Zeitschrift: Die Eisenbahn = Le chemin de fer

Herausgeber: A. Waldner Band: 4/5 (1876)

Heft: 2

Artikel: VII. Hauptversammlung der Techniker des Vereins deutscher

Eisenbahnverwaltungen

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-4855

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

digkeit würde bei der Berg- und Thalfahrt ca. 1 m/ per Secunde

Bei Anwendung von Rampen zwischen 10 und 20% Steigung schlug Seiler die Construction und den Betrieb von pneumatischen Tunnels folgendermassen vor: Der Tunnel soll einen so grossen Querschnitt erhalten als der freie Durchgang des gewöhnlichen Rollmaterials inclusive Locomotiven es erfordert und derselbe wird, je nach den localen Verhältnissen, entweder von Eisen construirt, gemauert oder in Felsen gesprengt. Die Zugsbewewegung geschieht, wie bei der pneumatischen Bahn zu Sydenham vermittelst einem, das Tunnelprofil ausfüllenden Luftkolben. Die Construction dieses Kolbens wird später speciell besprochen werden und es braucht hier nur angeführt zu werden, dass derselbe auf einem besonderen, starken und ungefederten Wagen montirt ist. Dieser Kolbenwagen erwartet nun auf einem Nebengeleise ausserhalb der untern Tunnelmündung den ankommenden Zug, welcher mit der Locomotive gezogen in den auf Zugslänge annähernd horizontal gelegten Theil des Tunnels einfährt. Der Kolbenwagen wird bis zum Contact der Buffer an den Zug geschoben, die Tunnelmündung mittelst einer mechanischen Vorrichtung abgeschlossen, die hinter den Kolben einmündende und mit der Motorglocke in Verbindung stehende Röhre beginnt den Tunnel mit comprimirter Luft zu speisen und der Zug setzt sich auf der Steilrampe in Bewegung. Am oberen Tunnelende angelangt, bleibt der Kolbenwagen zurück und der Zug, von der Locomotive gezogen, setzt seine Reise fort. Ein durch denselben Tunnel abwärts fahrender Zug treibt mittelst des Luftkolbens die Luft wieder in die Motorglocke zurück, so dass der grösste Theil der auf die Compression verwendeten Arbeit zur Hebung eines später bergwärts gehenden Zuges abgegeben werden kann. Für den Betrieb eines solchen Tunnels zur Hebung von Eisenbahnzügen braucht es somit eine geringere Kraftentwicklung, als bei Anwendung des teleskopischen Röhrensystems, während die Fahrgeschwindigkeit zugleich eine grössere sein kann.

In diesem Stadium der Entwickelung befand sich die

Seiler'sche Idee des hydro-pneumatischen Transportbetriebes, als im Jahr 1864 Herr Bergeron, damals Betriebsdirector der westschweizerischen Bahnen, eine Concession für eine derartige Bahn erhielt, welche den Lausanner Bahnhof mit der Place Saint-François verbinden sollte. Nach diesem Projecte hat der Tunnel, aus 45 % starkem Mauerwerk hergestellt, eine Länge von 355^m/ bei einem inneren Querschnitte von 5 m/ und eine durchschnittliche Steigung von 15%. Die comprimirte Luft wird durch eine Seiler'sche Motorglocke von 20 m/ Durchmesser und 200 Tonnen Wasserbelastung geliefert und diese Glocke ruht auf sechs hydraulischen Druckcylindern von 40 % Durchmesser und 8^m/ Hublänge, welche mit einer durch Dampfkraft getriebenen Druckpumpe communiciren. Bei der Fahrt abwärts kann im Nothfalle durch Expansion des Luftkolbens eine hinreichend grosse Bremswirkung erzielt werden; überdiess besteht zur leichteren Regulirung der Fahrgeschwindigkeit eine electrische Communication zwischen dem Zug- und Glockenpersonale. Das erwähnte Project wurde indessen wieder aufgegeben, hauptsächlich aus dem Grunde, weil keine genügenden Wasserkräfte vorhanden waren und somit der wesentlichste Factor eines öconomischen pneumatischen Betriebes a priori fehlte. Im Jahre 1866 publicirte Seiler in einer vielfach verbreiteten Brochure: "Die Vortheile des pneumatischen Systems für Alpenbahnen" seine bekannten Projecte für Ueberschienung des Gotthard's, des Lukmanier's und des Simplon's.

