**Zeitschrift:** Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

**Band:** 27/28 (1896)

**Heft:** 22

Artikel: Metamorphosen der basischen Schienenstahlbereitung und des

Prüfungsverfahrens der Stahlschienen

Autor: Tetmajer, L.

**DOI:** https://doi.org/10.5169/seals-82416

#### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF: 29.11.2025** 

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

## Metamorphosen der basischen Schienenstahlbereitung und des Prüfungsverfahrens der Stahlschienen.

Von Prof. L. Tetmajer in Zürich.

IV.

Bei der Randstahlbildung scheinen chemische Vorgänge mitzuspielen. Da über die Form der gebundenen Kohle im Randstahl nichts bekannt ist, ist auch nicht ausgeschlossen, dass dieselbe von derjenigen verschieden ist, die der Kernstahl enthält, welcher längere Zeit flüssig gewesen und der Einwirkung einer plötzlichen Abkühlung nicht ausgesetzt war. Nach unserer Beobachtung ist weiches Flusseisen zur Randeisenbildung geneigter als der Stahl, der Manganstahl geneigter als der Siliciumstahl. Mit Mangan desoxydierter Darby-Stahl verhält sich in dieser Hinsicht ähnlich demjenigen, der mit Ferromangan oder Spiegeleisen zurückgekohlt ist. Silicium und Kohlenstoff scheinen der Randstahlbildung entgegenzuwirken, Mangan dieselbe zu befördern, denn die Aetzbilder mit Bessemer-, Thomas- und Martinstahl mit 0,18 und mehr Siliciumgehalt (0,2 bis 0,3 %) gewöhnlich), sowie Stahl mit hohem Kohlenstoffgehalt zeigen verschwindende Mengen, oft nur Spuren von Randstahl.

Der von Gussporen umhüllte, also von einem Porenkranze umschlossene Kernstahl erscheint dunkler gefärbt, poröser und auch im Korn gröber als der Randstahl. Die Gefügebeschaffenheit des Kernstahls wechselt. Was ihn jedoch kennzeichnet, ist, dass er als Träger der Saigerungsprodukte und Schlackeneinschlüsse erscheint. Erstere kommen beim Aetzen mit Jod als mehr oder weniger scharf begrenzte rundliche Flecken, rundliche Nester oder als verschwommene Wolken zum Vorschein. Letztere füllen häufig die Gussporen oder erscheinen sonst als mehr oder weniger zackig begrenzte Einschlüsse des Metalls. Saigerungsflecken und Schlackeneinschlüsse sind dunkel gefärbt, durchziehen das Metall oft auf grössere Länge. Oft erscheinen sie lokal, zerstreut angeordnet, im Längenschnitte des Walzstabes auskeilend. (Vergl. in Fig. 10 die Strukturverhältnisse eines Rundstabes, Flusseisen, in Ouer- und Längenschnitt.) Saigerungsprodukte bedeuten keine Unterbrechung der Kontinuität des metallischen Gefüges. Ritzt man daher solche

Fig. 10.





Flecken, Nester oder Wolken, soerscheint sofort das metallische Gefüge. Schlackkeneinschlüsse unterbrechen die Kontinuität des Gefüges lediglich in Form

kleiner Nester, durchziehen also nicht röhrenartig dasWalzeisen. Aetzbilder sind daher von einem Schnitt zum andern wechselnd, meist ähnlich, selten kongruent.

In Fig. 11, 12, 13 und 14 sind Köpfe von Bessemer- und Thomasstahlschienen mit Saigerungsflecken und Schlackeneinschlüssen etc. abgebildet. Die Thomasstahlschiene zeigt deutlich ausgeprägten, kompakten Randstahl von 8 mm Dicke unter der Lauffläche. Der Kernstahl ist am Umfange fein, schlackenschlüssig, porös und zeigt eine ganze Reihe rundlicher, zerstreut angeordneter Saigerungsflecken.

