**Zeitschrift:** Schweizer Archiv für Tierheilkunde SAT : die Fachzeitschrift für

Tierärztinnen und Tierärzte = Archives Suisses de Médecine Vétérinaire

ASMV : la revue professionnelle des vétérinaires

Herausgeber: Gesellschaft Schweizer Tierärztinnen und Tierärzte

**Band:** 141 (1999)

Heft: 2

**Artikel:** Molekular- und immundiagnostische Untersuchungen zur bovinen

Neosporose in der Schweiz

Autor: Gottstein, B. / Hentrich, B. / Wyss, R. DOI: https://doi.org/10.5169/seals-589148

#### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF: 27.11.2025** 

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Institut für Parasitologie<sup>1</sup> und Institut für Tierpathologie<sup>5</sup> der Universität Bern, Institut für Veterinärpathologie der Universität Zürich<sup>2</sup>, Institut für Viruskrankheiten und Immunoprophylaxe<sup>3</sup>, Bundesamt für Veterinärwesen<sup>4</sup>

# Molekular- und immundiagnostische Untersuchungen zur bovinen Neosporose in der Schweiz

B. Gottstein<sup>1</sup>, B. Hentrich<sup>1</sup>, R. Wyss<sup>1</sup>, B. Thür<sup>2</sup>, L. Bruckner<sup>3</sup>, N. Müller<sup>1</sup>, H. Kaufmann<sup>4</sup>, A. Waldvogel<sup>5</sup>

## Zusammenfassung

Die durch zystenbildende Kokzidien verursachten Schäden beim Wiederkäuer betreffen primär Aborte, Jungtierverluste sowie Muskelschäden. Erst seit kurzem ist bekannt, dass Neospora caninum ein wichtiger protozoärer Aborterreger beim Rind ist. Ziel der vorliegenden Studie war die Dokumentation diagnostischer Parameter verschiedener Labormethoden (in vitro-Kultivierung; Histologie; Immunhistochemie; Serologie; PCR), die uns für den direkten und indirekten Parasitennachweis zur Verfügung stehen. Bei 24 (29%) von 83 abortierten Föten liess sich mittels PCR Neospora-DNA im fötalen Hirn, das häufig gleichzeitig durch geringgradige multifokale nekrotisierende Enzephalitiden charaktersisiert war, nachweisen. Die zur Verfügung stehenden diagnostischen Labormethoden wurden zusätzlich bei trächtigen Rindern nach experimenteller Infektion mit N. caninum erprobt. Die diaplazentäre Übertragung des Parasiten auf den Föten erfolgte bei zwei von drei Rindern. Bei diesen beiden Föten liess sich Parasiten-DNA sowohl in fötalen Organen als auch in der fötalen Abomasal- und Amnionflüssigkeit nachweisen. Die experimentell infizierten Rinder serokonvertierten zwischen dem 10. und dem 17. Tag nach Infektion, bei den dazugehörenden Föten liessen sich keine anti-Neospora-Antikörper nachweisen. Die vorliegenden Ergebnisse lassen den Schluss zu, dass sich unter Praxisbedingungen die PCR am besten für die Diagnose eines Neospora-Abortes eignet. Die PCR, ergänzt durch serologische Ver-

# Molecular and immunodiagnosis of bovine neosporosis in Switzerland

Cyst-forming coccidia may cause significant losses in livestock, primarily due to abortion, loss of young animals and neuromuscular diseases. Rather recently, Neospora caninum has been recognized as one of the major protozoal abortion-inducing parasites in cattle. The present study addressed the performance of different diagnostic tools (in vitro-cultivation; histology; immunohistochemistry; serology; PCR) suitable for the direct or indirect detection of N. caninum. By PCR, Neospora-DNA was detected in 24 brains (29%) from 83 bovine abortion, many of these brains were simultaneously characterized by histopathological findings typical for a protozoal, cerebral parasitosis. The diagnostic methods were furthermore assessed using samples of different tissues and body fluids from three experimentally Neospora-infected pregnant cows and their foetuses. The diaplacental passage of N. caninum to the foetus was successful in two of the three cases. In theses two cases, PCR was positive for different foetal organs and, additionally, for the abomasal and amniotic fluid. The successfully infected cows developed anti-Neospora serum antibodies between 10 and 17 days post infection, foetuses remained serologically negative in

The results obtained in the present study demonstrated the usefulness of PCR, complemented by serology, for the specific diagnosis of bovine neosporosis. Such tests may prove suitable to

fahren, kann ebenfalls für epidemiologische Untersuchungen eingesetzt werden. Aufgrund der vorliegenden Daten scheint *Neospora* in der Schweiz ein bedeutender Abortverursacher beim Rind zu sein.

Schlüsselwörter: Neospora caninum – Neosporose – Toxoplasma gondii – Toxoplasmose – Abort – Rind – PCR – ELISA perform epidemiological investigations. Taken together, our data indicated that prenatal neosporosis may be an important cause of infectious bovine abortion in Switzerland.

Key words: Neospora caninum – neosporosis – Toxoplasma gondii – toxoplasmosis – abortion – bovines – PCR – ELISA

# **Einleitung**

Neospora caninum, ein apikomplexes Protozoon, kann bei diversen Tierarten u. a. neuromuskuläre Erkrankungen verursachen, wobei das klinische Bild demjenigen der Toxoplasmose sehr ähnlich ist (Dubey et al., 1996). Wegen der morphologischen Ähnlichkeit wurde der Parasit bis 1988 fälschlicherweise auch als Toxoplasma gondii diagnostiziert (Dubey et al., 1988). Die Neosporose verursacht beim Rind v.a. Aborte oder die Geburt von toten oder lebensschwachen Kälbern (Dubey und Lindsay, 1993). Gemäss neueren Untersuchungen ist Neospora der bedeutendste protozoäre Abortverursacher beim Rind in den USA und einigen anderen Ländern (Anderson et al., 1991; Paré et al., 1996). Beim Menschen wurde Neospora bisher nicht nachgewiesen. Sowohl die Neosporose als auch die Toxoplasmose kommen weltweit vor (Dubey und Lindsay, 1993). Für die Schweiz liegen für Neosporose, im Gegensatz zur Toxoplasmose, noch sehr wenige Daten vor (Gottstein, 1995), genauere Zahlen zur relativen Häufigkeit des Neospora-Nachweises bei Rinderaborten in der Schweiz wurden erst 1998 publiziert (Gottstein et al., 1998). Zur genauen Ermittlung von parasitologischen und serologischen Prävalenzen der Neosporose fehlten bis vor kurzem auch zuverlässige Methoden. Der konventionelle Nachweis von Neospora erfolgte bisher mittels in vitro-Kultivierung des Parasiten aus diagnostischem Untersuchungsmaterial (z.B. fötales Hirn; Plazenta) oder indirekt durch Immunhistochemie (Cole et al., 1993). Beide Techniken zeigten relativ geringe methodische und diagnostische Sensitivitäten. Histopathologisch manifestierten sich die durch Neospora induzierten Läsionen bei Föten experimentell infizierter Rinder als geringe fokale Gliosen im Zentralnervensystem (Conrad et al., 1993) bis hin zu schweren Veränderungen, wie nichteitrige Enzephalomyelitiden, die sich durch multifokale zelluläre Infiltrationen mit oder ohne multifokale Nekrosen charakterisieren, sowie zusätzlich durch diffuse nichteitrige Leukozyteninfiltrationen der Meningen (Dubey und Lindsay, 1996).

Zur Serodiagnose der Neosporose haben sich bisher der indirekte Immunofluoreszenz-Antikörpertest (IFAT) (Trees et al., 1993; Conrad et al., 1993) und der ELISA (Björkman et al., 1994; Paré et al., 1995; Wouda et al., 1997) bewährt. Diese immundiagnostischen Verfahren ermöglichten in den meisten Fällen eine serologische

Diskriminierung zwischen Neosporose und Toxoplasmose (Dubey et al., 1996). Erste sero-epidemiologische Untersuchungen, die eine Assoziation zwischen Seroprävalenz und Inzidenz des *Neospora*-Abortes beim Rind dokumentierten, wiesen auf die Relevanz der pränatalen (vertikalen) Transmission des Parasiten hin (Thurmond et al., 1997).

