Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 19/20 (1892)

Heft: 6

Artikel: Berechnung der Turbinen mit verticaler und horizontaler Achse

Autor: Ramel, Geo. F.

DOI: https://doi.org/10.5169/seals-17431

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Berechnung der Turbinen mit verticaler und horizontaler Achse. II. Theil. - Explosion auf dem Dampfboot "Mont-Blanc" bei Ouchy. II. - Sihlthalbahn. - Literatur: Academy Architecture and Annual Architectural Review. Cours d'Electricité industrielle.

— Miscellanea: Das letzte Breitspurgeleise in England. Ein Fussgänger-Tunnel zwischen zwei Bahnhöfen in London. Eisenbahn-Eröffnungen. -Vereinsnachrichten: Association des anciens élèves de l'Ecole polytechnique fédérale à Zurich.

Berechnung der Turbinen mit verticaler und horizontaler Achse.

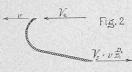
Von Maschinen-Ingenieur Geo. F. Ramel in Zürich.

II. Theil.

Turbinen mit borizontaler Achse.

In Folge der Verschiedenheit der Radien am Eintritt und Austritt des Wassers beim Laufrade und der daraus bedingten Verschiedenheit der Umfangsgeschwindigkeiten ist die günstigste Umfangsgeschwindigkeit beim Uebergang vom Leitapparat in das Laufrad nicht mehr genau durch das v des "von Reiche"'schen Gesetzes gegeben. Es verlangt die genauere Berechnung die Aufstellung eines allgemeineren Gesetzes, in welchem der Einfluss der verschiedenen Umfangsgeschwindigkeiten auftritt, welche Aufgabe hier in Kurzem gelöst werden soll.

Allgemeines Gesetz. Soll beim Austritt aus dem Laufrade, d. h. nach Verlassen einer Schaufel (siehe Fig. 2) dem



Wasser seine absolute Geschwindigkeit genommen werden, so wird, wenn D_1 den innern, D_2 den äussern Durchmesser des Laufrades bezeichnet, statt wie wir beim von Reiche'schen Gesetz fanden $V_s = v$,

hier

$$V_s^- = v \frac{D_2}{D_1}$$

d. h. grösser als v sein müssen, woraus dann folgt

$$V_e^- = V_s^- + v = \frac{D_2}{D_1} v + v$$

$$v = \frac{Y_e^-}{1 + \frac{D_2}{D_1}}$$

Wie früher setzen wir die Arbeit Pv gleich der wirklich zur Geltung kommenden Arbeit des Wassers und Y. Q. H, was uns mit der Substitution obigen Werthes für v durch eine analoge Rechnung wie früher zu der allgemeinen Relation führt, wobei $Ve=c_1\cos\alpha_1$

$$\label{eq:v_loss} v \ c_1 \ \cos \alpha_1 \ = \left(\frac{2 \ \mathcal{D}_1}{\mathcal{D}_1 + \mathcal{D}_2}\right) \ Y \ . \ g \ . \ H.$$

Dieses Gesetz, welches sich durch den eingeklammerten Factor vom von Reiche'schen unterscheidet, ist für den Fall aufgestellt, wo das Laufrad von Innen beaufschlagt wird. Es würde für den Fall. wo die Beaufschlagung von Aussen erfolgt (Amerikanische Francis-Turbinen), dasselbe sein, nur wären die Rollen von D_1 und D_2 zu vertauschen.

Hieraus ergibt sich nun ein anderer Werth für k_v

$$k_v = \frac{Y}{2 k_1 \cos u_1} \left(\frac{2 D_1}{D_1 + D_2} \right)$$

ein Werth, der sich nur durch den schon erwähnten Factor von dem früheren Werthe von k, unterscheidet.