Bis dahin haben wir Seiler's Motorglocken nur als einfach wirkende Apparate kennen gelernt, welche nach Art grosser Gasometer in eine mit Wasser gefüllte cylindrische Grube eintauchen. Denkt man sich nun aber eine solche Glocke mit einer metallenen Umhüllung versehen, in welcher die nöthigen Saug- und Druckventile angebracht sind und denkt man sich ferner das Glockenplateau in dieser Umhüllung als Kolben aufund abwärts bewegt, so erhalten wir ein mächtiges, doppelt wirkendes Cylindergebläse, dessen Construction und Wirkung im nächsten Abschnitte erläutert werden soll.

(Schluss folgt.)

GRAND TUNNEL DU **GOTHARD** ETAT DES TRAVAUX DU au 30 Juin 1876.

La distance entre la tête du tunnel à Gæschenen et la tête du tunnel de direction à Airolo est de 14920 mètres. chiffre comprend donc aussi, pour 145 mètres, le tunnel de direction. La partie courbe du tunnel définitif du côté d'Airolo, de

France, slabe, bloke in England, cirier skalasse	Embouchure Nord —— Goeschenen			Embouchure Sud ————————————————————————————————————			Total fin Juin.	
Désignation des éléments de comparaison								
still of the law and real feet and diete	Etat fin mai.	Progrès mensuel	Etat fin juin.	Etat fin mai.	Progrès mensuel	Etat fin juin.	- Varia	
Galerie de direction longueur effective, mètr. cour.	3189,3	95,7	3285,0	3007,6	40,4	3048,0	6333,0	
Elargissement en calotte, . longueur moyenne, " "	1914,9	83,2	1998,1	1635,0	138,0	1773,0	3771,1	
Cunette du strosse, . , , , , , , , , ,	1699,6	58,6	1758,2	1180,0	67,0	1247,0	3005,2	
Strosse	1103,2	72,3	1175,5	817,0	64,0	881.0	2056,5	
Excavation complète , , , , ,	88,0	100.1 - 1100	88,0	145,0	innia . vi atini	145,0	233,0	
Maçonnerie de voûte, , , , , , , , , , , , , , , , , ,	960,0	23,0	983,0	961,0	70,9	1032,0	2015,0	
" du piédroit Est, . " " " "	911,2	95,0	1006,7	418,8	126,6	545,4	1552,1	
" du piédroit Ouest, " " " "	805,0	35,0	840,0	858,5	0,9	859,4	1699,4	
, du radier . , , , , ,	-	1 -10 XX	nateur	1000 - 11k - 11	Hasanasann	1171 01191110	-	
Aqueduc, , , , , complétement	_	50,0	50,0	126,0	0,0	126,0	176,0	
" " incomplétement	686,0	126,0	812,0	528,0	0,0	528,0	1340,	

VII. Hauptversammlung der Techniker des Vereines deutscher Eisenbahnverwaltungen.

Die Versammlung, zu der in sehr zuvorkommender Weise auch Techniker von schweizerischen Eisenbahnen zugelassen worden waren, tagte am 26., 27. und 28. Juni in Constanz

Vereinigung angehören, 64 mit im Ganzen 96 Abgeordneten, 44 Bahnen dagegen nicht vertreten. Gäste hatten sich 11 eingefunden.

Die Zahl der Vertreter der drei Abtheilungen: Bau, Betrieb und Maschinenwesen mochte sich ungefähr die Waage halten.

