Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 17/18 (1891)

Heft: 8

Artikel: Dynamische Theorie des Indicators

Autor: Fliegner, A.

DOI: https://doi.org/10.5169/seals-86148

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Dynamische Theorie des Indicators. — Drei-Phasen-Wechselstrommaschine der Maschinenfabrik Oerlikon. — XXXII, Haupt-

versammlung des Vereins deutscher Ingenieure zu Düsseldorf und Duis-

burg vom 17. bis 20. August 1891. — Correspondenz. — Miscellanea:
Electrische Strassenbahn in Bremen. Ueber das Eisenbahnunglück in
Zollikofen bei Bern. Kirche in Enge bei Zürich.

Dynamische Theorie des Indicators.

Von Prof. A. Fliegner. (Schluss.)

§ 4. Die indicirte Arbeit.

Die Maschinen werden gewöhnlich nur zu dem Zwecke indicirt, die am Kolben verrichtete Arbeit zu erfahren. Bezeichnet F den Querschnitt des Maschinenkolbens, s seinen Hub, so wird für einen Hin- und Hergang auf einer Seite desselben die in Meterkilogrammen auszudrückende Arbeit gewonnen:

$$L = Ffpds. (27)$$

Unter der Annahme eines Kurbelradius r und einer unendlich langen Kurbelstange ist $s=r(1-\cos \varphi)$. Setzt man hieraus ds und ausserdem p aus Glchg. (2), nur mit φ statt ωt , in (27) ein, so folgt:

$$L = Fr \sum_{n=0}^{\infty} \int_{\rho}^{2\pi} (a_n \cos n\varphi + b_n \sin n\varphi) \sin \varphi \, d\varphi. \quad (28)$$

Die einzelnen Integrale dieser Reihe haben, abgesehen von den constanten Factoren, die Formen:

$$\int_{\rho}^{2\pi} \cos n\varphi \sin \varphi d\varphi \text{ und } \int_{\rho}^{2\pi} \sin n\varphi \sin \varphi d\varphi,$$

sie verschwinden daher sämmtlich mit einziger Ausnahme desjenigen mit $\sin\,n\varphi$ für n= 1, nämlich:

$$\int_{\rho}^{2\pi} \sin^2 \varphi \ d\varphi = \pi. \quad . \quad . \quad . \quad (29)$$

Die am Kolben verrichtete Arbeit wird daher aus (28)

$$L = Fb_1\pi r. \qquad (30)$$

Handelt es sich um eine doppeltwirkende Maschine, so bedeutet L auch die Arbeit bei einer halben Umdrehung der Kurbelwelle, und dann zeigt Glchg. (30), dass der Factor b_1 des Gliedes mit sin 1. φ der Reihe, multiplicirt mit dem Kolbenquerschnitt, der mittleren constanten Tangentialkraft an der Kurbelwarze gleich wird.

Statt dieser gesuchten Arbeit erhält man durch den Indicator eine andere dargestellt, nämlich $L_i = Ff p_i ds$, oder, wenn man p_i aus Glehg. (9) einsetzt und im Uebrigen theilweise umformt, wie vorhin:

$$L_i = F \left[r \sum_{n=o}^{n=\infty} \int_o^{2\pi} (A_n \cos n\varphi + B_n \sin n\varphi) \sin \varphi \, d\varphi + \right]$$
 (31)

$$+r\int_{e}^{2\pi}\frac{\mu q}{2M_{\omega}}(C_{1}\cos\varkappa\varphi+C_{2}\sin\varkappa\varphi)\sin\varphi\,d\varphi-\gamma\int_{e}^{e}ds$$

Von den in diesem Ausdrucke enthaltenen Integralen verschwindet das vorletzte mit γ . Hat der Indicator constante Widerstände ϱ , so ändern

Hat der Indicator constante Widerstände ϱ , so ändern dieselben bei jeder Umkehrung der Bewegung des Indicatorkolbens ihr Vorzeichen. Das letzte Glied in Glchg. (31) kann daher im Allgemeinen nicht verschwinden. Da aber ϱ jedenfalls sehr klein bleibt, so kann dieses letzte Glied keinen wesentlichen Einfluss auf L_i ausüben.