Um den Einfluss dieses Factors auf k, festzustellen, muss das Verhältniss von D_2 zu D_1 festgestellt sein. Wir entnehmen der Praxis folgende Ausführungen:

Für
$$D_1=1$$
 m soll $D_2-D_1=$ 0,200 ungefähr sein.
" $D_1=2$ " " " " = 0,300 " " " $D_1=3$ " " " = 0,400 " "

$$D_1 = 1.1 \ D_1 + 0.1 \ \dots \ (1)$$

Dieses ergibt eine einfache lineare Gleichung $D_1 = 1.1 \ D_1 + 0.1 \ \dots \ (1)$ Nennen wir nun $\frac{D_2}{D_1} = \gamma$, wobei $\gamma > 1$, so folgt aus derselben

$$\gamma = \frac{D_2}{D_1} = \frac{1, 1 \ D_1 + 0, 1}{D_1} \ . \ . \ . \ (2)$$

$$\frac{2 D_1}{D_1 + D_2} = \frac{2}{1 + \gamma} = \frac{2 D_1}{2, 1 D_1 + 0, 1}$$
 (3)

da sie sich den meisten Ausführungen der Praxis annähern, so gibt $\frac{2}{1+\gamma}$ den Correctionscoefficienten für das k_v bei verticaler Achse. Dieses ergibt von $D_1=$ 0,8 m bis 6,0 mfolgende Vergleichstabelle.

$D_1 =$	0,800 1,000 1,200 1,400 1,600 1.800 2,000 2,500 3	,,000	4,000	6,000
$D_2 =$	0,980 1,200 1,420 1,640 1,860 2,080 2,300 2,850 3	,400	4,500	6,700
$\frac{2}{1+\gamma} =$	0,900 0,909 0,916 0,921 0,925 0,928 0,930 0,934	,938	0,940	0,945

Naturgemäss wird mit wachsendem D1 der Factor $\frac{2}{1+\gamma}$ immer grösser, d. h. näher von 1 werden, jedoch ist der Einfluss auf die günstigste Umfangsgeschwindigkeit auch

Tabelle II. Für die Coefficienten k_v und k_z zur Berechnung der Turbinen-Systeme Girard mit horizontaler Welle.

		$\frac{D_2}{D_1}$	$\frac{2\ D_1}{D_1 + D_2}$	$\alpha_1 = 18^{0}$				$a_1 = 22^0$					
D_1	D_2	γ	λ	$k_v^*\lambda$ k_v	$ \begin{array}{c c} Y \overline{k_v + 0.9} - Y_2 \\ k = k_2 \end{array} $	$\frac{k_v}{k_2} \gamma$ $\cos \alpha_2$	α_2	$\sin^2\alpha_2k_2^2\\ k_3^2$	k_v	$k=k_2$	cos α ₂	α_2	k_3^2
0,800	0,980	1,225	0,900/	$k_v^* = 0.471$	0,561	0,926	220 104	0,0373	$k_v^* = 0,482$ $0,434$	0,569	0,934	2100	0,0416
1,000	1,200	1,200	0,909	0,428	0,557	0,921	23° 0′	0,0471	0,438	0,565	0,930	21 0 30'	0,0428
1,200	1,420	τ,183	0,916	0,433	0,556	0,920	23 0 5'	0,0475	0,442	0,563	0,929	21 0 40	0,0433
1,400	1,640	1,171	0,921	0,434	0,553	0,919	23 0 10'	0,0471	0,444	0,561	0,926	22 0 104	0,0445
1,600	1,860	1,163	0,925	0,435	0,550	0,920	230 5'	0,0462	0,446	0,559	0,928	21 0 50	0,0433
1,800	2,080	1,156	0,928	0,437	0,550	0,919	23 0 10'	0,0467	0,447	0,558	0,926	22 0 104	0,0441
2,000	2,300	1,150	0,930	0,438	0,549	0,917	23 0 30'	0,0480	0,448	0,557	0,926	22 0 10	0,0441
2,500	2,850	1,140	0,934	0,440	0,547	0,919	23 0 10'	0,0462	0,450	0,556	0,922	22 0 50	0,0466
3,000	3,400	1,133	0,938	0,442	0,546	0,917	23 0 30	0,0475	0,452	0,554	0,923	22 0 40'	0,0454
4,000	4,500	1,125	0,940	0,443	0,545	0,914	2400'	0,0490	0,453	0,553	0,921	2300	0,0466
6,000	6,700	1,117	0,945	0,445	0,543	0,914	24 0 0	0,0488	0,455	0,551	0,922	22 0 50	0,0458

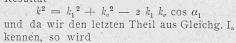
bei einer Turbine von 6,000 Durchmesser immerhin noch 5 1/2 0/0 gegenüber einer Turbine mit verticaler Achse, da für diesen Fall der Factor noch 0,945 beträgt.