Zur Identifizierung von Neospora in Gewebeproben wurden bisher diverse Oligonukleotidpaare beschrieben, die sich als PCR-geeignet erwiesen (Ho et al., 1996; Payne und Ellis, 1996; Kaufmann et al., 1996; Yamage et al., 1996). Durch eigene Entwicklungsarbeiten (Kaufmann et al., 1996; Yamage et al., 1996) sowie die Einführung des sogenannten UDG-Systems und eines einfach durchzuführenden PCR-Amplifikat-Detektionssystems (DNA-Hybridization Immunoassay, DIA) (Müller et al., 1996) wurde eine praxisreife PCR entwickelt. Diese Neospora-PCR wurde bezüglich ihrer diagnostischen Parameter im Labor evaluiert und hatte eine methodische Sensitivität von einem nachweisbaren Erreger pro 200 µl Untersuchungsvolumen bewiesen. Die Spezifität der PCR, geprüft mit Laborisolaten verschiedenster tierpathogener Protozoen, konnte aufgrund des Ausbleibens jeglicher Kreuzreaktionen mit 100% bezeichnet werden als Entwicklungsarbeiten (Kaufmann et al., 1996; Yamage et al., 1996; Müller et al., 1996). Ziel der vorliegenden Arbeit war es nun, die zur Verfügung stehenden diagnostischen mit klinischem Untersuchungsmaterial zu evaluieren. Strategie dieser Evaluation war einerseits die Untersuchung von Proben aus experimentellen Infektionen und von Proben aus einer an der Universität Zürich durchgeführten Abortstudie beim Rind (Thür et al., 1997; Thür et al., in press). Zu bemerken ist, dass ein Teil der vorliegenden Daten in einer spezialisierten parasitologischen Zeitschrift bereits in Englisch publiziert worden ist (Gottstein et al., 1998), deshalb wurden entsprechende Hinweise in der Arbeit eingefügt.

# Tiere, Material und Methoden

#### Versuchsplan

Grundsätzlich wurden zum Nachweis von *Neospora* und/oder *Toxoplasma* in Untersuchungsproben folgende direkten und indirekten Verfahren eingesetzt: (a) *In* 



vitro-Kultivierung, (b) histologischer Nachweis der durch die Parasiten verursachten Läsionen, (c) immunhistochemische Identifizierung von Parasitenantigenen in denselben Läsionen, (d) DNA-Nachweis mittels PCR, (e) serologischer Antikörpernachweis mittels IFAT, ELI-SA und Direktagglutination (DA).

- (1) In einer ersten Phase wurden die diagnostischen Werkzeuge mittels experimenteller Infektionen beim trächtigen Rind auf ihre Eignung geprüft.
- (2) In einer weiteren Phase wurden die diagnostischen Werkzeuge zur Prüfung von Untersuchungsmaterial eingesetzt, das im Rahmen einer separaten Abortstudie beim Rind (B. Thür, Abt. für Immunpathologie, Institut für Veterinärpathologie, Universität Zürich) anfiel und nach entsprechender Berücksichtigung der Aufarbeitungsvorschriften für die Neosporose und die Toxoplasmose nach Bern weitergeleitet worden ist. Detalliertere Angaben zu diesem Teil der Arbeit können in einer bereits erfolgten Publikation eingesehen werden (Gottstein et al., 1998).

#### **Parasiten**

Ein N. caninum-Isolat (NC-1-strain) wurde uns von Dr. J.P.Dubey, USDA, Beltsville, Maryland, USA, zur Verfügung gestellt. Für T.gondii setzten wir den an unserem Institut gehaltenen RH-Stamm ein. Die Parasiten wurden in vitro auf BVDV-freien Vero-Zellen gezüchtet (Yamage et al., 1996; Hemphill et al., 1996). Alle Reagentien stammten von der Firma Gibco-BRL (Life Technology, Basel). Die Reinigung von Neospora-Tachyzoiten zur Antigenherstellung erfolgte über eine Sephadex G-25M-Säule gemäss Angaben der Hersteller (PD-10® columns, Pharmacia).

#### **Experimentelle Infektionen**

Simmentaler Rinder wurden im Alter von 16-18 Monaten gekauft. Die Rinder stammten aus Betrieben ohne Fruchtbarkeitsprobleme. Die Tiere wurden am Institut für Viruskrankheiten und Immunprophylaxe (IVI) im Hochsicherheitstrakt (in einer Isolationseinheit) eingestallt und vorgängig serologisch und/oder molekularbiologisch (PCR) bezüglich folgender Infektionskrankheiten überprüft: Neosporose, Toxoplasmose, Leptospirose, Brucellose, Coxiellose, IBR, BVD. Die Rinder wurden künstlich besamt und die Trächtigkeit überprüft. Drei von vier Rindern wurden experimentell durch Verabreichung folgender Inokulate infiziert:  $5 \times 10^7$ *N. caninum*-Tachyzoiten intravenös und  $2 \times 10^7$  Tachyzoiten intramuskulär. Die Trächtigkeitsalter bei der Infektion waren die folgenden: Rind Nr. 2, Tag 121; Rind Nr. 4, Tag 125; Rind Nr. 3, Tag 150. Das Kontrollrind Nr. 1 erhielt am 126. Trächtigkeitstag dasselbe Inokulatsvolumen einer identisch aufgearbeiteten, jedoch nicht infizierten Verozell-Suspension. Nach der experimentellen Infektion wurden die Tiere täglich auf Erkrankungssymptome untersucht und die Rektaltemperatur aufgezeichnet.

Blutentnahmen für serologische Untersuchungen erfolgten am Tag 0 (Präinfektionsserum) und regelmässig alle zwei Tage bis zur Sektion. Fötales Herzblut wurde ebenfalls anlässlich der Sektion entnommen. Die Seren wurden bis zu ihrer Verwendung bei -20 °C aufbewahrt. Alle vier Tiere wurden am Tag 32 post infectionem (Tpi) euthanasiert, und eine vollständige Sektion an allen Rindern und Föten durchgeführt. Für die histologischen und immunhistologischen Untersuchungen wurden fötales Hirn, Herz, Plazenta, Leber, Lunge, Thymus, Milz, Niere, Dünn- und Dickdarm, Skelettmuskulatur, Mesenteriallymphknoten, Rückenmark und Augen entnommen sowie maternales Hirn, Herz und Plazenta. Pro Organ wurden jeweils mehrere Proben an verschiedenen relevanten Stellen gewonnen. Alle Proben wurden in neutral gepufferter, 4%-iger Paraformaldehydlösung für die Immunhistochemie fixiert. Für die diagnostische in vitro-Kultivierung sowie für die DNA-Gewinnung (PCR) wurden folgende nativen Proben (fötal und maternal) entnommen und sofort weiter verarbeitet: Hirn, Skelettmuskulatur, Herz, Blut, Abomasuminhalt (nur fötal), Amnionflüssigkeit, Plazenta.

# Untersuchungen von 83 Abortföten oder perinatal gestorbener Kälber

Analog zur Probengewinnung bei den experimentell infizierten Rindern wurden im Rahmen einer erweiterten Studie Organproben und Körperhöhlenflüssigkeit bei 83 abortierten Rinderföten oder perinatal verstorbener Kälber entnommen. Diese waren zwischen 1993-1994 im Rahmen einer an der Abteilung für Immunpathologie (Institut für Veterinärpathologie der Universität Zürich) durchgeführten Projektarbeit zur Untersuchung eingesandt worden. Am selben Institut erfolgten die konventionellen makroskopischen und histopathologischen Untersuchungen sowie die Untersuchung auf BVDV mittels Immunhistochemie (LSAB: labelled Streptavidin-Biotin). Das zusätzliche konventionelle mikrobiologische Untersuchungsspektrum schloss die bekannten abortrelevanten Bakterien, Viren und Pilze ein (siehe Thür et al., im Druck). Für die parasitologischen Untersuchungen wurden folgende Proben (jeweils an verschiedenen Organlokalisationen) gewonnen: (i) fötales Herzblut oder Flüssigkeit aus den Körperhöhlen; (ii) Hirn (10 g Material in 20ml steriler PBS-Lösung mit 200U/ml Penicillin, 200μg/ml Streptomycin und 0.5 μg/ml Amphotericin B); (iii) Herz (wie beim Hirn); (iv) Plazenta (nur in 32 Fällen); (v) Mutterseren am Tag des Abortes (nur in 12 Fällen). Die Aufbewahrung von Proben, die nicht sofort weiter untersucht wurden, erfolgte bei -80 °C.