Auf der Tagesordnung stand in erster Linie die Revision und es waren von den 108 Eisenbahnverwaltungen, welche der der bekannten "technischen Vereinbarungen des Vereins deutscher Eisenbahn-Verwaltungen über den Bau und die Betriebseinrichtungen der Haupt-Eisenbahnen", welche unter der Leitung Joseph Stummers, Ritter von Traunfels, Directionspräsident und Regierungsrath (Kaiser Ferdinands-Nordbahn und Mährisch-Schlesische Nordbahn) neuerdings durchberathen und mit den neuesten Erfahrungen und Vervollkommnungen in Einklang gebracht wurden. Besonderes Interesse erregte ein Vortrag des Herrn Obermaschinenmeisters Mahla (Bairische Staatsbahnen) über die vorgeschlagene Construction verstärkter Zughaken und Schraubenkuppelungen, deren Dimensionen auf Grund vielfacher, gleichzeitig in Wien und München angestellter Versuche und Berechnungen in allen ihren einzelnen Theilen genau ermittelt und durch detaillirte Zeichnungen dargestellt wurde.

Ein zweites ebenfalls sehr wichtiges Tractandum bestand in der Revision der "Grundzüge für die Gestaltung der secundären Eisenbahnen". Die dem ursprünglichen Entwurfe vorgestellte Einleitung enthält die Motive zu diesen Grundzügen und giebt vielfachen Aufschluss über die Entstehung dieser Vorschriften. Leider soll dieselbe in der demnächst durch den Buchhandel zu beziehenden Ausgabe weggelassen werden, was um so mehr zu bedauern ist, als Werth und Bedeutung der Localbahnen noch nicht genügend in's Bewusstsein derjenigen weitern Kreise übergegangen ist, für die sie eigentlich bestimmt sind.

Sodann wurden drittens die Vorsichtsmassregeln beim Abstossen und Laufenlassen der Wagen berathen und folgender Beschluss gefasst:

"Das Abstossen und Ablaufenlassen einzelner Wagen oder Wagengruppen beim Rangiren mit Locomotiven auf Bahnhöfen erscheint nicht nur zulässig, sondern zur Bewältigung eines grösseren Verkehrs sogar unentbehrlich. Als zweckmässiges Mittel zur Schonung des Personals und der Betriebsmittel ist zu empfehlen, die vollständige Leitung des Rangirens, namentlich die specielle Bestimmung des Ablaufens und Abstossens der Wagen nur einem erfahrenen Rangirmeister unter eigener Verantwortung zu übertragen, wobei insbesondere für hinreichende Bremskraft zu sorgen ist.

Das Ablaufenlassen der Wagen bietet weniger Gefahr für Menschen und Fahrmaterial, als das Abstossen. Es sind desshalb, insbesondere auch zur Ersparung an Gleisen und Zeit beim Rangiren, für grössere Rangirbahnhöfe steigende Ausziehköpfe besonders zu empfehlen. Für dieselben ist eine Steigung von 1:100 zweckmässig, eine solche von 1:80 noch zulässig."

Ueber den vierten Verhandlungsgegenstand "Statistik über die Dauer der Schienen", hatte die Direction der a. p. Kaiser Ferdinands-Nordbahn, Namens der technischen Commission eine Vorlage ausgearbeitet und Tabellen vorgelegt, welche mit wenig Aenderungen angenommen wurden.

Fünftens hatte Herr Eisenbahndirector A. Wöhler (Elsass-Lothringische Reichs-Eisenbahn) folgenden Antrag eingebracht, welcher auch angenommen wurde:

Die Versammlung deutscher Eisenbahntechniker erklärt:

- I. a) dass eine bestimmte, staatlich anerkannte Classification für Eisen und Stahl in hohem Grade wünschenswerth ist,
 - b) dass zur Durchführung einer solchen Classification amtliche Prüfungsanstalten an geeigneten Orten errichtet werden müssen, welche für Jedermann gegen entsprechende Entschädigung derartige Prüfungen auszuführen hätten,
 - c) dass mit einzelnen dieser Prüfungsanstalten Versuchsstationen zu verbinden seien, in denen unter geeigneter Leitung durch ausgedehnte Versuche festgestellt würde, welche Ansprüche an Materialien für bestimmte Leistungen zu machen sind.
- II. Spricht sie den Wunsch aus, dass die technische Commission die Ausarbeitung bestimmter Vorschläge übernehme.