Es bringt demnach die Differenz der Umfangsgeschwindigkeiten am Laufrad beim Eintritt und Austritt des Wassers eine Aenderung in der Bestimmung der Geschwindigkeiten mit sich, die man für eine gute Berechnung in der Praxis keineswegs vernachlässigen sollte. Aus diesem Grunde leite ich auch für den Fall von Turbinen mit horizontaler Achse die Geschwindigkeiten in besonderer Weise ab.

Die Geschwindigkeiten. Zunächst ergibt sich aus vorhergehendem, allgemeinem Gesetz: Y

$$I_a$$
 $k_v = \frac{Y}{2 k_1 \cos \alpha_1} \frac{2 D_1}{D_2 + D_2}$

Sodann folgt, wie früher, aus dem Geschwindigkeitsdreieck Fig. 3, jedoch mit verändertem Resultat



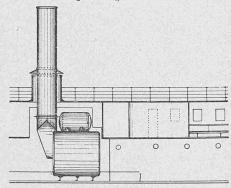


Fig. 1. Schnitt durch den Maschinenraum und Ansicht des Kessels. Masstab I: 200.

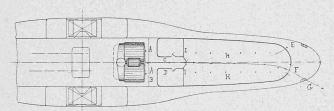


Fig. 2. Horizontalschnitt in der Höhe des Salons I. Cl. Masstab 1:500.

$$II_a$$
 $k = \sqrt{k_1^2 + k_2^2 - Y(\frac{2D_1}{D_1 + D_2})}$

Hieraus bestimmt sich c, wie früher angegeben $k_2^2 = 0.9 + k^2 - k_1^2$

(siehe Reifers einfache Berechnung der Turbinen), welches nun mit den neuen Werthen zu

III_a
$$k_2 = \sqrt{k_v^2 + 0.9 - Y \frac{2 D_1}{D_1 + D_2}}$$

Wenn man es mit Girard-Turbinen zu thun hat, so wird $k_1^2 = 0.95^2 = 0.90$ und die Gleichungen IIa und IIIa werden identisch, d. h. es ist wie bei den Turbinen mit

verticaler Achse $k = k_2$, d. h. $c = c_2$. Für die Austrittsgeschwindigkeit c3 und den Austrittswinkel aus dem Lauf-

rade ist, wenn wir
$$v' = v \frac{D_2}{D_1} \text{ und } k'_v = k_v \frac{D_2}{D_1}$$
 die Umfangsgeschwindigkeit, am äuss

die Umfangsgeschwindigkeit am äussern Umfange des Laufrades (siehe Fig. 4) nennen $c_3^2 = v'^2 + c_2^2 - 2 v' c_2 \cos \alpha_2$

$$c_3^2 = v'^2 + c_2^2 - 2 v' c_2 \cos \alpha_2$$

und weil dieser Werth uns nur insofern interessirt, als wir α_2 so bestimmen wollen, dass $\frac{c_3^2}{2\,g}$ nicht mehr wie 0,05 vom

$$\alpha_2$$
 so bestimmen wollen, dass $\frac{c_3^2}{2\,g}$ nicht mehr Totalgefälle ausmache, so folgt aus
$$k_3^2 = k_r^{'2} + k_2^2 - 2\,k_r^\prime\,k_2\cos\alpha_2$$
 und
$$k_3^2 = \frac{c_3^2}{2\,g\,H} = \frac{h_3}{H} = \text{0,05}$$
 IVa
$$\cos\alpha_2 = \frac{k_r^{'2} + k_2^2 - \text{0,05}}{2\,k_r^\prime\,k_2}$$
 Es wäre nun angezeigt, für die Werthe von