Die in Fig. 11 und 13 dargestellten Bessemerstahlschienen besitzen keine eigentliche Randstahlbildung; der Kopf der in Fig. 11 abgebildeten Stahlschiene enthält vorwiegend Schlackeneinschlüsse, der in Fig. 13 dargestellte vorwiegend Saigerungsflecken. Nicht selten fliessen die Saigerungsflecken zusammen und geben sodann im Aetzbilde

Fig. 1



Bessemer-Stahl  ${
m Mn} = 0.203\,^{0}/_{0}\,;\; {
m Si} = 0.013\,^{0}/_{0}.$ 

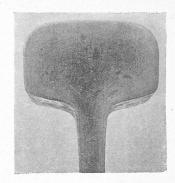



Fig. 12.

Thomas-Stahl Mn =  $0.661 \, ^{0}/_{0}$ ; Si =  $0.004 \, ^{0}/_{0}$ .

Fig. 13.



Bessemer-Stahl Mn =  $0.376 \, ^{0}/_{0}$ ; Si =  $0.053 \, ^{0}/_{0}$ .



Thomas-Stahl Mn =  $0.823^{0}/0$ ; Si =  $0.172^{0}/0$ .

des Querschnitts des Fabrikats mannigfach geformte, dunkel gefärbte Komplexe (vergl. Fig. 14). Dass auch Umkehrungen vorkommen können, d. h. dass im Aetzbilde der Kern eines Stahlschienenkopfes heller gefärbt, der Randstahl dagegen dunkler sein kann, zeigt Fig. 15.

Ueber die Verteilung des Kohlenstoffs und der übrigen Beimengungen des Eisens im Quer- und Längenschnitte eines Gussblocks, und somit auch in dessen Walzprodukt, z. B. einer Stahlschiene, ist nur wenig Positives bekannt. In seiner Arbeit über die Ungleichmässigkeitserscheinungen des Stahlschienenmaterials giebt v. Dormus die Ergebnisse von Analysen, die am Materiale von sechs verschiedenen Chargen angehörenden Schienenabschnitten ausge-

Schienenabschnitten ausgeführt wurden. Die Analysenspähne wurden den Zerreissproben aus der Lauffläche (vorwiegend Randstahl), der Kopf-



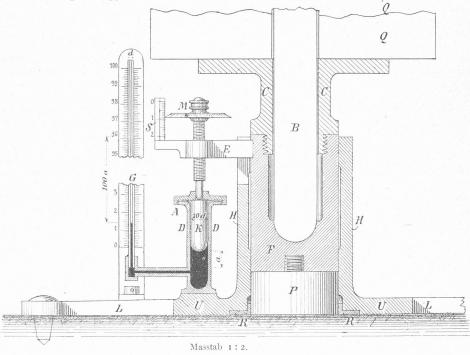
Thomas-Stahl Mn =  $0.872^{0}/_{0}$ ; Si =  $0.255^{0}/_{0}$ .

mitte (Kernstahl), der Stegmitte (Gemenge von Rand- und Kernstahl), sowie aus dem Schienenfusse (vorwiegend Randstahl); immerhin Gemenge aus Rand- und Kernstahl) entnommen. Bei drei Schienenabschnitten wurde nur das Material der Lauffläche, sowie jenes der Kopfmitte analysiert, in allen Fällen aber C, Mn, Si. P, S und Cu bestimmt. Die mitgeteilten Zahlen bestätigen die schon bekannte Thatsache, dass infolge von Saigerungserscheinungen die Zusammensetzung des Stahles im Schienenquerschnitte variiert und dass bei der untersuchten Schienenstahlsorte (mit Ferromangan oder Spiegeleisen desoxydierter und zurückgekohlter

Martinstahl) die Zusammensetzung des Materials an den verschiedenen Stellen des Profils oft wesentliche Unterschiede besitzt, dass hierbei der Kohlenstoff und der Phosphor die grössten, das Mangan und Silicium die kleinsten Differenzen zeigen.