Die Techniken und das Vorgehen zur Probengewinnung und Aufarbeitung waren sowohl bei den experimentell infizierten Rindern und deren Föten als auch bei den Aborten der Studie dieselben.

#### Diagnostische in vitro-Kultivierung

Die diagnostische *in vitro*-Kultivierung von *Neospora* erfolgte aus fötalem Hirn und Herz sowie Plazenta. Methodisch wurde gemäss einem bereits in einer früheren Arbeit beschriebenen Verfahren unter Verwendung empfänglicher Verozellen vorgegangen (Gottstein et al., 1998). Die Kulturzellen wurden mikroskopisch täglich auf eventuelle Parasitenproliferation begutachtet. Erfolgte innerhalb von 21 Tagen kein Parasitenwachstum, wurden die Kulturen gemäss Conrad et al. (1993) als «negativ» bezüglich eines *Neospora*- oder *Toxoplasma*-Nachweises taxiert.

#### **PCR**

Ein Doppel jeder diagnostischen Gewebeprobe (fötales Hirn und Herz sowie Plazenta) wurde zusätzlich für die PCR aufgearbeitet (Müller et al., 1996). Als methodische Modifikation wurde ein High-Pure-PCR-Template-Preparation-Kit (Boehringer, Mannheim) zur Reinigung der DNA eingesetzt. Die *Neospora-* und *Toxoplasma-*spezifische PCR wurde nach Müller et al. (1996) durchgeführt. Zur Erkennung falsch negativer Resultate, die durch inhibitorische Komponenten im PCR-Ansatz verursacht werden können, wurde für jede Probe eine entsprechende Inhibitionskontrolle mitgeführt (Müller et al., 1996). Falsch-positive Ergebnisse, die durch *carry-over* Kontaminationen vorangegangener PCRs entstehen können, wurden minimiert, indem das Prinzip der räumlichen Trennung von Probenaufarbeitung und Analyse der PCR-Produkte strikt eingehalten wurde. «Falsche» Reaktionsbefunde solchen Ursprungs wurden ausserdem durch zwei weitere methodische Schritte praktisch ausgeschlossen: Zur PCR wurde das artifizielle Nukleotid dUTP (2'-Deoxyuridin 5'-triphosphat) zugegeben. Dadurch waren PCR-Produkte biochemisch von natürlicher DNA verschieden. Jeder PCR-Ansatz wurde vor der zyklischen Reaktion mit dem Enzym Uracil-DNA-Glycosilase (UDG; Gibco Life Technology, Basel) inkubiert, wodurch eine eventuell auftretende carry-over PCR-Kontamination aufgrund ihres Gehalts an Uracil selektiv zerstört wurde. Da natürlich vorkommende DNA von der Wirkung der UDG verschont blieb und das Enzym bei den hohen Temperaturen des ersten Thermozyklus inaktiviert wurde, konnte die PCR trotz der enzymatischen Vorbehandlung ungestört ablaufen (Müller et al., 1996).

#### Histologie und Immunhistochemie

Proben von den oben erwähnten, paraformaldehydfixierten Geweben wurden in Paraffin eingebettet. Paraffinschnitte von 3 bis 4 µm Dicke wurden auf poly-L-Lysin vorbeschichtete Objektträger aufgezogen und HE gefärbt oder für die Immunhistochemie verwendet. Für die Immunhistochemie wurden die Schnitte rehydriert und unspezifische Bindungsstellen durch 15-minütige Inkubation mit normalem Ziegenserum bei Raumtemperatur blockiert. Es erfolgte eine 1-stündige Inkubation der Präparate bei 37 °C mit einem Protein Agereinigten anti-Neospora oder anti-Toxoplasma Kaninchenhyperimmunserum (Hemphill et al., 1996). Verschiedene Antikörperverdünnungen und Vorbehandlungen der Schnitte wurden getestet. Die besten Resultate wurden ohne Vorbehandlung und mit einer Verdünnung der primären Antikörper von 1:100 erzielt. Die Bindung des primären Antikörpers wurde mittels des LSAB Kits (DAKO Diagnostics AG, 6300 Zug) lokalisiert. Als negative Kontrollen dienten einerseits die Gewebe des nichtinfizierten Rindes und andererseits das Präimmunserum. Vorgängige Untersuchungen hatten bereits gezeigt, dass die beiden Hyperimmunseren keine Kreuzreaktivität aufwiesen (Hemphill et al., 1996).

#### Serologie

Der Nachweis von anti-Neospora-Antikörpern erfolgte im IFAT und ELISA, der von anti-Toxoplasma-Antikörpern im ELISA und DA. Der Neospora-IFAT erfolgte gemäss einem standardisierten Verfahren (Barr et al., 1995) mit in vitro-kultivierten Neospora-Tachyzoiten als Antigen. Als negatives und positives Kontrollserum wurden das Prä- und das Postinfektionsserum eines experimentell infizierten Rindes (siehe oben) verwendet. Die Visualisierung der primären Antikörperreaktion erfolgte mit FITC-markierten Zweitantikörper (FITC-conjugated monoclonal mouse-anti-bovine IgG antibody, 1:300; Sigma Immunochemicals). Die in Voruntersuchungen ermittelten Grenztiter betrugen für fötale Proben 1:80 und für Rinderseren 1:160. Das Antigen für den Neospora-ELISA basierte auf einem löslichen Rohextrakt von in vitro-kultivierten Neospora-Tachyzoiten. Das Antigen wurde bei einer Proteinkonzentration von 5 µg/ml Karbonat-Puffer (pH 9.6) zur Beschichtung von MikroELISA-Platten (Greiner, Cat.-Nr. 750756) verwendet (Neospora SA-ELISA). Für den *Toxoplasma*-ELISA setzten wir das kommerziell erhältliche affinitätschromatographisch gereinigte P30-Antigen (SR2B, Arville, France, cat. no. TXP30B) mit 1 µg Protein/ml (Toxoplasma-P30-ELISA) ein. Die technischen Basisparameter für beide ELISAs wurden aus einer anderweitigen Publikation (Gottstein et al., 1997) übernommen, wobei die Test- und Kontrollseren 1:100 verdünnt wurden. Als Konjugat verwendeten wir einen mit alkalischer-Phosphatase gekoppelten Kaninchen-anti-Rind-IgG Zweitantikörper (Sigma Immmunochemicals, cat. no. A 0705) bei einer Verdünnung von 1:500. Positive und negative Kontrollseren waren sowohl für den Neospora-SA-ELISA als auch für den Neospora-IFAT identisch. Dasselbe negative Kontrollserum wurde für den Toxoplasma-P30-ELISA und den Toxo-Screen-DA verwendet. Der Toxo-Screen-DA (BioMérieux) wurde nach dem vom United-States-Departmentof-Agriculture (USDA) beschriebenen Verfahren durchgeführt (Dubey et al., 1996). Das Toxoplasma

-seropositive Kontrollserum wurde uns von Dr. David Buxton (Moredun Research Institute, Edinburgh) zur Verfügung gestellt. Zur Bestimmung des ELISA-Grenzwertes, der zur Unterscheidung zwischen «Seropositivität» und «Seronegativität» diente, wurden 50 Seren von Rindern geprüft, bei denen anamnestisch, d.h. infolge der genauen Dokumentation ihrer Herkunft und ihrer Aufzucht, keine Hinweise für eine Infektion mit den beiden Parasiten bestand und bei denen bisher kein Abort aufgetreten war. Die Seren der Tiere waren ebenfalls im Neospora-IFAT und im Toxo-Screen-DA seronegativ. Der jeweilige ELISA-Grenzwert wurde durch den Mittelwert plus 3 SD der A404nm-Werte der 50 Seren errechnet. Die Reproduzierbarkeit der ELISA-Resultate bezüglich der verschiedenen Testansätze wurde durch das dreifache Mitführen eines zusätzlichen Infektions-Kontrollserums, das eine geringe Antikörperkonzentration aufwies, geprüft. Es wurde eine Testvariabilität von +/-10% toleriert.