Es wäre nun angezeigt, für die Werthe von k_{ν} , k und k_2 sowie α_2 eine Tabelle aufzustellen, wie wir es für die Turbinen mit verticaler Achse gethan haben. Wir umgehen dieses in Bezug auf α_2 und stellen über diesen Winkel eine eingehende Untersuchung an, welche nicht ohne Interesse ist.

Anstatt die Austrittsrichtung des Wassers nach Verlassen des Laufrades, also die absolute Endgeschwindigkeitsrichtung unberücksichtigt zu lassen, wollen wir die Anforderung stellen, dass das Wasser durch passende Wahl von α_2 genau in der Richtung des Radius fortlaufen soll und

untersuchen sodann, zu welchem Gefällsverlust k_3^2 uns diese Bedingung führt.

Aus der nebenstehenden Fig. 5 folgt, wenn v', c_3 und c_2 ein zwischen v' und c_3 rechtwinkliges Dreieck bilden sollen:

$$v'^2 + c_3^2 = c_2^2$$
 der

 $k_v^2 \left(\frac{D_2}{D_1}\right)^2 + k_3^2 = k_2^2,$

welches uns zu der Gleichung führt

$$IV_{b} \qquad \frac{D_{2}}{D_{1}} = \frac{\sqrt{k_{2}^{2} - k_{3}^{2}}}{k_{v}}$$

 ${
m IV_b}$ $rac{D_2}{D_1}=rac{\sqrt{k_2^2-k_3^2}}{k_v}$ Wir können dann auch in Gleichung ${
m VI_a}$ den Werth k_v' durch $k_v \frac{D_2}{D_1}$ ersetzen und erhalten

$$\cos \alpha_2 = \frac{k_v^2 \left(\frac{D_2}{D_1}\right)^2 + k_2^2 - k_3^2}{2 k_v \left(\frac{D_2}{D_1}\right) k_2}$$

und wenn wir hierin obigen Werth von $\frac{D_2}{D}$ substituiren, so wird auch:

IV_c
$$\cos \alpha_2 = \frac{k_v}{k_1} \cdot \frac{D_2}{D_1} = \frac{Y \overline{k_2}^2 - k_3^2}{k_2}$$

Den Formeln ${\rm IV_b}$ und ${\rm IV_c}$ Dampfboot, Mont-Blane", muss zugleich genügt werden, denn IV_c ist nur dann richtig, wenn $\frac{D_2}{D_1}$ den Werth aus IVb erhalten hat. Es ist k_3^2 demnach bestimmt, wenn $\frac{D_2}{D_1}$ gewählt ist und umgekehrt. $\frac{D_2}{D_1}$ ist nicht leicht zu verändern, weshalb wir es als gegebene Grösse annehmen und dann einfach mit Hülfe dieser Ausdrücke nachsehen, zu welchen Werthen von k_3^2 und α2 wir dadurch geführt werden, wenn wir den radialen Austritt als Bedingung aufstellen wollen.

Wie bereits früher, setzen wir $\frac{D_2}{D_1} = \gamma$ und zur Abkürzung $\frac{1}{2 k_1 \cos \alpha_1} = A$ (welches eigentlich den Werth von k, für verticale Turbinenachse bedeutet), ferner

$$\frac{2 D_1}{D_1 + D_2} = \frac{2}{1 + \gamma}$$

so wird die Gleichung IVb uns einen Werth von k_3^2 zu bestimmen erlauben, mit welchem wir sodann aus IIIa eine Relation bilden dürfen, die k2 ganz eliminirt.

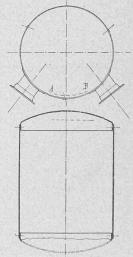


Fig. 3 u. 4. Vertical- und Horizontalschnitt durch den Vertical- und explodirten Dampfsammler. Masstab 1:50.