In der schweizer. Materialprüfungsanstalt wurde den Saigerungserscheinungen und der damit zusammenhängenden Verteilung der Stoffe im Schienenstahle ebenfalls Aufmerksamkeit geschenkt und zum Gegenstande einer noch nicht abgeschlossenen Untersuchung gemacht. Zu diesem Ende sind aus der Aetzprobensammlung der Anstalt:

- 11 Stück Abschnitte von Bessemerstahlschienen aus vier Werken:
- 16 Stück Abschnitte von Thomasstahlschienen aus sieben Werken;
- 1 Stück Abschnitt einer Martinsstahlschiene aus einem kombiniert arbeitenden Werke;
- 1 Stück Abschnitt einer Tiegelgusstahlbandage;
- 2 Stück Abschnitte eines Vierkant-Tiegelstahls (Werkzeugstahl),
- total 31 Abschnitte von Walzstäben aus 13 unter den


denkbar verschiedensten Bedingungen arbeitenden Werken entnommen und zur Gewinnung von Analysenspähnen angebohrt worden. Es geschah das mittelst eigener, kleiner Bohrer, und zwar das einemal längs der Umfangslinie der Profile, hart unter der Lauffläche, also in der Zone des sogenannten Randstahls, sodann in der Mitte des Profils. Fall für Fall wurden aus je zwei Bestimmungen der C, Mn. Si, P und S ermittelt, und die gewonnenen Resultate in nachstehender Tabelle zusammengestellt. Hierauf sind wir dazu übergegangen, die chemische Zusammensetzung der Saigerungsflecken zu studieren, eine Arbeit, die noch nicht weit gediehen ist, die jedoch verspricht, ein interessantes Gebiet des Chemismus des Stahlmaterials in Walzstäben aufzuschliessen. Der langsame Fortschritt der letztgenannten Untersuchung liegt, ganz abgesehen von den Kosten der Arbeit, in der Schwierigkeit der Gewinnung der erforderlichen Mengen Bohrspähne für die Analysen, denn nur selten treten grössere, zusammenhängende Saigerungskomplexe auf, die sich zur Ausbeutung von Analysenmaterial eignen. Unter diesen seien diesmal nur die in Fig. 14 und 15 abgebildeten Fälle erwähnt. Schiene, Fig. 14, ergab

