Zeitschrift: Schweizer Archiv für Tierheilkunde SAT : die Fachzeitschrift für

Tierärztinnen und Tierärzte = Archives Suisses de Médecine Vétérinaire

ASMV : la revue professionnelle des vétérinaires

Herausgeber: Gesellschaft Schweizer Tierärztinnen und Tierärzte

Band: 138 (1996)

Heft: 3

Artikel: Die Isolierung Y-spezifischer Sonden beim Rind mittels genetischer

Repräsentations-Differenz-Analyse

Autor: Wigger, G. / Fries, R. / Stranzinger, G. DOI: https://doi.org/10.5169/seals-590536

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Institut für Nutztierwissenschaften, Gruppe Züchtungsbiologie, ETH Zürich¹, Lehrstuhl für Tierzucht der Technischen Universität München, Freising-Weihenstehan²

Die Isolierung Y-spezifischer Sonden beim Rind mittels genetischer **Repräsentations-Differenz-Analyse**

G. Wigger¹, R. Fries^{1,2}, G. Stranzinger¹

Zusammenfassung

Die genetische Repräsentations-Differenz-Analyse (engl.: genetically directed representational difference analysis, GDRDA) erlaubt die Isolierung von DNS-Fragmenten, in denen sich komplexe Genome unterscheiden. In der vorliegenden Arbeit wurde dieser Ansatz zur Isolierung von Y-spezifischen Sequenzen beim Rind verwendet. Von acht isolierten und klonierten Fragmenten stellten sich zwei als Y-spezifisch heraus.

Schlüsselwörter: GDRDA – Y-spezifische Sonde - Rind

Isolation of bovine Y-specific probes applying genetically directed representational difference analysis

Genetically directed representational difference analysis (GDRDA) allows to isolate DNA fragments that differ between complex genomes. This approach was applied in the present work to isolate Y-specific bovine sequences. Of eight isolated and cloned fragments, two proved to be Y-specific.

Key words: GDRDA – Y-specific probe –

Einleitung

Die Unterschiede zwischen zwei komplexen, verwandten Genomen unterschiedlichen Geschlechts beruhen im wesentlichen auf Sequenzen des Y-Chromosoms. Lamar und Palmer (1984) wendeten eine subtrahierende Hybridisierungsmethode an, um Y-spezifische Sequenzen zu klonieren.

Die auf der Polymerase Chain Reaction (PCR) beruhende genetically directed representational difference analysis (GDRDA) nach Lisitsyn et al. (1993, 1994) bedeutet eine Weiterentwicklung der obengenannten Methode. Sie erlaubt kleinere Unterschiede zweier Genome (Insertionen, Deletionen, Punktmutationen) zu entdecken, sofern diese zu unterschiedlichen Restriktionsenzymfragmentlängen der zu vergleichenden Genome führen.

Tiere, Material und Methoden

Tiere

Rinder-DNS von neun Halbschwestern, gemischt in einem Pool (Driver ohne männliche DNS), wurden mit dem Genom ihres gemeinsamen Vaters (Tester) verglichen. Mit dem DNS-Pool erreichte man, dass sich die systematisch genetischen Unterschiede zwischen Tester und Driver auf das Y-Chromosom beschränkten. In einem weiteren Pool (Driver mit männlicher DNS) wurde neben der DNS der neun Halbschwestern noch die DNS von drei männlichen, nicht verwandten Tieren gemischt. Alle diese Tiere gehörten der Braunviehrasse an.

GDRDA

Der Ansatz beruhte im wesentlichen auf Methoden, wie sie von Lisitsyn et al. (1993, 1994) beschrieben wurden. Ausgehend von komplexer, totaler DNS wurden in einem ersten Schritt die beiden Driver-DNS (mit und ohne männliche DNS) und die Tester-DNS mit Bgl II verdaut. Diese Fragmente wurden mit Adaptern (Primerset 1, Tab. 1) ligiert und mittels PCR vervielfacht. Dabei werden nur Fragmente kleiner als 1000 bp effizient amplifiziert. Diese Produkte (sog. Amplikons) repräsentieren die zu vergleichenden Genome.