Diese Rechnung, ausdrücklich bemerkt, soll nur zur Untersuchung dienen und wird nicht als Regel für eine practische Berechnung gegeben, da sie weitläufig ist. Sie soll uns nur rechtfertigen, ob wir den radialen Austritt für eine Turbine verlangen dürfen, ohne ihr zu schaden, und was dabei für ein Winkel erforderlich ist.

Wir haben nach IV_b

$$\gamma = \frac{\sqrt{k_2^2 - k_3^2}}{A\left(\frac{2}{1+\gamma}\right)}$$

oder

$$\gamma^2 A^2 \left(\frac{2}{1+\gamma}\right)^2 = k_2^2 - k_3^2$$

Diese letzte Gleichung gibt uns direct den Gefällsverlust durch die absolute Endgeschwindigkeit, denn es ist

$$k_3^2 = \frac{c_3^2}{2 g H} = \frac{h_3}{H}$$

Nehmen wir für γ zwei Werthe, die sich in den Grenzen der am meisten ausgeführten Beispiele bewegen, so ist für $D_1 = \text{I}, 000 \, m, \, D_2 = \text{I}, 200, \, D_2 - D_1 = \text{IOO}, \, \frac{D_2}{D_1} = \gamma = \text{I}, 2, \quad \frac{2}{\text{I} + \gamma} = \text{O}, 909 \, \text{I}$ $D_1 = 3,000 \, m, D_2 = 3,400, D_2 - D_1 = 200, \frac{D_2}{D_1} = \gamma = 1,133, \frac{2}{1+\gamma} = 0.9375$ Setzen wir ferner $a_1=22^0$ und $k_1=0.95$ (Girard) ein, so wird $A=\frac{Y}{2\cos \alpha_1 k_1}=0.482$ und 2Y=1.70 und

Dampfboot "Mont-Blanc" auf dem Genfersee.

Erbaut von Escher Wyss & Co. in Zürich.

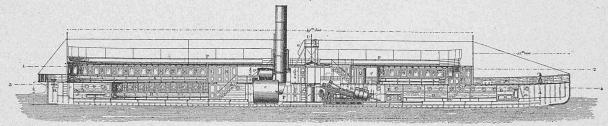


Fig. 5. Verticalschnitt. - Masstab 1:500.

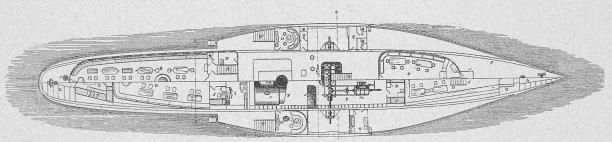


Fig. 6. Zwei Horizontalschnitte 1-2 und 3-4. - Masstab 1:500.

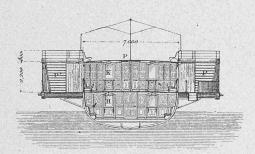
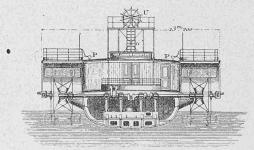


Fig. 7. Querschnitt 5-6.



Masstab I: 300.

Fig. 8. Querschnitt 7-8.

Legende für sümmtliche Schnitte: A Requisilenraum, B Wirlhschaft II. Cl., D Cajüte II. Cl., E Maschinist, F Maschinenraum, G Matrosenraum, H Cajüte I. Cl., J Steuermann, K Salon I. Cl., L W-C. I. Cl., N Wirthschaft I. Cl., O Rauch-Cabine, O' Salon réservé, P Promenade-Deck, P' Tréppenaufgang für dasselbe, Q Pissoir, Q' W-C. für Herren, R Steuerquadrant, S Salon II. Cl., T Capitain, U' Steuermaschine, a Eingang in den Requisitenraum, c Kessel, d Eingang in Cajüte II. Cl., e Schlafstelle für den Maschinisten, f Eingang in den Maschinenraum, g Schlafstellen im Matrosenraum, h Eingang in Cajüte I. Cl., i Küche, m Maschine, p Hauptdeck, q Abiritte II. Cl., r Eingang zum Steuerquadrant, s Kohlenkasten, u Treppenaufgang zum Promenade-Deck.