# Resultate

#### **Experimentelle Infektionen**

Während der ersten 14Tage p.i. zeigte das experimentell infizierte Rind Nr. 3 eine intermittierende Temperaturerhöhung (maximal 41 °C). Die drei anderen Tiere (2 Infizierte und 1 Kontrolltier) zeigten zu keinem Zeitpunkt p.i. klinische Symptome. Bei der Sektion der Rinder liessen sich bei den Muttertieren keine pathologischen Veränderungen an den Organen, inklusive Plazenta, nachweisen. Bei den Föten zeigte ausschliesslich der Fötus Nr. 4 (siehe Tabelle 1) eine deutlich vergrösserte Milz (15 cm × 4.5 cm; gleichaltriger Kontrollfötus Nr. 1:9 cm  $\times$  3 cm).

#### Diagnostische in vitro-Kultivierung

(i) Neospora-Erreger liessen sich aus keiner der Proben isolieren, die aus den experimentellen Infektionen für die *in vitro*-Kultivierung gewonnen wurden.

(ii) Von den insgesamt 83 Abortfällen konnte bei 27 Föten und 5 dazugehörenden Plazenten eine in vitro-Kultivierung durchgeführt werden. Bei den restlichen 56 Fällen konnte die Kultivierung aufgrund eines ungeeigneten biologischen Zustandes der Proben (Kontaminationen mit Bakterien und/oder Pilzen; zu kleine Probenvolumen; fortgeschrittene Autolyse) technisch nicht durchgeführt werden. Aus diesen 27 untersuchten Föten liessen sich in keinem Fall Neospora oder Toxoplasma kultivieren. Von den 27 dazugehörenden PCR-Proben waren 12 positiv in der Neospora-PCR (Fälle Nr. 3-6 und 7-14, siehe Tabelle 2). Beim Plazentamaterial (32 Plazenten) gelang die Parasitenisolierung ebenfalls nicht, obwohl einige der Proben in der Neospora-PCR positiv waren (Fälle Nr. 2, 4, 8, 10, 25).

### Neospora- und Toxoplasma-PCR sowie Histologie und Immunhistochemie

(i) Eine Zusammenfassung der Resultate der Neospora-PCR bei experimentellen Infektionen (einschliesslich Kontrolltier Nr. 1) findet sich in Tabelle 1: Beim nicht-infizierten Kontrolltier (Rind und Fötus Nr. 1) waren sämtliche PCRs negativ, ebenso bei allen Proben (ausschliesslich der Plazenten) der Muttertiere Nr. 2, 3 und 4. Neospora-DNA liess sich mittels PCR beim Fötus Nr. 3 im Gehirn, in der Abomasumflüssigkeit sowie beim Fötus Nr. 4 in der Abomasum- und der Amnionflüssigkeit nachweisen, ebenso in der Plazenta des Muttertieres Nr. 4. Die histopathologischen und immunhistochemischen Ergebnisse sowie gegebenenfalls diejenigen der dazugehörenden PCR sind ebenfalls in Tabelle 1 zusammengefasst. Mikroskopisch nachweisbare Veränderungen zeigten sich ausschliesslich bei den beiden Föten Nr. 3 und 4. Bei diesen beiden Tieren konnten sowohl in der Plazenta als auch in diversen Organen multiple kleine Nekroseherde ohne oder nur mit geringgradiger entzündlicher Reaktion nachgewiesen werden. Bei Fötus 3 waren die Gehirnveränderungen deutlicher ausgeprägt: Multiple kleine Nekroseherde fanden sich im zerebralen Kortex, in den Basalganglien, dem Hippocampus, dem Mittelhirn und dem Rückenmark. Bei Fötus 4 beschränkten sich die Gehirnveränderungen auf geringradige perivaskuläre lymphozytäre Infiltrationen in Hirnstamm und Kleinhirn. Gleichartige Veränderungen wurden auch in weiteren Organen gefunden, bei Fötus 3 in der Lunge und bei Fötus 4 in Myokard und Leber. Mittels Immunhistochemie konnten lediglich einige wenige verstreut liegende Neospora-Tachyzoiten, teils am Rande der Nekroseherde, teils im anschliessenden erhaltenen Gewebe identifiziert werden.

(ii) Die Untersuchung von 83 Hirnproben aus natürlich abortierten Föten oder perinatal gestorbener Kälber mittels PCR ergab folgende Resultate: Neospora-DNA liess sich in 24 (29%) Proben und Toxoplasma-DNA in 4 (5%) der Proben nachweisen (Tabelle 2). Eine Probe (Fall Nr. 24) war in der PCR gleichzeitig für *Neospora* und für *To*xoplasma positiv. Eine histopathologische Untersuchung bei den 24 Neospora-PCR-positiven Föten/Kälber ergab bei 18 Proben ein pathologisches Bild, das für eine Neosporose sprechen könnte: Bei sieben Fällen liessen sich im Hirn eine multifokale nekrotisierende Enzephalitis nachweisen, zwei Fälle zeigten eine Hypoplasie des Kleinhirns, ein Fall einen Hydrocephalus internus und fünf Fälle eine multifokale nekrotisierende Plazentitis oder multiple Verkalkungen in der Plazenta. In den meisten der 24 Neospora-PCR-positiven Fälle liessen sich keine anderen Infektionserreger nachweisen, mit Ausnahme von zwei fötalen BVDV-Fällen und einem Fall mit einem Streptococcus-Nachweis in der Plazenta. Bei allen drei Toxoplasma-PCR-positiven (jedoch Neospora-PCR-negativen) Fällen hatten vorgängige histopathologische Untersuchungen bereits einen Verdacht auf das Vorliegen einer protozoären Infektion geliefert (siehe Tabelle 2). Der einzige Fall mit doppel-positiven Ergebnis-

Tabelle 1: Resultate der histopathologischen und immunhistochemischen sowie molekularbiologischen Untersuchungen trächtiger Rinder und ihrer Föten nach 32 Tagen einer experimentellen Neospora-caninum-Infektion.

|          | Hirn |       |     | Abomasum-Fl. |      |    | Herz |      |     | L | Leber |     | Lunge |      | Me  | d. Ly | mphkn | . Plaz | Plazenta |     | Amnionfl. |    |      |    |
|----------|------|-------|-----|--------------|------|----|------|------|-----|---|-------|-----|-------|------|-----|-------|-------|--------|----------|-----|-----------|----|------|----|
|          | HE   | IHC I | PCR | HEI          | НС Р | CR | HE   | IHC: | PCR | Н | E IHC | PCR | HI    | EIHC | PCR | HE    | IHC   | PCR    | HE       | IHC | PCR       | HE | НС Р | CR |
| Fötus 1* | -    | nd    | -   | nd           | nd   | -  | _    | nd   | _   | - | nd    | nd  | -     | nd   | nd  | -     | nd    | nd     | -        | nd  | -         | nd | nd   | -  |
| Fötus 2  | -    | nd    | -   | nd           | nd   | -  | -    | nd   | -   | _ | nd    | nd  | _     | nd   | nd  | -     | nd    | nd     | -        | nd  | -         | nd | nd   | -  |
| Fötus 3  | +    | +     | +   | nd           | nd   | +  | _    | -    | -   | - | nd    | nd  | +     | -    | nd  | -     | nd    | nd     | +        | +   | _         | nd | nd   | -  |
| Fötus 4  | +    | -     |     | nd           | nd   | +  | +    | +    | +   | + | +     | nd  | -     | -    | nd  | +     | -     | nd     | +        | +   | +         | nd | nd   | +  |

<sup>\*</sup> Kontrolltier; Inokulation von Neospora-freiem Kontrollmedium

HE: Histopathologische Untersuchung, H&E-Färbung: Nachweis vorwiegend von multifokalen Nekroseherden, ohne direkten Erregernachweis.

