Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 27/28 (1896)

Heft: 5

Artikel: Die Verlegung des Bahnhofes Zürich auf das linke Sihlufer

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-82316

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

0.550

Das Schwimmthor muss befähigt sein auszuhalten, den grössten Wasserdruck von 1,62 m, allfällige Stösse von herabschwimmenden Körpern, und die durch die Manipulation beim Anlegen an die Pfeiler hervorgebrachte Verdrehung. Die Breite des Schiffes, durch die zulässige Tauchung, die zu erreichende Widerstandsfähigkeit und Stabilität bedingt, beträgt in der Mitte 3,20 m. An den Enden muss die Dicke möglichst gering sein, damit das Thor nahe in der Schwerpunktsachse anliege und das Ab- und Zuführen erleichtert werde; diese Dicke beträgt 0,90 m.

Um die Möglichkeit zu wahren, ungleiche Versenkung des Schiffes zu verhüten, verlegt man am besten die Wasserfüllung in die Mitte und benützt die beiden Endräume durch mehr oder weniger Einlassen von Wasser zur Regulierung der horizontalen Stellung des Thores. Durch diese Anordnung wird der Schiffsraum dreiteilig; das Mittelstück muss dann eine grössere Wassermenge fassen können und ragt deshalb über die Schnabelstücke empor.

Zur Vorsorge gegen Einfrieren des Wassers im Schiffe wäre es zweckmässig, im mittleren Teile eine isolierende Wand mittelst einer Cisterne aus Cement-Mauerwerk herzustellen. Dadurch würde jedoch eine starke Belastung verursacht, und da, um das Ab- und Zuführen der Schwimmthore möglichst zu erleichtern, das Eigengewicht nicht grösser sein soll, als für die Stabilität des Schiffes nötig, so beschränkte man sich darauf, die Schiffswandung an der innern Seite mit Holz zu verschalen. Während anhaltend strenger Kälte wird dafür gesorgt, allfällige Eisbildung an der Wasseroberfläche sofort nach Entstehen zu brechen.

Das Gesamtgewicht des leeren Schiffes beträgt $26^{1/2}t$ und die Tauchung 0,50 m.

Das Ab- und Zuführen der Schiffe findet zu Zeiten statt, wo Ober- und Unterwasserspiegel am Schleusenwehr noch nicht stark differieren und die Strömung nicht sehr die Manipulation belästigt. Man hat es dann noch mit geringen Kräften zu thun; gleichwohl müssen aber Ketten, Taue und Wellböcke auch schiefem Zuge und allfälligen Stössen gewachsen sein.

Zur Entleerung der Schiffe dienen Handpumpen, und zu ihrer Bewegung drei Winden. (Schluss folgt.)

Die Verlegung des Bahnhofes Zürich auf das linke Sihlufer

wird bekanntlich von der Nordostbahn-Gesellschaft und ihren Organen als eine technische Unmöglichkeit bezeichnet, indem die nötige Geleiselänge nicht verfügbar sei, um einen ungehinderten und unbeschränkten Betrieb zu gestatten.

Diesem Einwurf ist Herr Stadtingenieur Süss in der Sitzung des zürcherischen Ingenieur- und Architekten-Vereins entgegengetreten, über welche in unserer letzten Nummer unter Vereinsnachrichten referiert wurde.

Der zur Verfügung stehende Raum erlaubte damals nicht, in der Einlässlichkeit, wie sie die Wichtigkeit gerade dieser Frage erfordert hätte, auf den Gegenstand einzutreten

Wir holen desshalb, dem vor acht Tagen gegebenen Versprechen gemäss, das Versäumte nach, indem wir die Ausführungen des Herrn Vortragenden hier wiedergeben. Derselbe sagte wörtlich:

	"Das Projekt der	N. O. B	. en	thält	eine	Gele	eiselänge:
1.	In der Halle von			×. •		190 m	ı
2.	Auf der Sihlbrücke	von .				70 "	
3.	Bis zum Beginn der In der Rampe bis z	Ramp	en v	on .		463 "	700 11
4.	In der Rampe bis 2	zur Lan	gstra	isse v	on	237 "	100 m
		7	usan	nmen		060 m	1.