|     |                                                                                                 |          | Kohlenstoff |        | Mangan |        | Silicium |        | Phosphor |        | Schwefel |  |
|-----|-------------------------------------------------------------------------------------------------|----------|-------------|--------|--------|--------|----------|--------|----------|--------|----------|--|
| auf |                                                                                                 | in o     |             | in der |        | in der |          | in der |          | in der |          |  |
|     | Beschreibung der Aetzprobe                                                                      | Lauf-    | Kopf-       | Lauf-  | Kopf-  | Lauf-  | Kopf-    | Lauf-  | Kopf-    | Lauf-  | Kopf-    |  |
| ro. |                                                                                                 | fläche   | mitte       | fläche | mitte  | fläche | mitte    | fläche | mitte    | fläche | mitte    |  |
|     |                                                                                                 | 0/0      | 0/0         | 0/0    | 0/0    | 0/0    | 1/0      | 0/0    | 0/0      | 0/0    | 0/0      |  |
|     |                                                                                                 |          |             |        |        |        |          |        |          |        |          |  |
|     | A. Bessemer                                                                                     | -Stahlso | hienen      |        |        |        |          |        |          |        |          |  |
| I   | Fast homogen; Spur v. Kernbildung mit Spuren v. Saigerungsprodukten.                            | 0,206    | 0,202       | 0,800  |        | 0,285  | 0,333    | 0,129  | 0,126    | 0,047  | 0,04     |  |
| 2   | » » » » » » » » » »                                                                             | 0,212    | 0,194       | 0,820  | 0,814  | 0,273  | 0,327    | 0,125  | 0,129    | 0,025  | 0,03:    |  |
| 3   | » » » » » » »                                                                                   | 0,181    | 0,176       | 0,851  | 0,731  | 0,321  | 0,308    | 0,099  | 0,094    | 0,053  | 0,04     |  |
| 4   | Fast homogen; schwache Kernbildung.                                                             | 0,277    | 0,273       | 0,597  | 0,603  | 0,328  | 0,325    | 0,108  | 0,105    | 0,065  | 0,05     |  |
| 5   | » » » ; Spuren von Randblasen.                                                                  | 0,243    | 0,223       | 0,567  | 0,577  | 0,263  | 0,269    | 0,100  | 0,108    | 0,045  | 0,05     |  |
| 6   | » » »                                                                                           | 0,271    | 0,255       | 0,603  | 0,621  | 0,280  | 0,281    | 0,106  | 0,103    | 0,050  | 0,06     |  |
| 7   | Unhomogen; zahlreiche SaigFlecken; Rand wolkig; Kern heller.                                    | 0,264    | 0,270       | 0,176  | 0,170  | 0,000  | 0,000    | 0,084  | 0,097    | 0,033  | 0,03     |  |
| 8   | » » » » » »                                                                                     | 0,225    | 0,236       | 0,173  | 0,176  | 0,015  | 0,008    | 0,082  | 0,099    | 0,009  | 0,01     |  |
| 9   | Porenkranz; SaigFlecken im Kern.                                                                | 0,291    | 0,332       | 0,279  | 0,296  | 0,015  | 0,027    | 0,089  | 0,118    | 0,015  | 0,02     |  |
| 0   | Unhomogen; zahlreiche zerstreute SaigFlecken.                                                   | 0,234    | 0,262       | 0,298  | 0,307  | 0,043  | 0,051    | 0,079  | 0,094    | 0,020  | 0,03     |  |
| I   | Fast homogen; Spur von Kernbildung; Kern etwas heller.                                          | 0,300    | 0,296       | 0,363  | 0,357  | 0,093  | 0,085    | 0.093  | 0,084    | 0,025  | 0,02     |  |
|     | Mittel:                                                                                         | 0,246    | 0,247       | 0,502  | 0,496  | 0,174  | 0,183    | 0,100  | 0,105    | 0,035  | 0,03     |  |
|     | B. Thomas                                                                                       | -Stahlso | chiene.     |        |        |        |          |        |          |        |          |  |
|     | Porenkranz; Kern durchsetzt mit Gussporen und Saigerungsprodukten.                              | 0,296    | 0,355       | 0,650  | 0,662  | 0,011  | 0,011    | 0,067  | 0,085    | 0.050  | 0,06     |  |
| 2   | Unhomogen; Kern mit zusammenfliessenden SaigFlecken; Kernrand                                   | 0,295    | 0,429       | 0.643  | 0,720  | 0,000  | 0,000    | 0,096  | 0,123    | 0,023  | 0,0      |  |