III. Beantragt sie bei der Generalversammlung des Vereins deutscher Eisenbahnverwaltungen diesem Beschlusse im Prinzipe zuzustimmen und dessen Ausführug in geeigneter Weise zu fördern.

Man kann über Reglementirung und besonders wenn sie zu weit ginge, verschiedener Ansicht sein, aber das ist sicher, dass ohne einheitliche Bestimmungen der internationale Verkehr wenn nicht unmöglich, so doch ausserordentlich erschwert und gefährlich wäre, und dass Fortschritt und Oeconomie im Eisenbahnwesen nur dann erzielt werden können, wenn die Eisenbahn-Techniker sich zusammenfinden und zusammen arbeiten, wie das in so vorzüglich anregender Weise von Seite der deutschen Eisenbahntechniker geschieht. In der kleinen Schweiz, welche einerseits zahlreiche Communicationen, anderseits mit Bezug auf Bau und Betrieb zwar nicht grossartige aber wohl die interessantesten Verhältnisse aufzuweisen hat, hier hat man es noch nicht dazu gebracht, einen Verein von Eisenbahntechnikern zu bilden, obgleich ein solcher von directem und grossem Nutzen sein könnte, wie sich unsere Eisenbahn - Directionen gewiss bald überzeugen würden.

minute legge Caroll

Präservirung von thierischen Nahrungsmitteln

von Dr. A. Herzen, Florenz.

Die zu bewahrenden Substanzen werden in einer Lösung von

150	Gewichtstheilen	Borsäure
30	,,	Borax
14		Kochsalz
5	"	Salpeter
in 2000		Wasser

24-36 Stunden lang weichen gelassen und darauf in Fässer u. s. w. gepackt.

* *

Die künstlichen Schlittschuhbahnen.

Die sogenannten Skating-Rink's oder künstliche Schlittschuhbahnen erfreuen sich hier in England einer kolossal schnellen Einführung. Manchester hat ihrer Fünf und sogar die Umgebung wimmelt davon. In Halifax soll eine der schönsten dieser Bahnen angelegt sein. Die unbedeckte Rollenschlittschuhbahnfläche ist 95' breit und 135' lang und ist auf beiden Seiten mit bedeckten Colonnaden begrenzt. Die angrenzende unter Dach gelegte Bahnfläche ist dagegen 64 Fuss breit und 140 Fuss lang und ist mit Ausruhzimmer, Rollenschlittschuhladen und Ankleidezimmer versehen.

Der Skating-Rink der Stadt York hat eine bedeckte Bahnoberfläche von 25 000 Quadratfuss, welche mit polirtem Tafelholz belegt ist. — Wrexham hat in den letzten Tagen auch eine dieser Bahnen dem Publicum geöffnet und desgleichen stellt auch Ipswich eine in Aussicht.

Der Hasting (Clifton) Skating-Rink wurde auch jüngst fertig gestellt und hat eine unbedeckte Bahnfläche von 1650 engl. yards, während die unter Dach gestellte Fläche

$120 \text{ Fuss} \times 54 \text{ Fuss}$

beträgt. Die Bahnfläche ist mit dem besten Zimmer-Asphalt bedeckt. New-Brighton hat selbstverständlich auch seine künstliche Schlittschuhbahn und das allerneueste auf diesem Gebiet wird von London aus gemeldet.

Obwohl die Idee schon seit mehreren Jahren gefasst wurde, diese Rinks mit natürlichem Eis zu bedecken, so ist dieselbe doch erst in den letzten Monaten zur Verwirklichung gekommen. In einem in Chelsea angelegten Rink wird man jetzt zu allen Zeiten auf wirklichem Eis Schlittschuh laufen können.