Das zweite Integral in Glchg. (31) lässt sich nur dann allgemein lösen, wenn man $\varrho=$ o voraussetzt, weil nur dann die beiden Constanten C_1 und C_2 für die ganze Zeit der Bewegung ungeändert bleiben. Da aber \varkappa , s. Glchg. (9°), im Allgemeinen keine ganze Zahl ist, so fallen die cos und sin an der oberen Grenze nicht fort und der Ausdruck behält eine sehr unbequeme Gestalt. Ich will ihn daher hier nicht angeben, sondern nur hervorheben, dass er nicht ver-schwindet. Das würde natürlich ebensowenig der Fall sein,

wenn man ϱ berücksichtigen und nach jedem Stillstande des Indicatorkolbens C_1 und C_2 neu berechnen müsste. Hieraus folgt aber, dass man bei vorhandenen Federschwingungen die Arbeit nicht richtig erhält, wenn man nur einfach die vom Indicator aufgezeichnete Fläche ausmisst. Vor längerer Zeit habe ich einmal, ich weiss allerdings nicht mehr wo und von wem, die Behauptung ausgesprochen gefunden, der Flächeninhalt bleibe der gleiche, möge die Feder in Schwingungen gerathen oder nicht, weil solche Schwingungen schliesslich keinerlei Arbeit aufzehren oder erzeugen. Die vorliegende Untersuchung zeigt, dass diese Behauptung nicht richtig ist. Es handelt sich eben beim Indicator nicht um Verrichtung, sondern um Aufzeichnung von Arbeit.

Das erste Glied in Glchg. (31), die Reihe, entspricht hier auch der eigentlichen indicirten Arbeit, so wie sie sich bei Abwesenheit von Federschwingungen und mit Vernachlässigung von ϱ ergibt. Wie bei der Reihe Glchg. (28) verschwinden aber auch hier alle Integrale mit Ausnahme desjenigen mit $B_1 \sin 1$. φ . Daher wird

$$L_i' = F B_1 \pi r. (32)$$

Ob B_1 grösser oder kleiner ist als b_1 , lässt sich nicht allgemein angeben. Bei Kraftmaschinen aber herrscht der höchste Druck immer in der Nähe des Anfanges des Kolbenhubes, also bei kleinen Werthen von φ . Das erste Glied der Reihe p, Glchg. (2), muss daher eine Welle ergeben, deren Berg auch bei kleinen Werthen von φ liegt; es wird folglich voraussichtlich o $< \mathcal{G}_1 < ^1/_2 \pi$ werden. b_1 ist dann natürlich positiv. Da nun, wie oben nachgewiesen wurde, jedenfalls $\Theta_1 > \mathcal{G}_1$, $H_1 > h_1$ sein muss, so folgt, dass auch $B_1 > b_1$ werden wird. Bei Kraftmaschinen ist also die indicirte Arbeit stets zu gross zu erwarten. Bei Arbeitsmaschinen, z. B. Pumpen, kann dagegen \mathcal{G} einen ganz anderen Werth annehmen und sich das Verhältniss zwischen B_1 und b_1 umkehren. Aber auch dann kann der Indicator die Arbeit nicht genau darstellen.

Wenn man das den früheren Zahlenangaben zu Grunde liegende Diagramm, für welches sich $b_1=1,48895$ ergeben hat, in dieser Richtung nachrechnet, so findet man für verschiedene minutliche Umdrehungen folgende Werthe von B_1 : Minuten-Umdrhgn.:60 120 180 240 300

$$B_1 = 1,50031$$
 1,51246 1,52539 1,53920 1,55389 $B_1/b_1 = 1,00763$ 1,01579 1,02447 1,03375 1,04361

Das letzte Verhältniss wächst nur wenig rascher als die Umdrehungszahl. Da das untersuchte Diagramm dem normalen Diagramm einer eincylindrigen Dampfmaschine vollkommen entspricht, während bei dem der Rechnung zu Grunde gelegten Indicator ungewöhnlich grosse Massen angenommen wurden, so wird man erwarten müssen, dass bei derartigen Maschinen keine stärkeren Abweichungen als die eben gefundenen auftreten werden.