Da die Geleise auf der Sihlbrücke wie die Hallengeleise benützt werden können, so bleiben der N. O. B. nach ihrem Projekt im Personenbahnhof obige $463 + 237 = 700 \, m$ zur freien Verfügung.

Für das Projekt der Bahnhofanlage auf dem linksseitigen Sihlufer lege ich die Ostfront des Aufnahmege-

Die Geleise haben nun an der Langstrassen-Unterführung nach dem Projekte der N. O. B. eine ungleiche Höhenlage und zwar bildet sich links und rechts eine Treppe, während die Geleise in der Mitte tiefer liegen. Die grösste Höhendifferenz beträgt 0,85 m.

Ich betrachte nun die Langstrassen-Unterführung nicht als nagelfest, lege daselbst alle Geleise auf dieselbe Höhe und zwar etwa 1,0 m über die tiefstgelegenen Mittelgeleise auf Kote 412,40. Vorwärts bis zu km 1,1 lege ich eine Horizontale ein, rückwärts ein Gefälle von 0—4 0 /00 und erhalte dadurch eine freie Geleiselänge vom Ende der neuen Halle an von 550 m.

Vom km 1,1 vorwärts trennen sich die Geleise und nehmen verschiedene Richtungen und Gefälle an. Die linksufrige Zürichseebahn erhält ein Gefälle von $10^0/00$, die Winterthurer- und rechtsufrige Linie bleiben in ihrer Höhenlage fast unverändert. Für die Linie Zürich-Baden folgt eine Erhöhung des Bahnplanums, so dass mit Benutzung der disponibelen Höhe von 1,0 m beim Winterthurer-Viadukt und bei einem Gefälle von $6^0/00$ das alte Bahnniveau in der Nähe der Hardstrasse wieder eingeholt wird.

Ich darf nun füglich, wie die N.O.B., die Personenbahngeleise mindestens 100 m über km 1,1 bezw. auf diese verschiedenen Rampen ausdehnen und erhalte dadurch eine Gesamtlänge der verfügbaren Geleise von 550 + 100 = 650 m.

Es stehen sich somit gegenüber:

Dien der Leiter Geleichter	beim NOB Projekt	bei meiner Anordnung	
Eine <i>unbeschränkte</i> Geleiselänge vom Ende der Halle aus Eine beschränkte Geleiselänge in	463 m	550 m	
den Rampen liegend	237 »	100 »	
Zusammen	700 m	650 m	

Die Differenz von 50 m, um welche das Projekt der N. O. B. im Vorteil ist, wird durch die um 90 m grössere Länge der unbeschränkten Geleiseanlage meines Vorschlages vollständig aufgewogen.

Damit dürfte der Beweis geleistet sein, dass bei einer Verlegung des Bahnhofgebäudes die nötige Geleiselänge für einen unbeschränkten Betrieb erhalten werden kann und dass die Einwendungen der N.O.B. schwach begründet sind."

Miscellanea.

Die Entdeckung Professor Röntgens in Würzburg, die sogenannten X-Strahlen, machte in der letzten Sitzung des österr. Ingenieur- und Architekten-Vereins Herr Dr. *James Moser*, Privatdozent der Physik an der Wiener Universität, zum Gegenstand einer interessanten Mitteilung, die nach dem in der Zeitschrift genannten Vereins abgedruckten Protokoll folgendermassen lautete:

«Ich erlaube mir kurz einige Versuche mitzuteilen und deren Resultate zu demonstrieren, welche mir erst heute gelungen sind. Zunächst zeige ich eine vor acht oder neun Jahren nach Boudet de Pâris von mir ohne Licht hier in Wien gefertigte, sehr scharfe Abbildung einer Münze mittelst Kathodenstrahlen und eine ebensolche mittelst Anodenstrahlen. Ich berichtete über diese Arbeiten im Jahrgang 1886 des Jahrbuches Prof. Eders, S. 196, wie folgt: «Als ich die Publikationen der Herren Boudet und Tommasi las, erinnerte ich mich der Experimente, die mir Herr Professor Eugen Goldstein im Berliner physikalischen Institute gezeigt