Tabelle 2: (übernommenaus der englischen Version von Gottstein et al., 1998): Mittels PCR wurde genomische DNA, isoliert aus dem Hirn von 83 aborbierten Rinderföten, auf die Nachweisbarkeit von Neospora- und Toxoplasma-DNA geprüft. Parallel dazu erfolgte der serologische Nachweis von anti-Neospora (akkumulierte IFAT und/oder SA-ELISA-Seropositivitä) oder anti-Toxoplasma (akkumulierte P30-ELISA- und/oder DA-Seropositivität) Antikörpern in fötalen Körperflüssigkeiten. Die (histo-) pathologischen Untersuchungen erfolgten mittels den an tierpathologischen Instituten üblichen Routineverfahren.

| Nr. der<br>Föten | <i>Neospora-</i><br>Serologie | Neospora-<br>PCR | Toxoplasma-<br>Serologie | Toxoplasma-<br>PCR | Alter<br>(Monate) | (Histo-)Pathologie (Makro- und<br>mikroskopische Kriterien in Stichworten) |
|------------------|-------------------------------|------------------|--------------------------|--------------------|-------------------|----------------------------------------------------------------------------|
| 1 - 1            | POS                           | POS              | neg                      | neg                | 8                 | Nekroseherde im Hirn; eldO                                                 |
| 2                | POS                           | POS              | neg                      | neg                | 8                 | plazentäre Hyperämie; Konjunktivitis; <i>afL</i>                           |
| 3                | POS                           | POS              | neg                      | neg                | 9                 | Konjunktivitis, Pneumonie                                                  |
| 4                | POS                           | POS              | neg                      | neg                | 7                 | Verkalkte, nekrotische Läsionen in der Plazenta; afL; eldO                 |
| 5                | POs                           | POS              | neg                      | neg                | 6                 | Hyperplasie des Zerebellums; [BVDV+]                                       |
| 6                | POS                           | POS              | neg                      | neg                | +1*               | Hydrocephalus internus; Hämorrhagien in der Niere                          |
| 7                | neg                           | POS              | neg                      | neg                | 5                 | Nekrotische Hirnläsionen; Enzephalitis; Pneumonie                          |
| 8                | neg                           | POS              | neg                      | neg                | 7                 | ksP                                                                        |
| 9                | neg                           | POS              | neg                      | neg                | 7                 | ksP                                                                        |
| 10               | neg                           | POS              | neg                      | neg                | 6                 | ksP                                                                        |
| 11               | neg                           | POS              | neg                      | neg                | 8                 | Granulozytostase im Hirn; Pneumonie                                        |
| 12               | neg                           | POS              | neg                      | neg                | +1*               | Enteritis mit nekr. Läsionen in den Peyer'schen Platten; [BVDV+]           |
| 13               | neg                           | POS              | neg                      | neg                | 5                 | ksP                                                                        |
| 14               | neg                           | POS              | neg                      | neg                | 5                 | eldO; nekrotische Läsionen im Zerebellum; Meningitis                       |
| 15               | neg                           | POS              | neg                      | neg                | 6                 | Nekrotische Läsionen im Hirn; Konjunktivitis [Streptococcus]               |
| 16               | neg                           | POS              | neg                      | neg                | 5                 | Verkalkungen in der Plazenta                                               |
| 17               | neg                           | POS              | neg                      | neg                | 5                 | Nekrotische Läsionen in Hirn und Plazenta, Epikarditis; eldO               |
| 18               | neg                           | POS              | neg                      | neg                | 6                 | Nekrotische Läsionen und Verkalkungen im Hirn                              |
| 19               | neg                           | POS              | neg                      | neg                | 6                 | Hyperplasie des Zerebellums, Konjunktivitis                                |
| 20               | neg                           | POS              | neg                      | neg                | 6                 | Hämorrhagien im Zerebellum                                                 |
| 21               | neg                           | POS              | neg                      | neg                | 7                 | ksP                                                                        |
| 22               | neg                           | POS              | neg                      | neg                | 6                 | Hämorrhagien im Zerebellum                                                 |
| 23               | neg                           | POS              | neg                      | neg                | 7                 | ksP                                                                        |
| 24               | neg                           | POS              | neg                      | POS                | 7                 | Hämorrhagien im Herz; Verkalkungen in der Plazenta [Pilze]                 |
| 25               | neg                           | neg              | neg                      | POS                | 7                 | afL; eldO; Nekrotische Läsionen in Hirn, Leber; Plazentitis                |
| 26               | neg                           | neg              | neg                      | POS                | 9                 | eldO; Konjunktivitis, Verkalkungen in der Plazenta                         |
| 27               | neg                           | neg              | neg                      | POS                | 7                 | Konjunktivitis, [Aeromonas hydrophila]                                     |
| 28               | POS                           | neg              | POS                      | neg                | +3*               | Hämorrhagien in der Niere, Enteritis, Abomasitis [Rotavirus]               |
| 29               | neg                           | neg              | POS                      | neg                | 11                | Atresia ani und Missbildungen im Urogenitaltrakt                           |
| 30-83            | neg                           | neg              | neg                      | neg                | [8]**             | siehe entsprechenden Text unter «Resultate»                                |

<sup>\*</sup> Bei +1 und +3 handelte es sich um lebensschwache Kälber, die 1 oder 3 Tage nach der Geburt verstarben;

sen in der *Neospora*- und *Toxoplasma*-PCR zeigte ebenfalls massive multifokale Verkalkungen in der Plazenta, jedoch keine weiteren typischen Veränderungen bei den anderen Organen.

Bei den 56 Fällen, welche sowohl in der *Neospora-* als auch in der *Toxoplasma-*PCR negativ waren, liessen sich histopathologische Veränderungen, welche auf eine Neosporose hätten hinweisen können, seltener nachweisen: Zerebrale Veränderungen liessen sich bei 12 von 56 (21%) dieser Fälle (gegenüber 29 = 52% bei *Neospo-*

ra-positiven Föten) nachweisen. Der Nachweis anderer Infektionserreger war häufiger bei den 56 Kontrollfällen: Sieben virale Infekte (4 BVD- und 3 Rota/Corona-Viruspositive Fälle); 9 bakterielle Infekte (Gattungen Mycoplasma, Streptococcus, Staphylococcus und Pasteurella); des weiteren 16 Fälle mit anderen, für eine potentielle Neosporose irrelevanten Veränderungen.

Das mittlere Alter der *Neospora*-PCR-positiven Föten betrug 6.8 Monate (95% Konfidenzintervall: 6.1–7.5), wobei 18 von 24 Fällen (75%) zwischen 4 und 7 Monate alt



IHC: Immunohistochemischer Nachweis von vereinzelten Neospora-Tachyzoiten mittels N. caninum-spezifischem Antiserum.

nd: Untersuchung nicht durchgeführt.

<sup>\*\*</sup> Für die 54 Fälle, die in sämtlichen *Neospora*- und *Toxoplasma*-Tests negativ waren, betrug das mittlere Alter 8,1 Monate. *eldO:* entzündliche Infiltrate in diversen Organen; *afL:* aktiviertes foetales Lymphsystem; *ksP:* keine spezifische Pathologie; []: zusätzlich identifizierte pathogene Erreger

waren. Bei den Neospora- und Toxoplasma-PCR negativen Föten betrug das mittlere Alter 8.1 Monate (95% Konfidenzintervall: 7.5-8.8), 20 von 56 Föten (36%) waren zwischen 4 und 7 Monate alt.

Bei acht Neospora-PCR-positiven Föten (zugleich negativ in der Toxoplasma-PCR) konnte gleichzeitig auch die dazugehörende Plazenta mittels PCR untersucht werden: 7 Plazenten waren Neospora-PCR-negativ, eine Plazenta war Neospora-PCR-positiv.

Da wir bereits in Voruntersuchungen (Gottstein et al., 1998) festgestellt hatten, dass mit der Immunhistochemie ein zuverlässiger Parasitennachweis in Organmaterial abotierter Föten nicht gewährleistet ist, wurde diese sehr zeitaufwendige Untersuchungsmethode in diesem Teil der Studie nicht mehr zu Ende geführt.

#### **Neospora-** und **Toxoplasma-**Serologie

(i) Im Rahmen der experimentellen Neospora-Infektionen serokonvertierten 2 von 3 infizierten Rindern (Nr. 3 und 4) im IFAT 10, resp. 17 Tage nach Infektion. Der maximale Titer der Kuh Nr. 3 betrug 1:640 am 29., derjenige der Kuh Nr. 4 1:320 am 19. Tag nach Infektion. Die im ELISA gemessenen Antikörperkonzentrationen blieben bei beiden Kühen (Nr. 3 und Nr. 4) sehr niedrig, ein positives Resultat wurde nur bei der Kuh Nr. 3 und erst ab dem 25. Tag nach Infektion ersichtlich. Dieselben Tiere blieben in allen Toxoplasma-Serologien negativ. Fötale Antikörper liessen sich weder gegen Neospora-Antigene noch gegen Toxoplasma-Antigene nachweisen.