| 3   | fein porös.                                                                                     |          |             |        |        |        |          |        | 0,086    |        |          |  |
| 4   | Feiner Porenkranz, nahe am Umfange; sonst fehlerfrei; Kern etwas heller.                        | 0,411    | 0,366       | 0,904  | 0,891  | 0,000  | 0,000    | 0,088  | 1        | 0,035  | 0,02     |  |
| 5   | Wie vorher.                                                                                     | 0,360    | 0,331       | 0,720  | 0,701  | 0,000  | 0,000    | 0,126  | 0,116    | 0,035  | 0,0      |  |
| 6   | Unhomogen; Porenkranz nahe am Umfange; zerstreute Gussporen und SaigFlecken im Kern.            | 0,264    | 0,280       | 0,558  | 0,552  | 0,103  | 0,106    | 0,105  | 0,107    | 0,033  | 0,02     |  |
| 7   | Fast vollkommen homogen; fehlerfrei.                                                            | 0,458    | 0,449       | 0,572  | 0,575  | 0,365  | 0,364    | 0,100  | 0,096    | 0,038  | 0,04     |  |
| 8   | Spur v. Kernbildg.; Kern fein porös m. zusammenfliessend. SaigFlecken.                          | 0,277    | 0,302       | 1,125  | 1,169  | 0,277  | 0,390    | 0,126  | 0,137    | 0,115  | 0,10     |  |
| 19  | Wie vorher.                                                                                     | 0,283    | 0,297       | 1,012  | 1,037  | 0,258  | 0,278    | 0,159  | 0,163    | 0,105  | 0,11     |  |
| 20  | Wie vorher.                                                                                     | 0,249    | 0,241       | 0,814  | 0,812  | 0,191  | 0,218    | 0,128  | 0,123    | 0,077  | 0,07     |  |
| 1.5 | Fast homogen; fehlerfrei.                                                                       | 0,413    | 0,419       | 0,759  | 0,762  | 0,008  | 0,007    | 0,087  | 0,086    | 0,065  | 0,06     |  |
| 22  | Porenkranz; Kern durchsetzt mit kleinen Gussporen.                                              | 0,429    | 0,416       | 0,782  | 0,734  | 0,005  | 0,009    | 0,100  | 0,093    | 0,070  | 0,0      |  |
| 23  | Aehnlich wie vorher; doch mit weniger Gussporen durchsetzt.                                     | 0,368    | 0,349       | 0,674  | 0,663  | 0,007  | 0,005    | 0,085  | 0,080    | 0,065  | 0,00     |  |
| 24  | Mehrfache Kränze aus rundlichen, stellenweise fast zusammenhängenden Gussporen und SaigFlecken. | 0,367    | 0,355       | 0,385  | 0,380  | 0,004  | 0,001    | 0,086  | 0,094    | 0,035  | 0,0!     |  |
| 25  | Porenkranz; Kern durchsetzt mit zahlreichen feinen Gussporen.                                   | 0,343    | 0,385       | 0,326  | 0,328  | 0,002  | 0,001    | 0,059  | 0,074    | 0,023  | 0,0      |  |
| 26  | Deutliche Kernbildung; Kern durchsetzt mit SaigFlecken.                                         | 0,219    | 0,269       | 0,618  | 0,638  | 0,003  | 0,006    | 0,090  | 0,126    | 0,030  | 0,0      |  |
| 27  | Wie vorher; doch mit vorwiegend kleinern, zerstreuten SaigFlecken.                              | 0,075    | 0,097       | 0,393  | 0,400  | 0,006  | 0,004    | 0,077  | 0,101    | 0,028  | 0,0      |  |
| ,   | Mittel:                                                                                         |          | 0,334       | 0.684  | 0,688  | 0,078  | 0,088    | 0,099  | 0,106    | 0,052  | 0,0      |  |
|     | C. Martin                                                                                       | , , ,    |             |        |        |        |          |        |          |        |          |  |
| 28  | Deutliche Kernbildung; Kern mit Saig, Flecken bedeckt,                                          |          |             | 0,595  | 0,598  | Sp.    | Sp.      | 0,079  | 0,120    | 0,011  | 0,0      |  |
|     | D. Tiegel-G                                                                                     |          |             |        |        |        |          |        |          |        |          |  |
| 29  | Homogen; fehlerfrei.                                                                            |          |             |        | 0,329  | 0,308  | 0,309    | 0,043  | 0,041    | 0,012  | 0,0      |  |
|     | E. Tiegel-                                                                                      | Vierkar  | ntstahl.    |        |        |        |          |        |          |        |          |  |
| 30  | Randblasig; Spuren von Lunkerbildung.                                                           | 0,648    | 0,635       | _      |        | 0,328  | 0,327    | 0,037  | 0,034    | 0,028  | 0,0      |  |
|     |                                                                                                 |          |             |        |        |        | 10 1     |        |          |        |          |  |

