Zeitschrift: Schweizer Archiv für Tierheilkunde SAT : die Fachzeitschrift für

Tierärztinnen und Tierärzte = Archives Suisses de Médecine Vétérinaire

ASMV : la revue professionnelle des vétérinaires

Herausgeber: Gesellschaft Schweizer Tierärztinnen und Tierärzte

Band: 142 (2000)

Heft: 2

Artikel: Ein ungewöhnlicher Fall aus der Abstammungskontrolle beim Hund

Autor: Schelling, C. / Stranzinger, G.

DOI: https://doi.org/10.5169/seals-589895

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Ein ungewöhnlicher Fall aus der Abstammungskontrolle beim Hund

Institut für Nutztierwissenschaften, Veterinärmedizinische Abteilung Züchtungsbiologie, ETH Zürich C. Schelling und G. Stranzinger

Zusammenfassung

Mit Hilfe der Mikrosatelliten-Analyse überprüfen wir umstrittene Abstammungen beim Hund. Ein Fall betraf einen Wurf von vier Welpen, für die bereits Stammbäume ausgestellt worden waren. Die Untersuchung musste ohne Probenmaterial des angeblichen Vaters der Welpen durchgeführt werden, da dieser zu einem unklaren Zeitpunkt verstorben war. Obwohl es nicht möglich war, die verwandtschaftliche Beziehung dieses Rüden eindeutig zu klären, zeigte die vergleichende Untersuchung der Vererbung von Mikrosatelliten-Allelen, dass die vom Züchter gemachten Aussagen widersprüchlich waren und es zu falschen Aufzeichnungen von Verpaarungen gekommen sein musste.

Schlüsselwörter: Abstammungskontrolle -Hunde – Mikrosatelliten – PCR

Einleitung

Zur Abklärung von umstrittenen Abstammungen bei Rassehunden untersuchen und vergleichen wir die Vererbung von Mikrosatelliten-Allelen (Zajc et al., 1994), die mit Hilfe der Polymerase-Ketten-Reaktion (PCR) vermehrt werden. In diesem Fall handelte es sich um einen Wurf von vier Welpen, für die bereits Stammbäume durch die Schweizerische Kynologische Gesellschaft (SKG) ausgestellt worden waren. Gerüchte in Züchterkreisen deuteten darauf hin, dass der auf der Deckbescheinigung angegebene Rüde zum Zeitpunkt der Belegung bereits tot gewesen sein soll. Der Rasseclub veranlasste eine molekulargenetische Überprüfung der Vaterschaft. Für diese Abklärungen steht normalerweise kernhaltiges Probenmaterial der Hündin, der Welpen und der als Väter in Frage kommenden Rüden zur Verfügung. In diesem ungewöhnlichen Fall war vom angeblichen Rüden kein Probenmaterial zu erhalten, da er zu einem nicht klaren Zeitpunkt verstorben war. Dies erschwerte die Untersuchungen, und es musste erwartet werden, dass ohne stark polymorphe, informative Mikrosatelliten-Systeme keine schlüssigen Resultate erzielt werden konnten. Es war aber möglich, eine Blutprobe eines Halbbruders der vier Welpen zu be-

An unusual paternity test in dogs

We are solving disputed paternities in purebred dogs using microsatellite analysis. An interesting case involved four puppies for which pedigrees were already issued by the Swiss Kennel Club. The investigation had to be carried out without a sample from the stated sire. Even though the relationship of this sire could not be determined conclusively, comparison of microsatellite alleles within this family, including an alleged half-brother of the four puppies, showed clearly that the breeder had made contradictory statements and that false recordings of matings had occurred. The pedigrees for these four puppies were withdrawn and sanctions against the breeder were imposed.

Key words: pedigree control – dogs – microsatellites – PCR

kommen, der aus einer anderen Verpaarung mit demselben Rüden stammen sollte. Aufgrund der Vererbung nach Mendel würde man erwarten, dass sich die Bandenmuster der vier Welpen und die des Halbbruders ähnlich sind. Es wurde deshalb versucht, durch Vergleichen der Bandenmuster der vier Welpen und des Halbbruders zu Rückschlüssen auf den Genotyp des biologischen Vaters zu gelangen und auf diese Weise ein Resultat zu erzielen.

