Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 17/18 (1891)

Heft: 2

Artikel: Das neue eidg. Post- und Telegraphengebäude in St. Gallen:

Architekten: Hirsbrunner & Baumgart in Bern

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-86078

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Betrieb. Es ist das Mögliche gethan worden, um die Stationen, die bei Untergrundbahnen Sommers wie Winters ein unangenehmer Aufenthaltsort und Warteraum sind, so wohnlich wie möglich zu machen. Da in London Alles mit der Zeit schwarz und schmutzig wird, sind die Wände so viel wie möglich mit weissen Ziegeln verkleidet worden, die unter der künstlichen Beleuchtung ein angenehmes Licht ausstrahlen und von Zeit zu Zeit, wenn durch Russ geschwärzt, mit Wasser abgespühlt werden können. — Mit Ausnahme an den beiden Enden sind Einsteig- und Aussteigstationen getrennt, jede besitzt ihren besondern Bahnsteig. Nur die Aufzüge liegen, wie früher schon erwähnt, beisammen. Die Ankommenden gehen durch ein Drehkreuz, zahlen ihre zwei Pence, gleichgültig wie weit sie zu fahren beabsichtigen, und befinden sich der Thüre des Aufzuges gegenüber. Aus diesem tretend, finden sie ihren Bahnsteig, ohne die Abgehenden zu kreuzen, welche auf einem besondern Weg zum Aufzug gelangen. Das Aussehen der überirdisch angelegten Empfangs-Gebäude ist aus Fig. 9 ersichtlich.

Zehn Züge werden immer gleichzeitig den Verkehr vermitteln. Zur Sicherung derselben sind alle Stationen mit Blocksignalen etwas abgeänderter Bauart versehen. Die Hebel sind zum Theil electrisch mit den Signalen verbunden derart, dass sie erst geöffnet werden können, wenn die Maschine den zum Signal gehörenden Taster passirt hat, wodurch selbstthätig dem Wärter ein Zeichen gegeben wird.

Eine Unannehmlichkeit werden die Reisenden mit in Kauf nehmen müssen, den ziemlich grossen Lärm nämlich, den die Fahrt in den ganz aus Eisen hergestellten Tunnel verursachen muss. Er soll nicht derart sein, dass nicht nebeneinander Sitzende sich unterhalten könnten, auch soll man sich rasch daran gewöhnen. Sollte es sich als wünschenswerth herausstellen, so wäre es nicht unmöglich, durch Abänderung der Contactschlitten die Geräusche etwas zu mässigen.

Damit haben wir in kurzen Zügen die Beschreibung eines der interessantesten Bauwerke der neuern Ingenieurkunst gegeben, uns an frühere und neueste Veröffentlichungen im "Engineering" haltend, dessen Verleger uns in der zuvorkommendsten Weise zur Benutzung ihrer Zeitschrift ermächtigt haben, wofür wir ihnen hier unsern besten Dank aussprechen. Zu den Figuren 3, 6, 7, 8 haben wir die Darstellungen aus "Engineering" und zu Fig. 1, 2, 4, 5 und 9 solche aus der "Scientific American" benutzt. Einlässlichere Beschreibungen der einzelnen Theile — und alle bieten des Neuen und Lehrreichen überraschend viel — sind für die Zukunft in Aussicht gestellt.

Zum Schluss seien noch die horvorragenden Männer genannt, welche sich bei diesem kühnen und durchdachten Werk ausgezeichnet haben. An der Spitze des ganzen Unternehmens steht der Oberingenieur J. H. Greathead, der Erfinder der Tunnelabbaumethode mittelst des nach ihm benannten Schildes und all der vielen mit derselben verbundenen sinnreichen Einzelheiten, die wir nur zum Theil aufgeführt haben. Ihm standen zur Seite die Ingenieure Schute und Mott. Der architektonische Theil der Bauten ist das Werk des Herrn Figgis. Erster Unternehmer war Herr E. Gabbutt aus Liverpool, der aber aus Gesundheitsrücksichten zurücktrat und durch die Firma W. Scott & Cie. in Newcastle-upon-Tyne ersetzt wurde. Die hydraulischen Einrichtungen sind vom Hause Armstrong, Mitchell & Cie. geliefert worden, die electrischen, wie schon erwähnt, von Mather & Platt in Salford, welche auf dem Bauplatz durch Herrn Grindle vertreten waren.

Das neue eidg. Post- und Telegraphengebäude in St. Gallen.

Architekten: Hirsbrunner & Baumgart in Bern.
(Mit einer Lichtdruck-Tafel.)
TT.

Nach diesem Rückblick wollen wir nun auf die Beschreibung des Baues selbst eintreten. Wir thun dies an Hand von Daten, die uns von Herrn Arch. E. Baumgart in Bern, dem einstigen Antheilhaber der durch den Tod Hirsbrunners erloschenen Architekturfirma Hirsbrunner & Baum-

gart, in verdankenswerther Weise zur Verfügung gestellt worden sind.