unter der Lauffläche: C=0.249~%; in der dunklen Partie der Kopfmitte: C=0.322~%; unterhalb der dunklen Partie: C=0.241~%. Schiene, Fig. 15, ergab unter der Lauffläche: C=0.293~%; in der helleren Partie der Kopfmitte: C=0.273~%.

dass es nicht möglich ist, die Saigerungsprodukte vom umliegenden Muttermetall exakt zu trennen. Infolge dieser Umstände kann die Analyse ungeachtet der bestehenden Verschiedenheit der Metallzusammensetzung von Kern und Randstahl, ähnliche Zusammensetzung ergeben. Die Anreicherung des Kohlen-

Fig. 1. Apparat zur Ermittelung der Tragfähigkeit des Baugrundes.



In einem zweiten Falle fanden wir: unter der Lauffläche  $C=o,292~^0/o$ ; in der helleren Partie der Kopfmitte:  $C=o,291~^0/o$ .

Die vorstehend mitgeteilten Analysen, welche vom Chemiker der Materialprüfungs-Anstalt, Hrn. W. Kahl, ausgeführt wurden, führen zu folgenden Folgerungen:

- 1. Mit Ausnahme des Tiegelgusstahls, welcher übrigens bloss durch drei kohlenstoff- und siliciumreiche Species vertreten ist, zeigen sämtliche der untersuchten Stahlsorten etwelche Unterschiede in der chemischen Zusammensetzung des Metalls am Rande und im Kern des Profils.
- 2. Soweit das vorliegende Material eine Vergleichung gestattet, erscheinen die Unterschiede in der chemischen Zusammensetzung für den Prozess, welchem das Material entstammt, nicht kennzeichnend. Die fraglichen Unterschiede treten, sowohl was die Stoffart als die Grösse der Differenzen betrifft, beim Bessemerund Thomasprozess ähnlich auf. Dass der basische Martinprozess hier keine Ausnahme macht, beweisen die Resultate der v. Dormusschen Arbeit.
- 3. Die Unterschiede der chemischen Zusammensetzung treten nicht unbedingt als Produkte der Saigerungserscheinungen auf; sie können als Folge nicht völliger Uebereinstimmung des Metallbades an sich auftreten, teils durch die Beschaffenheit der Spähne der Einwage (ob vorwiegend feine oder gröbere Spähne verwendet wurden) bedingt sein.
- 4. Saigerungsprodukte sind in den Aetzbildern stets deutlich markiert; sie erscheinen als Flecken, Nester oder Wolken und sind stets dunkler als das umliegende Metall gefärbt. Vom Muttermetall sind sie durch Anreicherung von Kohlenstoff und Phosphor unterschieden und dadurch gekennzeichnet: Quantitativ sind diese Anreicherungen soweit unsere Erfahrungen reichen nicht so erheblich, dass dieselben bezüglich Verhalten des Stahlmaterials im Betriebe zu Befürchtungen Anlass höten.
- 5. Die chemischen Analysen des Stahlmaterials vom Rande und der Schienenmitte bringen die herrschenden Verhältnisse nicht mit derjenigen Sicherheit und Bestimmtheit zum Ausdrucke, als dies den Aetzproben eigentümlich ist. Der Grund liegt einmal in der Schwierigkeit der Ausführung der Analysen; der Hauptsache nach aber darin,

stoffs in den Saigerungsprodukten entspricht einem Entzug des Kohlenstoffs des Muttermetalls und es wird der Ausfall der Analyse lediglich nur von der relativen Menge an Muttermetall und Saigerungsprodukten in den Analysenspähnen abhängen.

6. Unsere Beobachtungen und Wahrnehmungen stimmen endlich darin überein, dass ein in den Coquillen ruhig stehender Stahl in festem Zustande nur geringe Gaseinschlüsse (Gussporen) zeigt und die Saigerungen desto geringfügiger ausfallen, je rascher das Metall in den Coquillen erstarrt. Dass hier der Gang der Charge, deren Temperaturverhältnisse, sowie die Wahl des Schlussverfahrens von ausschlaggebender Bedeutung sind, bedarf nach Vorstehendem keiner weitern Erwähnung. (Fortsetzung folgt.)

# Ein Apparat und ein Verfahren zur Ermittelung der Tragfähigkeit des Baugrundes.

Bekanntlich hat es bisher an einem Mittel gefehlt, die Tragfähigkeit des Baugrundes in zuverlässiger und bequemer Weise empirisch genau festzustellen. Ueber einen diesem Zwecke dienenden Apparat berichtet nun der Konstrukteur desselben, Herr Rudolf Mayer, städtischer Ingenieur in Wien, in Nr. 44 der «Zeitschrift des Oesterr. Ing.- und Arch.-Vereins», welcher wir auch die bezüglichen zwei Abbildungen (Fig. 1 u. 2) zur Veranschaulichung der Konstruktion und Wirkungsweise des Apparates verdanken. Durch Anwendung desselben soll ermöglicht werden, die bei den Belastungsproben zur Ermittelung der Tragfähigkeit des Baugrundes eintretenden Einsenkungen des die Belastung übertragenden Presstempels in den Boden, mit beliebiger Genauigkeit zu messen.

Der Apparat ist in Fig. I schematisch dargestellt; es bezeichnet hierin: P den Presstempel, der mittelst eines Schraubengewindes mit dem Führungsbolzen F in Verbindung steht; letzterer ist in der Hülse H frei beweglich und trägt an seinem oberen Ende eine Unterlagsplatte C, welche dazu bestimmt ist, das Gewicht der Belastungsplatten Q aufzunehmen und vermittelst des Führungsbolzens F auf den Presstempel zu übertragen. In der Hülse H ist seitlich ein Schlitz vorgesehen, in welchem sich der Mitnehmerarm E, der mit dem Führungsbolzen F in fester Verbindung steht,