Tiere, Material und Methoden

Das Erbmaterial (Desoxyribonukleinsäure, DNS) der in diese Untersuchung miteinbezogenen Hunde wurde aus den Leukozyten von 1 ml EDTA-behandeltem Vollblut isoliert (Kawasaki, 1990). Auf diese Weise erhält man eine Lösung mit genomischer DNS, die für 500–1000 PCR-Reaktionen ausreicht. Für die Abklärungen wurden 17 verschiedene Mikrosatelliten-Systeme untersucht. Davon waren 8 Systeme (OST 20, 30, 140, 173, 213, 250, 263, 279) vom Dinukleotid-Typ (Ostrander et al., 1993) und 9 Systeme (T2004, 2016, 2087a, 2087b, 2130, 2131, 2137, 2138, 2140) vom Tetranukleotid-Typ (Francisco et al., 1996). Für die PCR-Reaktionen wurden jeweils 50 ng genomi-

sche DNS der einzelnen Hunde bzw. H₂0 bidest. für die Negativkontrolle eingesetzt. Das Reaktionsvolumen betrug für alle Primerpaare 15 µl mit: $1 \times PCR$ Puffer mit 1.5 mM MgCl₂, je 0.4 μ M der beiden Primer, 200 µM dNTPs, 2.5 µg bovines Serumalbumin und 0.5 Einheiten Taq-Polymerase (Perkin Elmer). Die PCR-Ansätze wurden in einem Robocycler (Stratagene) mit folgendem Temperaturprofil inkubiert. Initiale Denaturierung 5 Minuten bei 94 °C, gefolgt von 28 Zyklen mit 45 Sekunden bei 94 °C, 45 Sekunden bei 58 °C und 60 Sekunden bei 72 °C. Die finale Extension dauerte 10 Minuten bei 72 °C. Die Amplifikationsprodukte wurden in einem vertikalen 10% Polyakrylamidgel während 15 Stunden bei 100 Volt, gefolgt von 3 Stunden bei 300 Volt, der Länge nach aufgetrennt und nach Ethidiumbromid-Färbung unter UV-Licht fotografiert.

Resultate und Diskussion

Gemäss den Unterlagen des Züchters wurde ein partieller Stammbaum (Abb. 1) erstellt, der die Verwandtschaftsverhältnisse der von der Untersuchung betroffenen Hunde darstellte. Es sollte folgende Frage geklärt werden: Stammen alle vier Welpen (W1-W4) aus der Verpaarung Hündin 1 (H1) X Rüde 1 (R1) ab? Vom Rüden 1 und der Hündin 2 (H2) waren keine Blutproben verfügbar, da sie verstorben bzw. eine Blutentnahme nicht möglich war. Für die Abklärungen erhielten wir lediglich eine Blutprobe eines männlichen Nachkommens der Verpaarung R1 X H2. Dieser als Rüde 2 (R2) bezeichnete Hund wäre gemäss den Angaben des Züchters ein Halbbruder der vier Welpen. Er befand sich zeitweise ebenfalls in diesem Zwinger und konnte deshalb nicht als Vater der

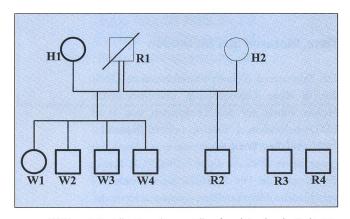


Abbildung 1: Partieller Stammbaum erstellt aufgrund Angaben der Zuchtstätte. Weibliche Hunde werden durch das Kreissymbol, männliche Hunde werden durch das Quadrat dargestellt. Die vier Welpen (W1–W4) sollen aus der Verpaarung Hündin 1 (H1) X Rüde 1 (R1) abstammen. Der Rüde 2 soll ein Halbbruder der vier Welpen sein und aus der Verpaarung R1 X Hündin 2 (H2) stammen. Vom Rüden 1 und von der Hündin 2 waren keine Proben verfügbar. Die Rüden 3 (R3) und 4 (R4) gehören einer anderen Rasse an und kommen aber, wie R2, als Vater der Welpen in Frage.

Welpen ausgeschlossen werden. Die Rüden 3 (R3) und 4 (R4) lebten zur Zeit der Läufigkeit der Hündin 1 ebenfalls in diesem Zwinger und wurden, obwohl sie einer anderen Rasse zugehören, in die Untersuchungen miteinbezogen, da sie aufgrund der Vererbung der Fellfarben nicht als Väter ausgeschlossen werden konnten.