Wie sich andere Maschinen in dieser Richtung verhalten, lässt sich nicht ohne besondere Untersuchung angeben. Eine solche geht aber in jedem einzelnen Falle ohne grosse Schwierigkeiten durchzuführen, vorausgesetzt dass ein normales Diagramm ohne Federschwingungen zur Verfügung steht. Es genügt zu diesem Zwecke, die Factoren A_1 und B_1 der Glieder der Reihe p_i für n=1 zu bestimmen, und zwar auch auf Grund der Glchgn. (25), also:

$$A_1 = \frac{\tau}{\pi} \int_{\rho}^{2\pi} p_i' \cos \varphi \, d\varphi; \qquad B_1 = \frac{\tau}{\pi} \int_{\rho}^{2\pi} p_i' \sin \varphi \, d\varphi. \quad (33)$$

Da die hierbei nöthigen Curven für eine Umdrehung nur eine einzige vollständige Welle bilden, so ist diese Bestimmung durchaus genügend genau auf graphischem Wege durchführbar. Durch Umkehrung der Glehgn. (9^a) und (9^b) ergibt sich ferner allgemein:

$$a_{n} = \frac{1}{\sigma} \left[(\sigma - M n^{2} \omega^{2}) A_{n} + \mu n \omega B_{n} \right],$$

$$b_{n} = \frac{1}{\sigma} \left[(\sigma - M n^{2} \omega^{2}) B_{n} - \mu n \omega A_{n} \right],$$
(34)

und der hier allein nöthige Werth von b_n für n=1 wird endlich:

$$b_1 = \frac{1}{\sigma} [(\sigma - M\omega^2) B_1 - \mu \omega A_1].$$
 (35)

M, μ und σ sind Constanten des Indicators, bzw. der benutzten Feder, welche anderweitig bestimmt werden müssen. Der Quotient b_1/B_1 zeigt dann, in welchem Verhältniss die wirkliche Arbeit zur beobachteten steht.

Ich habe in dieser Richtung ein Diagramm einer im Viertact arbeitenden Gasmaschine untersucht, welches mit einem normalen, leichteren Indicator abgenommen worden

war. b_1 ergab sich noch nicht ganz 3/4 0/0 kleiner als B_1 . Bei derartigen halbfachwirkenden Maschinen muss übrigens die Fourier'sche Reihe etwas anders entwickelt werden. Da nämlich bei denselben eine Periode der Druckänderung zwei Umdrehungen umfasst, so darf n nur um je 0,5 zunehmen, damit das erste Glied der Reihe auf zwei Umdrehungen nur eine Welle darstellt. A_1 und B_1 gehören dann zum zweiten Gliede, das seinerseits auf zwei Um-

drehungen auch zwei Wellen entspricht. Bei der

Berechnung dieser Werthe muss gleichzeitig π durch 2 π ersetzt werden.

Bei allgemein m-fach wirkenden Maschinen steht auch b_1 nicht mehr in der vorhin gefundenen einfachen Beziehung zur mittleren constanten Tangentialkraft T an der Kurbelwarze. Vielmehr ist dann:

$$T = \frac{m}{2} F b_1. \qquad (36)$$

Der Quotient b_1/B_1 ist hiernach, Benutzung eines passend gewählten Indicators vorausgesetzt, jedenfalls stets nur wenig von der Einheit verschieden. Man kann daher

bei gewöhnlichen Abnahmeversuchen von Maschinen die indicirte Arbeit einfach durch Ausmessen der Fläche eines guten Indicatordiagrammes ohne Schwingungen bestimmen. Und das um so mehr, als bei anderen oft gleichzeitig stattfindenden Messungen ebenfalls keine grössere Genauigkeit erreichbar ist. Auch ist es entschieden zulässig, auf Grund von Indicatordiagrammen unmittelbar calorimetrische Untersuchungen allgemeinerer Art anzustellen, bei denen es nur auf den wesentlichen Verlauf der Wärmeübergänge ankommt. In diesen Richtungen wird der Indicator stets ein werthvolles und unentbehrliches Hülfsmittel des Maschinen-Ingenieurs bleiben.