Ausser der dieser Nummer beigelegten Lichtdruck-Ansicht der Süd-Ost-Façade haben wir auf Seite 9 den Schnitt nach der Mittelachse, sowie die Erdgeschoss-Grundrisse des Concurrenz-Entwurfes und der nachherigen Ausführung vergleichend nebeneinandergestellt, um aus den letzteren die Abänderungen in der Ausführung leichter zu ersehen. Die anderen Grundrisse werden später folgen.

Die wesentlichen Planabänderungen der definitiven Ausführung gegenüber dem Concurrenzproject sind folgende:

Verlegung des Briefträgerbureaus, welches laut Programm in directer Verbindung mit der Schalterhalle verlangt war, auf die Seite gegen die Kornhausstrasse;

Verlegung der Haupttreppe in die Achse der Halle, zwecks nachträglich verlangter Vergrösserung und besserer Beleuchtung des Telegramm-Aufgabelocals;

Vergrösserung des Fahrpostlocals um 50 m^2 , sowie Weglassung des II. Stockwerkes im Mittelbau der Südostfaçade, um den nach dem innern Hof gelegenen Bureaus mehr Licht und Sonne zuführen zu können. (Siehe beil. Tafel.)

Im Erdgeschoss sind sämmtliche Diensträume, im I. Stockwerk die Bureaus der Postdirection und Telegrapheninspection mit dem Apparatensaale untergebracht. Im II. Stockwerk befinden sich im Mittelbau die Wohnung des Hauswarts und disponibele Räume für die Telephoncentralstation, der übrige Theil ist zu vier confortabelen Privatwohnungen eingerichtet. Der grosse Saal im Mittelbaudach, sowie auch der grösste Theil des Dachbodens dienen zu Archivund Magazinzwecken.

Mit den Fundationsarbeiten (Pfählung und Betonirung) wurde am 14. August 1885 begonnen und trotz des ungünstigen Baugrundes war es möglich, die in Rorschacher-Bruchsteinen ausgeführten Kellermauern bis Unterkant Sockel auf '15. November 1885 fertig' zu stellen. Das Gebäude ruht auf ungefähr 1200 Pfählen von 5—9 m Länge, deren Köpfe 0,15 m in den Fundamentbeton eindringen; ein eigentlicher Pfahlrost wurde nicht gemacht. Die Façaden stehen auf einem Hartsteinsockel von Solothurner Kalkstein; die Hauptfaçade ist ganz in blauem Ostermundigersandstein verkleidet und mit Bruchstein hintermauert, während an den übrigen Façaden aus Sparsamkeitsgründen nur die Fenstereinfassungen in Bernerstein aufgeführt wurden. Das Dach ist mit belgischen Doppelschiefern und ein kleinerer Theil, gegen den Hof, mit Holzeement eingedeckt.

Der Hauptraum des Gebäudes, der einzige, auf den die Architekten etwas verwenden durften, ist die Schalterhalle. Dieselbe liegt in der Mitte der Nordfaçade und hat einen Flächeninhalt von $103\ m^2$. Links sind die Schalter für die Briefpost mit den americanischen Brieffächern, die von 112 im alten Gebäude im Neubau auf 264 vermehrt wurden. Ein über diesen Fächern angebrachter Mechanismus zeigt dem in der Halle wartenden Publicum an, wenn die Fächer bedient sind. Rechts sind die Schalter für die Fahrpost, die Postreisenden und die Reclamationen, hinten links das Mandatbureau, in der Mitte die Haupttreppe für die Bureaus und rechts die Telegrammaufgabe, welch Letztere mit dem im ersten Stock liegenden Apparatensaal durch einen Depeschenaufzug verbunden ist.

(Fortsetzung folgt.)

Statistik

der eidgenössischen polytechnischen Schule in Zürich

(Wintersemester 1890/91). Ahtheilungen der bolytechnischen Schule

	Aoineitungen der f	Julyleum	aistnen Stru	16.		
I.	Bauschule	umfasšt	gegenwärtig	31/2	Jahrescu	rse,
II.	Ingenieurschule	,,	,	31/2	,,	
III.	Mechanisch-technische Schule	"	*	3 1/2	7	
IV.	Chemisch-technische Schule	n	,,	3 2	"	2)
	Forstschule	,,	,	3	,,	
	Landwirthschaftliche Schule	"		21/2	. 11	
VC.	Culturingenieurschule	77	"	31/2		31
VI.	Fachlehrer-Abtheilung	,,	" {	4 3	n n	4)

Ableitung bei der vollen Spannung von 500 Volt 1 Ampère nicht überschreite. (Vide Fig. 4 (2) letzter Nummer.)

Stromerzeuger und Kraftmaschinen. Die Stromerzeugung geschieht an der Endstation in Stockwell. (Fig. 3 und 8.) Hier sind drei Edison-Hopkinson-Dynamos aufgestellt, jede von einer 375 HP. indicirenden Verbund-Dampfmaschine

Der Dampf wird in sechs Lancashire-Kesseln von 2,13 m Durchmesser und 8,5 m Länge erzeugt. Der Dampfdruck beträgt nahezu 10 Atm.; das Speisewasser wird in zwei Vorwärmern, welche allen Abdampf erhalten, vorge-

Der Anker des Edison-Hopkinson-Stromerzeugers ist angetrieben. Diese von J. Fowler & Cie. in Leeds gebauten | aus Kupferbarren gebildet, jeder Anker hat ein Gewicht

Neues eidgenössisches Post- und Telegraphen-Gebäude in St. Gallen.