Die Resultate der Untersuchung aller 17 verwendeten Systeme ergab folgende Aufschlüsse: Die Mutterschaft von Hündin 1 ist mit sehr grosser Wahrscheinlichkeit korrekt. Es konnte kein Allel im Bandenmuster der Welpen nachgewiesen werden, das nicht im Muster der Hündin 1 vorhanden war (nicht gezeigt). Eine Doppelbelegung wurde aufgrund der Tatsache, dass mit allen untersuchten Systemen in den Bandenmuster der vier Welpen nie mehr als vier Allele (beide Eltern heterozygot) nachgewiesen werden konnten, mit sehr grosser Wahrscheinlichkeit ausgeschlossen (nicht gezeigt).

Drei Mikrosatelliten-Systeme waren sehr informativ. Mit den Systemen OST 279, T2140 und T2137 konnten die mütterlichen und väterlichen Allele bei den 4 Wurfgeschwistern identifiziert werden. Für OST 279 (Abb. 2A) und T2140 (Abb. 2B) ist in beiden Fällen der Genotyp des angeblichen Halbbruders (R2) nicht mit der Vererbung nach Mendel vereinbar. Für das System OST 279 (Abb. 2A) hat die Hündin 1 einen homozygoten Genotyp (CC) und die väterlichen Allele der Welpen sind D und E. Der Genotyp des Halbbruders (R2) sollte deshalb mindestens in einem Allel (D oder E) mit dem Genotyp der Welpen übereinstimmen. Sein Genotyp ist aber heterozygot mit den Allelen A und B. Dies deutet klar darauf hin, dass der Vater der vier Welpen nicht identisch mit dem Vater des Rüden 2 ist. Im System T2140 (Abb. 2B) sind die väterlichen Allele C und D. Der Genotyp des Halbbruders ist aber homozygot B. Die verschiedenen Genotypen der Welpen (CE, AD und AC) widerlegen erneut die Möglichkeit eines gemeinsamen Vaters mit dem Rüden 2. Die Analyse des Systems T2137 (Abb. 2C) deutet an, dass der Genotyp des Vaters der vier Wurfgeschwister eher homozygot als heterozygot ist. Alle Welpen haben nur ein Allel D vom Rüden vererbt bekommen. Der angebliche Halbbruder hat aber einen heterozygoten Genotyp mit den Allelen B* und C. Das kürzere Allel des Rüden 2 wurde mit B* bezeichnet, weil es sich um ein Allel handelt, das zwischen A und B liegt. Das Allel B (4 Basenpaare länger als A) ist in diesen Hunden nicht vorhanden. In seltenen Fällen führen Mikroinsertionen oder Mikrodeletionen in den Sequenzen, welche den Mikrosatelliten flankieren, zu Allelen mit Längenunterschieden von einem, zwei oder drei Basenpaaren. Für die Beurteilung dieses Falles war das Auftreten dieses Phänomens jedoch nicht von Bedeutung.

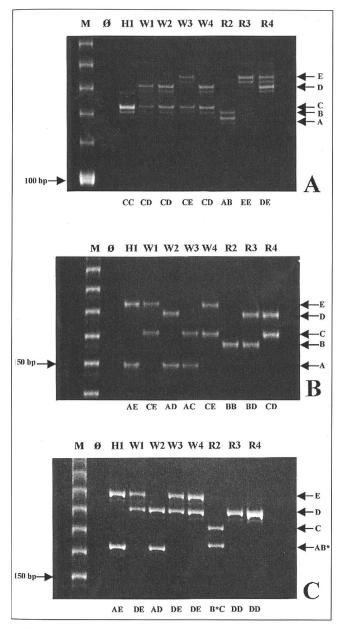


Abbildung 2: PCR-Nachweis mit den Mikrosatelliten-Primerpaaren OST 279 (A), T2140 (B) und T2137 (C). Die Amplifikate wurden auf einem 10% Polyakrylamidgel zusammen mit einem Molekulargewichtsmarker (M = 10 Basenpaarleiter) aufgetrennt und mit Ethidiumbromid gefärbt. Das Ladeschema der PCR-Produkte ist:

Ø = Negativ-Kontrolle, H1 = Hündin 1, W1 = Welpe 1, W2 = Welpe 2, W3 = Welpe 3, W4 = Welpe 4, R2 = Rüde 2, R3 = Rüde 3, R4 = Rüde 4. Die Genotypen der einzelnen Hunde sind unter der Laufbahn vermerkt. Die Pfeile auf der rechten Seite des Bildes deuten auf die segregierenden Allele des jeweiligen Systems, und der Pfeil auf der linken Seite gibt einen Referenzpunkt des Molekulargewichtsmarker. Beim Mikrosatelliten OST 279 treten sogenannte «Stotterbanden» auf, die durch Fehler in der Amplifikation mit der Taq-Polymerase von repetierter DNS entstehen. Diese Stotterbanden sind 2 Basenpaare kürzer als das entsprechende Allel und werden weniger stark amplifiziert. Ausserdem können vereinzelt sehr schwache Heteroduplexbanden erkannt werden. Sie entstehen durch nicht optimale Hybridisierung von DNS-Einzelsträngen.

Aufgrund der Resultate dieser 3 Systeme können folgende Aussagen über die Vaterschaft des Wurfes gemacht werden. Der Halbbruder konnte aufgrund der Vererbung der Allele als Vater aller vier Wurfgeschwister ausgeschlossen werden. Die Frage, ob der Rüde 1 der Vater der vier Welpen sein kann, konnte nicht schlüssig beantwortet werden. Die Resultate der 3 Mikrosatelliten-Systeme OST

279,T2137 und T2140 lassen aber starke Zweifel an der Richtigkeit der Angaben der Zuchtstätte aufkommen. Aufgrund der vorliegenden Befunde kommt der Rüde 1 nur dann als Vater der vier Welpen in Frage, wenn er nicht gleichzeitig der Vater des Rüden 2 ist.

Es gibt zwar Ausschlusskonstellationen, die nicht voll beweiskräftig sind, und deshalb durch weitere Ausschlüsse bestätigt werden müssen. So kann z.B. eine Mutation in der Keimbahn zu einer sprunghaften Veränderung in der Länge eines Mikrosatelliten-Alleles führen. Man vermutet, dass Fehler während der Meiose in der Replikation der DNS für diese Veränderungen verantwortlich sind (Schlotterer und Tautz, 1992). Ausserdem kann ein Basenaustausch im Bereich der Primerbindungsstelle dazu führen, dass der Primer unter Standard-PCR-Bedingungen nicht mehr hybridisieren kann und dass deshalb ein Allel nicht mehr oder unter der Nachweisgrenze amplifiziert wird. Dieses auch als «Null»-Allel bezeichnete Phänomen konnte beispielweise bei Pferden (Eggleston-Stott et al., 1997), Schafen (Ede und Crawford, 1995) und Hunden (Pienkowska und Schelling, in Vorbereitung) nachgewiesen werden. Diese Ereignisse sind selten, und man würde nicht erwarten, dass gleichzeitig vier Welpen dieselbe Mutation aufweisen und mehrere Mikrosatelliten betroffen sind.

Obwohl die beiden Rüden 3 und 4 einer anderen Rasse angehören, wurden sie in die Untersuchung miteinbezogen, da sie zum Zeitpunkt der Läufigkeit der Hündin ebenfalls in diesem Zwinger gehalten wurden und die Vererbung der Fellfarben diese als mögliche Väter nicht ausschloss. Mit den 17 untersuchten Mikrosatelliten-Systemen konnte der Rüde 3 (R3) als Vater für alle vier Welpen (Welpe 1:3mal; Welpe 2:2mal; Welpe 3:3mal; Welpe 4: 3mal) ausgeschlossen werden (als Beispiele: Abb. 2A-C). Der Rüde 4 (R4) konnte in keinem Fall als Vater der vier Welpen ausgeschlossen werden. Seine Genotypen waren in jedem untersuchten System mit einer Vaterschaft für die vier Welpen vereinbar (als Beispiele: Abb. 2A-C). Diese Resultate sprechen dafür, dass der Rüde 4 als Vater des Wurfes in Frage kommt.