Nach $\mathrm{III}_{\mathrm{a}},\ \mathrm{um}\ k_2$ zu eliminiren und indem wir immer

$$k_v = A \frac{2}{1+2}$$

substituiren, wird dann

$$\gamma^2 \ A^2 \left(\frac{2}{1+\gamma}\right)^2 = A^2 \left(\frac{2}{1+\gamma}\right)^2 + \text{ 0.9 } - \ Y\left(\frac{2}{1+\gamma}\right) - k_3^2$$

Diese Gleichung, nach γ aufgelöst, vereinfacht sich bedeutend und ergibt als Endresultat ${\rm IV_d} \qquad \gamma = \frac{4\ A^2 + {\rm o}, 9 - 2\ Y - k_3^2}{4\ A^2 + k_3^2 - {\rm o}, 9}$ und nach k_3^2 aufgelöst ${\rm IV_e} \qquad k_3^2 = \frac{4\ A^2 + {\rm o}, 9 - 2\ Y - \gamma\ (4\ A^2 - {\rm o}, 9)}{\gamma + {\rm I}}$

$$IV_{\rm e}$$
 $k_{3}^{2} = \frac{4A^{2} + 0.9 - 2Y - \gamma(4A^{2} - 0.9)}{\gamma + 1}$

| ergibt sich für diese Werthe von γ .

Für
$$\gamma = 1,200$$
 wird $k_3^2 = 0,04745$
, $\gamma = 1,133$, $k_3^2 = 0,04514$

$$\gamma = 1{,}133$$
 , $k_3^2 = 0{,}04514$

Dieses sind gute Werthe von k_3^2 , da der Gefällsverlust unter der Grenze 0,05 bleibt.

Wir hatten auch nach IIIa

$$k_2^2 = A^2 \left(\frac{2}{1+\gamma}\right)^2 + 0.9 - Y\left(\frac{2}{1+\gamma}\right)$$

und
$$\cos \alpha_2 = \sqrt{\frac{k_2{}^2 - k_3{}^2}{k_2{}^2}}$$
 Für obige Werthe ergibt dieses

(
$$D_1 = 1,000$$
). Für $\gamma = 1,200$, $k_3^2 = 0,04745$, $\alpha_2 = 22^0 50'$ ($D_1 = 3,000$). Für $\gamma = 1,133$, $k_3^2 = 0,04514$, $\alpha_2 = 22^0 40'$

Wir sehen, dass diese Werthe ganz gut für die Praxis verwendbar sind und dass α_2 wenig durch γ beeinflusst wird. Für verticale Welle wäre nach Tabelle I unter gleichen Annahmen gewesen $\alpha_2 = 24^{\,0}\,50$, d. h. es muss für die Turbine mit horizontaler Achse und radialem Verlassen des Wassers α_2 um z^0 kleiner genommen werden, wobei sich dann aber auch ein kleinerer Werth von k_3^2 , d. h. ein etwas besserer Nutzeffect ergibt.

Es ist nach Vorhergehendem meine bestimmte Meinung, dass man ganz gut den radialen Austritt als Bedingung annehmen kann, ohne dass man k_3^2 zu berechnen braucht. Wenn wir α_2 unter 22°40' nehmen (sagen wir 22°), so ist der radiale Austritt angenähert gesichert und wir wissen, dass dabei der Gefällsverlust $k_3^{\ 2}=\frac{h_3}{H}=$ etwa 0,045 wird. Diesen Werth $\alpha_2=22^0$ dürfen wir um so mehr beibehalten als es ein in der Praxis sehr gut verwendbarer Werth ist, der mit vielen guten Ausführungen übereinstimmt.

