember beschlossen, an den Stadtrat zu gelangen, damit er in gleicher Weise wie es z. B. Basel in ähnlicher Lage gethan hat, selbst die nötigen Unterlagen beschaffe, für die richtige Gestaltung der Bahnhofumbaute und zur Erkennung der entsprechenden finanziellen Tragweite derselben für die Stadt und damit er in voller Kenntnis der für die Stadt festzuhaltenden Anforderungen und der von ihr zu tragenden Opfer im Falle sei die Lösung der hochwichtigen Angelegenheit mit Nachdruck und erfolgreich in die Hand zu nehmen.

"Der Zürcherische Ingenieur- und Architekten-Verein richtet an den tit. Stadtrat von Zürich unter Hinweis auf den Bericht seiner Specialkommission vom 1. Mai 1896 das Gesuch, von sich aus durch hiezu bestellte Fachleute Projekte für den Umbau der Bahnhofanlage ausarbeiten zu lassen, mit Freihaltung des Verkehrs auf beiden Sihlufern und mit Vermeidung des von der Nordostbahn im Kreise III projektierten Rangierdammes."

In unserem Gesuche sind die zwei wesentlichen Punkte herausgegriffen, an welche sich die übrigen mit dem Umbau des Personenbahnhofes und der Zufahrtslinien, sowie der Zufahrtsstrasse zum Güterbahnhofe zusammenhängenden

Fragen ohne weiteres angliedern werden.

Was die Kosten anbelangt, welche diese umfassenden und gründlichen Studien erfordern werden, so ist der Ing .und Arch.-Verein ungeteilt der Meinung, dass dieselben durchaus gerechtfertigt seien, durch den unermesslichen Schaden, welchen die Stadt erleiden müsste, wenn diese Gelegenheit versäumt würde, die Bahnhoffrage und namentlich jene der Zufahrtslinien in einer Weise zu lösen, welche der Entfaltung der Stadt und den Bedürfnissen der Bevölkerung entspricht.

¹) Siehe auch «Schweiz, Bauztg.» Bd. XXVII S. 128 u. 131. ²) Siehe «Schweiz, Bauztg.» Bd. XXVIII S. 136.