(ii) Fötales Herzblut oder Körperhöhlenflüssigkeit konnte bei allen 83 abortierten Föten bzw. perinatal gestorbener Kälber (präkolostral) serologisch untersucht werden, die Ergebnisse sind in Tabelle 2 dargestellt. Bei der Neospora-Serologie von PCR-positiven Föten waren von 7 IFAT-positiven Föten deren 4 positiv im SA-ELISA (Fälle Nr. 4, 5, 6, 28). Ein Fall (Nr. 28) war doppel-positiv sowohl in der Neospora- als auch in der Toxoplasma-Serologie, jedoch negativ in beiden dazugehörenden PCR. Die *Toxoplasma*-Serologie ergab zwei positive Tiere im Toxo-Screen-DA-Test. Einer dieser beiden Tiere war ebenfalls positiv im P30-ELISA. Beide Toxoplasma-seropositiven Tiere waren in beiden PCR negativ.

Die serologische Untersuchung der 56 PCR-negativen Fälle ergab zwei positive Toxoplasma-Serologien. In beiden Fällen konnten jedoch keine histopathologischen Hinweise auf protozoäre Erkrankungen nachgewiesen werden.

In fünf Fällen war es möglich, Seren von Muttertieren zu erhalten, deren Föten ein positives Neospora-PCR-Resultat aufwiesen. In einem Fall waren sowohl das Mutterserum als auch die Körperhöhlenflüssigkeit seropositiv (SA-ELISA und IFAT). Bei den restlichen vier Fällen waren alle Mutterseren Neospora-seropositiv (SA-ELISA und IFAT), die Föten hingegen negativ.

# Diskussion

Die vorliegende Studie hatte zum Ziel, diagnostische Techniken zum Nachweis von N. caninum beim Rind zu evaluieren und einige Grunddaten zur Bedeutung der Neosporose im Rahmen von bovinem Abortgeschehen zu erfassen. Zur Evaluation der diagnostischen Techniken setzten wir diagnostische Proben ein, die aus zwei verschiedenen Zielgruppen zu untersuchender Tiere stammten: Einerseits trächtige Rinder mit einer experimentellen und somit ätiologisch abgesicherten Neospora-Infektion, andererseits Abortfälle beim Rind aus einer separaten Abortstudie, wobei zu bemerken ist, dass einige der hier präsentierten Daten bereits in zwei früheren Arbeiten publiziert worden sind (Thür et al., in press; Gottstein et al., 1998). Um in der vorliegenden Arbeit eine abgerundete Übersicht über die Problematik der Neosporose und deren Labordiagnose präsentieren zu können, wurden einige dieser früheren Daten wieder mitaufgeführt.

Die Auswertung unserer Daten zeigte, dass die Neospora-spezifische PCR den genomischen Parasitennachweis im geschädigten Hirn abortierter Föten zuverlässig ermöglicht, und dass bei PCR-positiven Tieren i.d.R. auch entsprechende Veränderungen bei der histopathologischen Untersuchung nachgewiesen werden können. Der Kausalzusammenhang zwischen Neosporose und Abortgeschehen konnte durch die Tatsache erhärtet werden, dass andere Infektionserreger seltener auftraten (17%), im Gegensatz zu Neospora-negativen Aborten, bei denen in 27% der Fälle andere bakterielle oder virale Erreger nachgewiesen werden konnten. Die Häufigkeit des Neospora-DNA-Nachweises bei abortierten Föten betrug 29%, was gegenüber der Nachweishäufigkeit anderer Infektionskeime eine unerwartet hohe Rate darstellt. Daten aus früheren schweizerischen Abortstudien hatten bisher noch nie derart hohe Häufigkeiten für einen bestimmten Erreger gezeigt, diese Studien hatten Neospora nicht mitberücksichtigt (Hässig et al., 1995; Thür et al., 1997; Thür et al., in press).

Die Toxoplasma-PCR wurde primär zur Abklärung potentieller Kreuzreaktionen mit lokalen Neospora-Isolaten durchgeführt. Nicht erwartet haben wir den alleinigen Nachweis von T. gondii im Hirn abortierter Föten, mit histopathologische Befunden, die mit einer protozoären zerebralen Infektion kompatibel waren. Häufig wurde bisher in Lehrbüchern und in der Spezialliteratur darauf hingewiesen, dass T. gondii beim Rind infektiologisch keine grosse Rolle zu spielen scheint (Literatur in Soulsby, 1982; Gottstein, 1995), obwohl an wenigen Stellen bereits einige Hinweise über gegensätzliche Meinungen zu finden sind (s. Rommel, Bürger und Kutzer (1992): Parasitosen der Wiederkäuer. In: Eckert et al., 1992; Dubey und Beattie, 1988). Demzufolge wird eine zukünftige genauere Untersuchung der potentiellen Toxoplasmose-Problematik beim Rind notwendig sein. Der Erregernachweis durch in vitro-Kultivierung aus Abortmaterial erwies sich als methodisch ungeeignet, da das Abortmaterial zu häufig mikrobiell kontaminiert war.

Immunhistologische Untersuchungen wiesen ebenfalls eine ungenügende diagnostische Sensitivität auf. Über ähnliche Erfahrungen haben bereits andere Autoren berichtet (Dubey und Lindsay, 1996; Conrad et al., 1993). Über den Stellenwert der Serologie (IFAT, ELISA) ist aufgrund der vorliegenden Studie grundsätzlich noch keine klare Aussage möglich. Nur bei 25% der Neospora-PCR positiven Föten liessen sich anti-Neospora-Antikörper nachweisen. In früheren Studien wurde bereits gezeigt, dass die Seroprävalenz bei Föten mit zunehmendem Alter der Föten zunimmt (Barr et al., 1995). In den fünf Fällen, bei denen wir Mütter von Neospora-PCR-positiven Föten serologisch untersuchen konnten, fanden wir bei allen Mütterseren eine positive Neospora-Serologie, wohingegen nur einer von fünf Föten seropositiv war. Diese allerdings noch sehr präliminären Daten weisen darauf hin, dass eine serologische Untersuchung auf Neosporose bei Föten nicht sinnvoll erscheint, dass hingegen eine serologische Untersuchung bei Muttertieren Hinweise auf ein potentielles, eventuell erst zukünftiges Neospora-Abortgeschehen liefern könnte. Wir werden im Rahmen einer neuen Neosporose-Studie dieser Frage nachgehen.

Das mittlere Alter der Neospora-PCR-positiven Föten (6.8 Monate) war signifikant niedriger als bei PCR-negativen Föten (8.1 Monate). Bei 75% der Neospora-PCR-positiven Fälle erfolgte der Abort zwischen dem 4. und dem 7. Trächtigkeitsmonat. In dieselbe Trächtigkeitsperiode fielen nur 37% der PCR-negativen Abortfalle. Andere Autoren haben bereits darüber berichtet, dass der Neospora-induzierte Abort am häufigsten im mittleren Trimester nachgewiesen werden kann (Dubey und Lindsay, 1996; Thurmond et al., 1997). Man kann davon ausgehen, dass fötale Infektionen, die zu einem späten Zeitpunkt der Trächtigkeit erfolgen, nicht zum Abort, sondern zur Geburt lebensschwacher Kälber oder, noch häufiger, zur Geburt klinisch gesunder, jedoch «latent» mit Neospora infizierter Kälber führt. Letztere gelten höchstwahrscheinlich als Hauptursache für die weitere Verbreitung des Parasiten, indem sie selber später zu denjenigen Mutterkühen werden, bei denen eine diaplazentäre Passage des Parasiten auf den nächsten Föten stattfinden kann. Die parallele Untersuchung von Plazenta und Fötus ergab keine Fälle, bei denen eine Plazenta Neospora-PCRpositiv, der Nachweis im Fötus jedoch PCR-negativ ausfiel. Umgekehrt waren sieben Föten Neospora-PCR-positiv und die entsprechende Plazenta PCR-negativ, und nur in einem Fall war Neospora-DNA sowohl in der Plazenta als auch im Fötus nachweisbar. Wir folgern daraus, dass die alleinige Untersuchung von Föten für die Diagnose einer kongenitalen Neosporose ausreicht.