Es ist noch zu bemerken, dass für verticale Achsen dieselben Bedingungen eigentlich erfüllt sind, wenn man für $k_3^2 = 0.05$ einsetzt, was wir auch gethan haben. Es entspricht dieser Werth der Bedingung des verticalen Austritts, als gleichbedeutend mit dem radialen Austritt bei unendlich grossem Radius. In diesem Falle, $\gamma=$ 1, gehen die Formeln gleichfalls in einander über und zeigt sich, dass bei gleicher Bedingung der Motor mit horizontaler Achse, d. h. mit verschiedenen Durchmessern $D_{\rm 1}$ und $D_{\rm 2}$ gegenüber dem Motor mit verticaler Achse, d. h. mit unendlich grossem Radius (weil man die Cylinder-Abwickelung des Schaufelschnittes als solchen annehmen kann) im Sinne der Geschwindigkeit v folgende Eigenschaften auf-

1) Es ergibt sich ein etwas kleinerer Gefällsverlust durch die absolute Endgeschwindigkeit c_3 des Wassers.

2) Er verlangt dafür etwas kleineren Austrittswinkel α_2 . Dass dieses auch mit andern Austrittsbedingungen auf analoge Weise der Fall wäre, sieht man leicht ein. Es ist uns daher durch diese Untersuchung die Möglichkeit einer interessanten Kritik beider Systeme geboten worden, die uns zeigt, wie man bei beiden Systemen, mit verticaler und horizontaler Achse, zu verfahren hat, um bei der Wahl von α_2 keinen Fehler zu begehen.

Es ist klar, dass wenn wir α_2 kleiner wie 220 nehmen, wir k_0^2 um etwas vermindern, dann ist aber kein radialer Austritt mehr vorhanden, welcher zur leichten Entfernung des Wassers vom Rade a priori schon die günstigste Bedingung ist.

Ich möchte demnach empfehlen, für Girard-Turbinen mit horizontaler Welle die Werthe von α2 zu wählen, die sich nach den Formeln IV_b und IV_c ergeben, indem man aus IV_b den Werth von k_3 bestimmt und dann in Gleichg. IV_c zur Bestimmung von cos α_2 einsetzt.

Um in der Praxis nicht lange rechnen zu müssen, habe ich für die Durchmesser $D_1 = 0.8$ bis 6,00 und für die Werthe $\alpha_{\rm I}=$ 180 und 220 die Rechnung in Tabelle II (vide Seite 33) nach Obigem für k_v , $k=k_2$ (Girard), α_2 und k_3 ² durchgeführt und möchte nur noch bemerken, dass zur einfachern Berechnung die Formeln, die darüber stehen, etwas vereinfacht angeschrieben sind. Es wurde für den Werth $rac{2\,D_1}{D_1+D_2}=rac{2}{1+\gamma}$ immer die Bezeichnung λ gewählt, wobei dann die Werthe von k, für verticale Achse und horizontale Achse sich nur durch diesen Factor unterscheiden. Daher, um Verwechslung vorzubeugen, hier die Werthe von k_v , die sich auf verticale Welle beziehen, als k_v^* geschrieben sind und k_v für horizontale Welle gemeint ist:

$$k = k^* \lambda$$

Ferner ist, wenn

$$IV_{e} \qquad cos \ \alpha_{2} = \frac{k_{v}}{k_{2}} \gamma$$

genommen wurde, aus dem rechtwinkligen Dreieck für radialen Austritt, die einfachere Berechnung für k_3^2 nämlich $k_3^2 = \sin^2 \alpha_2 k_2^2$

abzuleiten, welches der Berechnung auch zu Grunde gelegt

Ferner wurde für beide Werthe von $\alpha_1 = 18^{\circ}$ und 220 die entsprechenden Werthe $k_v^st=$ 0,471 und 0,482 beigeschrieben, um den Einfluss auf die günstigste Umfangsgeschwindigkeit zu sehen. Die respectiven Zahlen für k, sind 0,424 und 0,434, d. h. der Einfluss ist ein ganz erheblicher und erklärt manche Abweichung der Bremsversuche in der Praxis mit der Berechnung auf dem Bureau. Hierüber sogleich ein Beispiel. Ich erlaube mir nur noch eine kurze Discussion der beigegebenen Tabelle II für