Schlussfolgerungen

Die angebliche Vaterschaft des Rüden 1 konnte nicht schlüssig beurteilt werden, da von ihm kein Probenmaterial verfügbar war. Aufgrund der vorliegenden Bandenmuster, die einen gemeinsamen Vater für die Welpen und den Rüden 2 ausschliessen, muss unter der Annahme, dass die Blutentnahmen korrekt erfolgt sind, davon ausgegangen werden, dass Aufzeichnungen über Verpaarungen in

Abstammungskontrolle beim Hund

der Zuchtstätte Fehler enthalten und es zur Ausstellung von falschen Stammbäumen gekommen ist. Die Resultate mit 17 verschiedenen Mikrosatelliten schliessen eine Vaterschaft eines weiteren Rüden, der sich zur fraglichen Zuchtperiode im

Zwinger befand, nicht aus. Der Fall zeigt die hohe Aussagekraft der Mikrosatelliten-Analyse auch in Defizienzfällen und unterstreicht erneut die Notwendigkeit der Einführung einer unabhängigen Abstammungskontrolle beim Rassehund.

Un cas insolite lors du contrôle d'ascendance chez le chien

Les disputes à propos du contrôle d'ascendance sont résolues à l'aide de l'analyse des microsatellites. Un cas intéressant concerne quatre chiots dont les certificats d'ascendance avaient été établis. L'examen a été conduit sans échantillon en provenance du père. Même si le degré de parenté n'a pas pu être déterminé, la comparaison des allèles de microsatellites au sein de la famille, y compris des demi-frères de chiots, a démontré clairement que l'éleveur avait fait des déclarations éronnées et que les accouplements n'avaient pas été documentés proprement. Les certificats d'ascendance de ces chiots ont été retirés et des sanctions ont été prises contre l'éleveur.

Literatur

Ede A.J., Crawford A.M. (1995): Mutations in the sequence flanking the microsatellite at the KAP8 locus prevent the amplification of some alleles. Animal Genet. 26, 43–44.

Eggleston-Stott M.L., Delvalle A., Dileanis S., Wictum E., Bowling A. T. (1997): A single base transversion in the flanking region of an equine microsatellite locus affects amplification of one allele. Animal Genet. 28, 438–440.

Francisco L.V., Langston A.A., Mellersh C.S., Neal C.L., Ostrander E.A. (1996): A class of highly polymorphic tetranucleotide repeats for canine genetic mapping. Mamm. Genome, 7, 359–362.

Kawasaki E. S. (1990): Sample preparation from blood, cells, and other fluids. In: PCR protocols: A guide to methods and applications. Innis MA, Gelfand DH, Sninky JJ, White TJ, eds. San Diego: Academic Press, 146–152.

Un caso insolito nel controllo di discendenza nel cane

Con l'auito dell'analisi-microsatellite verifichiamo casi di discendenza dubbia nel cane. Un caso riguardava una cucciolata di quattro cuccioli, per i quali erano già stati rilasciati i pedigrees. L'esame ha dovuto essere eseguito senza campioni di materiale del presunto padre, morto in data imprecisata. Malgrado non sia stato possibile determinare con esattezza le relazioni parentali del cane in questione, l'analisi comparativa dell'ereditarietà di alleli-microsatelliti della famiglia, incluso di un presunto fratellastro, ha mostrato che le dichiarazioni fatte dall'allevatore erano contradditorie e che le registrazioni degli accoppiamenti erano false. I pedigrees di questi quattro cuccioli sono stati ritirati e sono state imposte sanzioni contro l'allevatore.

Ostrander E.A., Sprague G.F.Jr., Rine J. (1993): Identification and Characterization of Dinucleotide Repeat (CA)n Markers for Genetic Mapping in Dog. Genomics 16, 207–213.

Pienkowska A., Schelling C.: A «Null»-Allele of a tetranucleotide repeat is inherited in the White shepherd breed. Arbeit eingereicht zur Publikation bei Animal Genetics.

Schlotterer C., Tautz D. (1992): Slippage synthesis of simple sequence DNA. NAR 20, 211–215.

Zajc I., Mellersh C., Kelly E.P., Sampson J. (1994): A new method of paternity testing for dogs, based on microsatellite sequences. Vet.Rec., 135, 545–547.

Dank

Die Autoren danken E. Garbely und C. Kaiser für die technische Unterstützung.

Korrespondenzadresse

Dr. C. Schelling

Institut für Nutztierwissenschaften, Veterinärmedizinische Abteilung Züchtungsbiologie ETH Zürich

Tannenstrasse 1

CH-8092 Zürich

Manuskripteingang: 10.Juni 1999

In vorliegender Form angenommen: 29. Juli 1999