Architekten: Hirsbrunner & Baumgart.

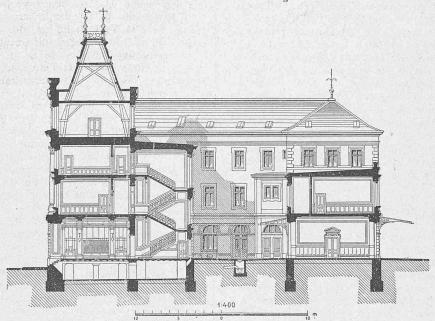
Legende für den Concurrenz-Grundriss.

- a. Brief-Bureau.
 b. Fahrpost-Büreau.
 c. Mandat-Bureau.
 d. Briefträger-Zimmer.
 e. Telegramm-Aufgabe.
 f. Schalterhalle.
 g. Wartzimmer für die Postreisenden
- reisenden. h. Remise für die Post-
- wagen.
 i. Remise für die Hand-
- wagen. k. Waschküche und Zu-

- Maschküche und Zugang dazu.

 J. Aborte.

 M. Diensttreppe.


 Privatwohnung-Treppe.

 J. Innerer Hof.

 A Postber

Legende für den ausgeführten Grundriss.

- 1 Schalterhalle.
- 2 Briefpost-Bureau.
 2' Americanisches Brieffach (in der Brüstung: Heizkörper).

Schnitt.

- 3 Briefträger-Zimmer.
 3 'Guichet-Thüre.
 4 Mandat-Büreau.
 4 'Raum für das Publicum.
 5 Vorplatz.
 6 Garderobe.
 7 Remise fur die Handwagen.
 8 Remise für die Postwagen.
 10 do.
 11 Fahrpost-Bureau.
 12 Factoren.
 13 Durchfahrt.
 14 Wartzümmer für die Postreisenden.
 15 Telegramm Aufgabe-Bureau.

- Bureau.

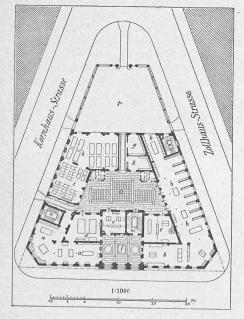
 15' Telegramm-Aufzug (liegt in der Mauer links vom Schrank).

 16 Raum für das Publicum.

 17 Innerer Hof.

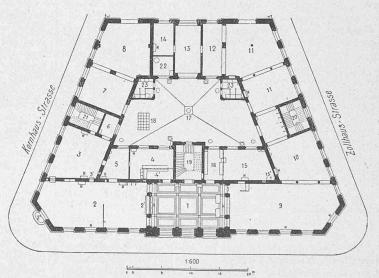
 18 Oblicht für den Heizraum (Glasplatten-Boden).

 19 Haupttreppe.


 20 Treppe.

 21 Treppe.

 22 Waschküche.


 23 Aborte.

 H = Heizkörper (System Bechem & Post).

Grundriss vom Erdgeschoss nach dem Concurrenz-Entwurf von Arch. G. Hirsbrunner.

Maschinen besitzen Cylinder von 43 und 69 cm Durchmesser, einen Hub von 69 cm und machen 100 Umdrehungen in der Minute. Jeder Cylinder hat ein besonderes Expansions-Ventil, welches Füllungen zwischen o und 3/4 erlaubt. Wilson-Hartwell-Regulatoren und Schwungräder von 4,3 m Durchmesser sorgen für einen gleichmässigen Gang der Maschinen. Der Antrieb der Dynamos erfolgt durch Gliederketten, welche die Triebrollen auf drei Viertel ihres Umfanges umfassen.

Grundriss vom Erdgeschoss nach der Ausführung.

von 2 t, die ganze Maschine ein solches von 17 t.

Der Comutator besteht aus gehärteten Kupferstreifen mit Mica-Isolirung. Die Magnete sind ausserordentlich massig; ein Schenkel mit seinem Polschuh wiegt 4 t, der Bügel 3 t. Bei 500 Volts Spannung und einer von jeder Maschine gelieferten Stromstärke von 450 Ampères beträgt der electrische Nutzeffect 96 %, derjenige der ganzen Kraftanlage, welchen man als Verhältniss der geleisteten electrischen Arbeit zu der in den Dampfcylindern indicirten bezeichnen kann, 75% o. Von den Dynamos aus geht der Strom zu einem einfachen Umschalter im Maschinenraum und von hier aus in die vier Speiseleitungen; ein automatischer Ausschalter und ein eingelegter Widerstand verhindern die schädlichen Wirkungen eines Kurzschlusses.

SCHWEIZERISCHE BAUZEITUNG.

Neues eidg. Post- und Telegraphen-Gebäude in St. Gallen.

Süd-Ost-Façade.

Architekten: HIRSBRUNNER & BAUMGART in Bern.