Zur Untermauerung der Testparameter unserer diagnostischen Werkzeuge wurden diese anhand von Material überprüft, das aus experimentellen Infektionen von trächtigen Rindern stammte. Bei 2 von 3 infizierten Rindern konnte der parasitologische Nachweis einer diaplazentären Passage des Parasiten sowie seine anschliessende Vermehrung im Föten nachgewiesen werden, einschliesslich der dadurch induzierten Schädigung di-

verser fötaler Gewebe. Ein Abort trat bei keinem dieser beiden Fälle auf, was jedoch wegen der relativ kurzen Zeitspanne zwischen Infektionsdatum und Euthanasie nicht zu erwarten war. Bei einem Rind liess sich nach Infektion keine mütterliche Serokonversion feststellen und der Parasit im Föten nicht nachweisen, ebensowenig wie etwelche pathologischen Veränderungen. Schlussfolgernd können wir davon ausgehen, dass bei zwei experimentell infizierten Rindern sich eine Infektion, im Anschluss an die Inokulation der Parasiten, erfolgreich etablierte, bei einem Rind schien die Infektion gar nicht angegangen zu sein.

Die diagnostischen Leistungen der verschiedenen Untersuchungstechniken fielen auch bei den experimentellen Infektionen ähnlich aus, wie bei der Untersuchung von natürlich erfolgten Aborten. Eine in vitro-Kultivierung des Parasiten gelang aus keinem der maternalen oder fötalen Gewebe. Infolge der zwischen dem 120. und dem 150. Trächtigkeitstag durchgeführten experimentellen Infektionen erfolgte keine Neospora-spezifische Serokonversion bei den Föten, hingegen serokonvertierten beide Muttertiere, bei denen später auch Parasiten im Föten nachgewiesen werden konnten. Bei diesen beiden Föten konnte Neospora-DNA mittels PCR nicht nur in verschiedenen Geweben, sondern zusätzlich auch in der Abomasalflüssigkeit sowie in der Amnionflüssigkeit nachgewiesen werden. Die Untersuchung von Amnionflüssigkeit hat sich insbesondere auch im Rahmen von diagnostischen Abklärungen bei der pränatalen Toxoplasmose des Menschen bewährt und ist in diesem Problemkreis zu einem wichtigen diagnostischen Prozess geworden.

Bei natürlich infizierten Föten wurden parasiten-induzierte Läsionen vorwiegend im ZNS, in der Skelettmuskulatur sowie in der Leber nachgewiesen (Barr et al., 1995; Anderson et al., 1991; Wouda et al., 1997). Histopathologische Veränderungen bei unseren experimentell infizierten Föten betrafen primär Hirn, Herz, Lungen und Lymphknoten. Typisch waren die kleinen multifokalen Nekrosen im fötalen Herz und in der Plazenta, die bereits erste Hinweise auf eine protozoäre Infektion zu liefern vermögen, die jedoch gleichzeitig auch nach einer weiterführenden ätiologischen Abklärung z. B. mittels Immunhistochemie oder PCR verlangen.

Beide Techniken haben bezüglich der experimentellen Infektionen ungefähr dieselbe diagnostische Effizienz bewiesen. Allerdings schnitt die Immunhistochemie bei den an die Pathologie eingesandten *Neospora*-Aborten wesentlich schlechter ab. Gründe dafür liegen hauptsächlich beim schlechten Zustand dieser Abortproben, die z. T. wegen des Zerfalls der Gewebe kaum mehr den immunhistochemischen Antigennachweis erlaubten, jedoch noch Parasiten-DNA mittels PCR amplifizieren liessen. Auch bei den experimentell infizierten Föten waren immunhistochemisch ausschliesslich vereinzelte *Neospora*-Tachyzoiten sichtbar. Das Fehlen von typischeren Strukturen wie Gewebezysten oder endotheliale Pseudozysten erschwerte die eindeutige ätiologische Identifikation der Parasiten erheblich. Bei den

nachgewiesenen Infektionsstadien (Tachyzoiten) sind grundsätzlich noch keine Gewebezysten mit Bradyzoiten gebildet worden, was auch die Schwierigkeit erklärt, Parasiten diagnostisch in vitro anzuzüchten. Frühestens nach Geburt der infizierten Jungtiere bilden sich im ZNS die dickwandigen Gewebezysten, welche sich über eine künstliche Verdauung relativ leicht und unversehrt isolieren lassen. Erst nach diesem Prozess können freigesetzte Bradyzoiten in vitro zur Infektion von Wirtszellen erfolgreich eingesetzt werden.

Zusammengefasst kann aufgrund der Resultate dieser Studie gefolgert werden, dass uns mit der Neospora-PCR eine zuverlässige Methode zur Diagnose einer Neosporose beim abortierten Rinderföten resp. perinatal gestorbener Kälber zur Verfügung steht. Die Neospora-PCR erlaubt auch eine eindeutige Abgrenzung zur Toxoplasmose. Für weiterführende wissenschaftliche Untersuchungen erlauben immunhistochemische Verfahren ebenfalls art-spezifische Aussagen. Wünschenswert wären effiziente Methoden zur in-vitro- (eventuell in vivo-)Isolierung von Neospora aus infizierten Föten, dies im Hinblick auf eine zukünftige biologische Charakterisierung der gewonnen Isolate. Die Neospora-Serologie ist bei der Untersuchung von Föten nicht angebracht, könnte jedoch eine Rolle bei der postnatalen Abklärung spielen, ob gesund geborene Kälber seropositiver Mütter potentielle Neospora-Träger gworden sind (und somit der Gefahr ausgesetzt sind, selber Neospora-Aborte zu erleiden), oder ob aufgrund einer hohen Seroprävalenz in Problembeständen Aborte mittels PCR spezifischer auf Neospora untersucht werden sollten. Zu erarbeiten bleiben noch detailliertere epidemiologische Grundlagen, die die Entwicklung einer eventuellen Bekämpfungsstrategie erlauben würden.

## Examens diagnostiques moléculaires et immunologiques de la néosporose bovine en Suisse

Les dommages causés par des coccidies formant des kystes chez les ruminants sont en premier lieu des avortements, des pertes de jeunes animaux ainsi que des lésions musculaires. Seulement depuis peu de temps, il est reconnu que Neospora caninum est un agent d'origine protozoaire provocateur de l'avortement chez les bovins. Le but de l'étude présente était de documenter les paramètres diagnostiques de plusieurs méthodes de laboratoire (culture in vitro; histologie; immunohistochemie; sérologie, PCR) qui sont à disposition pour la détection directe ou indirecte du parasite. Chez 24 (29%) des 83 fœtus avortés, la détection de DNA de Neospora a été effectuée par PCR dans le cerveau fœtal, qui était en même temps fréquemment caractérisé par des encéphalites multifocales mineures. Les méthodes diagnostiques ont

été testées chez des génisses portantes après une infection avec Neospora caninum. Le passage a travers le placenta et dans le fœtus des parasites a eu lieu chez deux parmi trois génisses. Chez ces deux fœtus, le DNA des parasites a été détecté dans les organes ainsi que dans la caillette et le liquide amniotique. Les génisses infectées expérimentalement ont fait une conversion sérologique entre 10 et 17 jours après l'infection, alors que dans le fœtus correspondant aucun anticorps contre Neospora n'a pu être détecté. Sur la base des résultats présents, il est permis de conclure que, dans les conditions de la pratique, le PCR est le moyen le plus indiqué pour le diagnostic d'un avortement par Neospora. Le PCR, complété par un examen sérologique, peut aussi être employé pour des études épidémiologiques. Sur la base de ces données, il semble que Neospora soit une cause importante d'avortement chez les bovins en Suisse.