Dagegen zeigen die vorstehenden Entwickelungen doch, dass das Indicatordiagramm durchaus kein vollkommen genaues Bild von der Zustandsänderung des arbeitenden Körpers gibt; namentlich an einzelnen Stellen können verhältnissmässig bedeutende Abweichungen auftreten. Von ins Einzelne gehenden calorimetrischen Untersuchungen darf man daher keine zuverlässigen Ergebnisse erwarten. Der Indi-

cator ist eben kein feiner physikalischer Apparat, er muss vielmehr, was seine Genauigkeit anbetrifft, mit den übrigen Messinstrumententen der Maschinen-Praxis auf die gleiche Stufe gestellt werden.

Zürich, Juni 1891.

Drei-Phasen-Wechselstrommaschine der Maschinenfabrik Oerlikon.*)

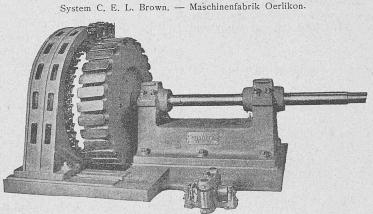
Nachdem sich die Arbeitsübertragung auf electrischem Wege in der Praxis allgemein eingebürgert hat, tritt nun die Frage der Kraftvertheilung auf grosse Entfernungen, speciell unter Verwerthung entlegener Wasserkräfte, mehr und mehr in den Vordergrund.

Bei solchen Anlagen wird es selbstverständlich vor Allem nöthig sein, mit erheblich höhern Stromspannungen zu arbeiten, als es bisher der Fall war. Gleichstrom er-

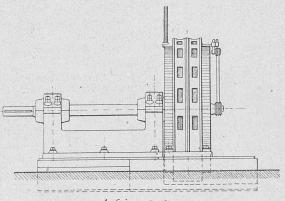
laubt die Verwendung solcher nicht, während Wechselstrom durch seine leichte Umformungsfähigkeit hiezu ein passendes Mittel bietet.

Im Weitern muss die Möglichkeit geboten sein, auf rationelle Weise Motoren beliebiger Grösse zu betreiben. Einfacher Wechselstrom steht in dieser Beziehung gegenwärtig dem Gleichstrom nach, dagegen entspricht der sogenannte Mehrphasen-Wechselstrom durch seine Eigenschaften dieser Anforderung in vollkommener Weise.

Die Maschinenfabrik Oerlikon, welche von jeher der electrischen Arbeitsübertragung grosse Aufmerksamkeit geschenkt hat, ist nun im Begriff, mehrere Anlagen nach diesem System zu bauen. Herr C. E. L. Brown, der seit geraumer Zeit das Mehrphasen-System besonderen Studien unterzog, hat einen Maschinentypus geschaffen, welcher in hervorragender Weise die charakteristischen Eigenschaften, die das System mit sich bringt, benützt und verwerthet.


werthet.
Es gestatten nämlich die zur
Erzeugung der hochgespannten
Ströme nöthigen Transformatoren,

die Spannung der Maschinen ganz beliebig niedrig anzunehmen, und nachstehende Beschreibung gibt ein Bild dessen, was durch Benützung dieses Hauptmoments erreicht werden kann.


Die beistehenden Abbildungen zeigen eine Mehrphasen-Maschine, welche bei 150 Touren pro Minute 300 P.S. aufzunehmen vermag. Die Anordnung der Armatur ist derart, dass drei Wechselströme erzeugt werden, deren Phasen um 120 Grad gegen einander verschoben sind. Die Spannung eines jeden derselben beträgt nur 50 Volt und die Stromstärke je 1400 Ampère. Um die Abnahme dieser grossen

*) Die auf der internationalen electrischen Ausstellung in Frankfurt a/M. zur Anwendung kommende Arbeitsübertragung von Lauffen nach Frankfurt a/M. zeigt einen 300-pferdigen Generator nach dem nachfolgend beschriebenen System, das dazu berufen scheint, in der Fachwelt grossem Interesse zu begegnen. Wir glauben daher mit nachfolgendem Artikel, dessen Daten uns von der Maschinenfabrik Oerlikon in verdankenswerther Weise zur Verfügung gestellt wurden, einem Theil unserer Leser willkommen zu sein.

Die Redaction.

Drei-Phasen-Wechselstrom-Maschine von 300 P. S.

Aufriss. · I: 50.