Girard-Turbinen mit horizontaler Achse: Man ersieht, dass $\alpha_1=2\,2^0$ und $\alpha_2=2\,2^0$ sehr gut zusammengehen, ohne dass k_3^2 grösser wie 0,05 wird, d. h. einen Gefällsverlust von 5 $^0/_0$ erreicht, dass man aber auch mit α_2 auf 21 0 und 20 0 heruntergehen sollte, wenn der Durchmesser unter 1,200 m ist. Dieses zeigen auch die meisten Ausführungen.

Diese Tabelle II kann auch zur Bestimmung von $\alpha =$ Eintrittswinkel ins Laufrad dienen, indem man $k=k_2$ derselben entnimmt u. a graphisch leicht findet. Für alle Verhältnisse, in denen Girard-Turbinen mit horizontaler Achse am meisten vorkommen, mag diese Tabelle ausreichen, für ganz kleine Turbinen (unter 0,8m) und ganz grosse (über 6,000 m) kann man sich leicht die Tabelle mit Hülfe der angegebenen Formeln erweitern.

Dass diese Berechnungsart mit der Praxis gut überein-

stimmt, mag folgendes Beispiel bestätigen:

Beispiel für die Geschwindigkeiten. Herr Reifer in seiner Schrift über die einfache Berechnung der Turbinen, gibt die Dimensionen einer Turbine mit horizontaler Welle, die von J. J. Rieter in Winterthur für die electrische Beleuchtung der mechanischen Bindfaden-Fabrik Immenstadt gebaut wurde und welche sehr genau durch Prof. Schröter in München auf den Nutzeffect geprüft wurde. (Nr. 25 Band XII. Schweiz. Bauzeitung).

Diese Dimensionen sind folgende:

 $D_1 = 1,160$, $D_2 = 1,39$ und $\alpha_1 = 22^0$, $\alpha_2 = 20^0$. Aus unserer Tabelle II folgt, da

$$\frac{2 D_1}{D_1 + D_2} = \frac{2,32}{2,55} = 0,91,$$

der Werth

 $k_v = 0.438$ (statt 0.482 für vert. Welle).

Vergleichen wir den Werth 0,438 für k, mit den Versuchen von Prof. Schröter, so stimmt er auffallend mit dem günstigsten Werthe überein, den die Versuche ergaben, da der Maximal-Wirkungsgrad bei 384 Touren bei einem Gefälle von 159,6 m erreicht wurde, was $k_v = 0.43$ ergibt, während der Constructeur, wie Herr Reifer bemerkt, k, = 0,45 zu Grunde gelegt hatte.

Mit Hülfe dieser Theorie wäre er der Wahrheit so näher gerückt, dass man sagen kann die Uebereinstimmung sei vollständig, denn ob 0,43 oder 0,438 genauer sei, wäre wol schwieriger nachzuweisen. Auf jeden Fall bestätigt dieser sehr genaue Versuch als ein schlagendes Beispiel die hier erörterte Berechnungsweise.

Auch war $\alpha = 20^{\circ}$, was mit unserer Tabelle II gut stimmt und darauf hin deutet, dass man dem radialen Austritt sehr nahe gelangt war. (Schluss folgt.)

Explosion auf dem Dampfboot "Mont Blanc" bei Ouchy.

II.

Zu dem unter obigem Titel in Nr. 4 d. B. erschienenen Berichte lassen wir auf Seite 34 und 35 dieser Nummer einige Zeichnungen folgen, die geeignet sind sowol den Vorgang als auch die Wirkung der Explosion zu verdeutlichen und über die Anlage und den Bau des Dampfbootes alle wünschbare Auskunft zu geben. Sämmtliche Originalzeichnungen, nach welchen die bezüglichen Clichés angefertigt wurden, sind uns mit gewohnter Zuvorkommenheit