# Analisi molecolare ed immunodiagnostica per la neosporosi bovina in Svizzera

In danni provocati da coccidi formati delle spore nei ruminanti, concernono primariamente gli aborti, le perdite di animali giovani e danni muscolari. È risaputo solo da poco tempo, che il protozoo Neospora caninum può fungere da agente abortivo nella mucca. Lo scopo dello studio era di documentare i parametri diagnostici di diversi metodi di laboratorio (coltivazione in vitro; istologia; immunoistochimica; serologia; PCR) usati per l'accertamento diretto ed indiretto del parassita. In 24 (29%) su 83 feti abortiti si poteva diagnosticare, tramite PCR, DNA di Neospora in cervello fetale, che mostrava contemporaneamente segni di leggere encefaliti multifocali e necrotizzanti. I mezzi diagostici di laboratorio a disposizione vennero inoltre provati in manze gravide, sperimentalmente infettate con N. caninum. La trasmissione placentare del parassita sul feto si vertificò in due su tre casi. In questi feti si poteva riscontrare DNA del parassita in diversi organi e nel liquido abomasale e amniotico. Negli animali infettati sperimentalmente venne accertata una seroconversione fra il 10. ed il 17. giorno dopo l'infezione, mentre che nei relativi feti non era possibile riscontrare anticorpi contro Neospora. I risultati di quest'indagine lasciano concludere, che a livello pratico, il metodo PCR è il migliore per la diagnosi di aborto da Neospora. Il metodo PCR, supportato da analisi serologiche, può essere utilizzato per indagini epidemiologiche. In base ai dati presentati, l'infezione da Neospora pare essere una causa rilevante di aborti nella mucca in Svizzera.

#### Dank

Die Arbeiten wurden finanziell durch das «Bundesamt für Veterinärwesen» (Projekt Nr. 012.4.93.4) und durch das «Bundesamt für Bildung und Wissenschaft» (COST-820 Projekt Nr. BBW C96.0068) unterstützt.

# Literatur

Anderson M.L., Blanchard P.C., Barr B.C., Dubey J.P., Hoffman R.L., Conrad P.A. (1991): Neospora-like protozoan infection as a major cause of abortion in California dairy cattle. JAVMA 198, 241–244.

*Barr B.C., Anderson M.L., Sverlow K.W., Conrad P.A.* (1995): Diagnosis of bovine fetal Neospora infection with an indirect fluorescent antibody test. Vet. Rec. 137, 611–613.

*Björkman C., Liunden A., Holmdahl J., Barber J., Trees A.J., Uggla A.* (1994): *Neospora caninum* in dogs: detection of antibodies by ELISA using an iscom antigen. Parasite Immunol. 16, 643–648.

*Cole R.A., Lindsay D.S., Dubey J.P., Blagburn B.L.* (1993): Detection of Neospora caninum in tissue sections using a murine monoclonal antibody. J. Vet. Diagn. Invest. 5, 579–584.

Conrad P.A., Barr B.C., Sverlow K.W., Anderson M., Daft B., Kinde H., Dubey J.P., Munson L., Ardans A. (1993): In vitro isolation and characterization of a Neospora sp. from aborted bovine foetuses. Parasitol. 106.239–249.

Conrad P.A., Sverlow K., Anderson M., Rowe J., BonDurant R., Tuter G., Breitmeyer R., Palmer C., Thurmond M., Ardans A., Dubey J.P., Dubamel G., Barr B. (1993): Detection of serum antibody responses in cattle with natural or experimental Neospora infections. J. Vet. Diagn. Invest. 5, 572–578.

*Dubey J.P., Beatie C.P.* (1988): Toxoplasmosis of animal and man. 1988; CRC Press, Boca Raton, Florida, USA, p. 220.

Dubey J.P., Lindsay D.S. (1993): Neosporosis. Parasitol. Today 9, 452-458.

*Dubey J.P., Lindsay D.S.* (1996): A review of Neospora caninum and neosporosis. Vet. Parasitol. 9, 452–458.

Dubey J.P., Carpenter J.L., Speer C.A., Topper M.J., Uggla A. (1988): Newly recognized fatal protozoan disease of dogs. J.Am. Vet. Med. Assoc. 192, 1269–1285.

Dubey J.P., Lindsay D.S., Adams D.S., Gay J.M., Baszler T.V., Blagburn B.L., Tbulliez P. (1996): Serologic responses of cattle and other animals infected with Neospora caninum.Am. J. Vet. Res. 57, 329–336.

Gottstein B. (1995): Zystenbildende Kokzidien:Toxoplasma, Neospora, Sarcocystis. Schweiz. Med. Wschr. 125, 890–898.

Gottstein B., Pozio E., Connolly B., Gamble H.R., Eckert J., Jakob H.P. (1997): Epidemiological investigation of trichinellosis in Switzerland. Vet. Parasitol. 72, 201–207.

Gottstein B., Hentrich B., Wyss R., Thür B., Busato A., Stärk K.D.C., Müller N. (1998): Molecular and immunodiagnostic investigations on bovine neosporosis in Switzerland. Int. J. Parasitol. 28, 679–691.

Hässig M., Waldvogel A., Corboz L., Strickler L., Zanoni R., Weiss M., Regi G., Peterbans E., Zerobin K., Rüsch P. (1995): Untersuchungen in Betrieben mit gehäuftem Verwerfen beim Rind. Schweiz. Arch. Tierheilk. 137. 445–453.

Hempbill A., Gottstein B., Kaufmann H. (1996): Adhesion and invasion of bovine endothelial cells by Neospora caninum. Parasitol. 112, 183–197.

Ho M.S., Barr B.C., Marsh A.E., Anderson M.L., Rowe J.D., Tarantal A.F., Hendrickx A.G., Sverlow K., Dubey J.P., Conrad P.A. (1996): Identification of bovine Neospora parasites by PCR amplification and specific small-subunit rRNA sequence probe hybridization. J. Clin. Microbiol. 34, 1203–1208.

Kaufmann H., Yamage M., Roditi I., Dobbelaere D., Dubey J.P., Holmdabl O.J.M., Trees A., Gottstein B. (1996): Discrimination of Neospora caninum from Toxoplasma gondii and other apicomplexan parasites by hybridisation and PCR. Mol. Nucl. Prob. 10, 289–297.

Müller N., Zimmermann V., Hentrich B., Gottstein B. (1996): Diagnosis of Neospora sp. and Toxoplasma gondii by PCR and DNA-Hybridization Immuno-Assay (DIA). J. Clin. Microbiol. 34, 2850–2852

*Paré J., Hietala S.K., Thurmond M.C.* (1995): An enzyme-linked immunosorbent assay (ELISA) for serological diagnosis of Neospora sp. infection in cattle. J. Vet. Diagn. Invest. 7, 352–359.

Paré J., Thurmond M.C., Hietala S.K. (1996): Congenital Neospora caninum infection in dairy cattle and associated calfhood mortality. Can. J.Vet. Re.s 60, 133–139.

*Payne S., Ellis J.* (1996): Detection of *Neospora caninum* DNA by the polymerase chain reaction. Int J. Parasitol. 26, 347–351.

Soulsby E.J.L. (1982): Helminths, Arthropods and Protozoa of Domesticated Animals. Seventh Edition. London: Baillierre Tindall.

*Thür B., Hilbe M., Strasser M., Ebrensperger E* (1997): Immunohistochemical diagnosis of pestivirus infection associated with bovine and ovine abortion and perinatal death.Am.J.Vet. Res. 12, 1371–1375

*Tbür B., Caplazi P., Hilbe M., Zlinszky K., Strasser M., Corboz L., Ebrensperger E:* Ursächliche Beteiligung von Pestiviren an Aborten und perinatalen Todesfällen bei Rindern und Schafen in der Schweiz. Dtsch. tieräztl. Wschr. (in press).

Thurmond M.C., Hietala S.K., Blanchard P.C. (1997): Herd-based diagnosis of Neospora caninum-induced endemic and epidemic abortion in cows and evidence for congenital and postnatal transmission. J. Vet. Diagn. Invest. 9, 44–49.

*Trees A.J., Guy F., Balfour A.H., Dubey J.P.* (1993): Prevalence of antibodies to *Neospora caninum* in a population of urban dogs in England. Vet. Rec. 132, 125–126.

Wouda W., Dubey J.P., Jenkins M.C. (1997): Scrological diagnosis of bovine fetal neosporosis. J. Parasitol. 83, 545–547.

Yamage M., Flechtner O., Gottstein B. (1996): Neospora caninum: Specific oligonucleotide primers for the detection of brain «cyst» DNA of experimentally-infected nude mice by the polymerase chain reaction (PCR). J. Parasitol. 82, 272–279.

Korrespondenzadresse: Prof. Dr. B. Gottstein, Institut für Parasitologie der Universität Bern, Länggass-Strasse 122, CH-3001 Bern

Manuskripteingang: 17. Mai 1998 in vorliegender Form angenommen: 12. August 1998