Die Adapter wurden mit Bgl II wieder abgespalten. Zur Entfernung des Primerset 1 wurden die Testerfragmente in einem 2% NuSieve Low melting temperature Agarosegel (FMC BioProducts) aufgetrennt, der Bereich 150-1500 bp ausgeschnitten und die DNS isoliert (QIA-EX Gel Extraction Kit, QIAGEN). Es folgte eine Ligierung mit neuen Adaptern (Primerset 2, Tab. 1). Die Produkte wurden mit einem Überschuss an Driveramplikonen gemischt, denaturiert und anschliessend 20 h bei 67 °C inkubiert. In diesem Schritt lagern sich DNS-Fragmente

> Schweizer Archiv für Tierheilkunde

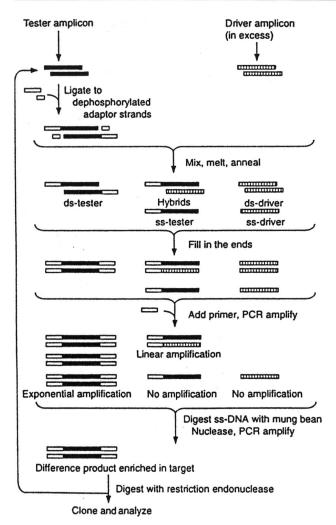


Abbildung 1: Schematische Darstellung der Hybridisierungs-/Amplifizierungsschritte der GDRDA. Die einzelnen Schritte sind in den Methoden beschrieben. ss: einzelsträngig, ds: doppelsträngig Diese Grafik wurde aus Lisitsyn et al. (1993) übernommen.

zusammen: es entstehen doppelsträngige Driveramplikone, doppelsträngige Testerfragmente mit den Adaptern sowie Tester-Driverhybride (Abb. 1). Da Driveramplikone im Überfluss vorhanden sind, können doppelsträngige Testerfragmente meist nur entstehen, wenn diese Sequenzen im Driveramplikon nicht verfügbar sind. Die Enden dieser Fragmente wurden aufgefüllt, d.h. die hervorstehenden Adapter doppelsträngig gemacht. Dies ist die Voraussetzung, um die Fragmente mit PCR zu amplifizieren. Dabei werden die doppelsträngigen Testerfragmente exponentiell amplifiziert. Die Vermehrung der Tester-Driverhybride geschieht hingegen nur linear, da die Erkennungsstelle der Primer (Adapter) lediglich an einem 5'-Ende vorhanden ist. Die Driverfragmente sowie die einzelsträngigen Testerfragmente werden nicht amplifiziert, da entsprechende Primererkennungsstellen fehlen. Nach einer Mungobohne-Nuklease-Behandlung, die einzelsträngige DNS zerstört, wurde das

Tabelle 1: Primersequenzen für die GDRDA

Set	Name	Sequenz (5'—>3')
1	R Bgl24 R Bgl12	AGCACTCTCCAGCCTCTCACCGCA GATCTGCGGTGA
2	J Bgl24 J Bgl12	ACCGACGTCGACTATCCATGAACA GATCTGTTCATG
3	N Bgl24 N Bgl12	AGGCAACTGTGCTATCCGAGGGAA GATCTTCCCTCG

Templat mittels PCR nochmals vervielfacht. Zum Schluss wurden die Adapter über eine *Bgl* II-Verdauung wieder entfernt.

Diese Hybridisierungs-/Amplifikationsrunde wurde einmal mit dem Primerset 3 und anschliessend mit dem Primerset 2 wiederholt. Die so erhaltenen Fragmente wurden in einem 2% NuSieve Low melting temperature Agarosegel (FMC BioProducts) während 3 bis 3,5 h mit 5 V/cm aufgetrennt (Abb. 2), anschliessend einzelne Fragmente ausgeschnitten und die DNS aus der Agarose isoliert (QIAEX Gel Extraction Kit, QIAGEN).

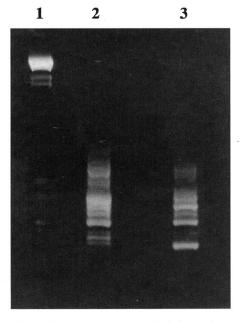


Abbildung 2: Agarosegel-Elektrophorese der Fragmente nach der dritten Hybridisierungs-/ Amplifikationsrunde. Lane 1: Marker λ-Hind III, 2: Fragmente aus der Kombination Tester-Driver mit männlicher DNS, 3: Fragmente aus der Kombination Tester-Driver ohne männlicher DNS.

Klonierung

Als Vektor wurde pBluescript II SK verwendet. Dieser wurde mit *Bam* HI linearisiert und anschliessend dephosphoryliert.

Die isolierten Fragmente aus der GDRDA wurden mit dem vorbereiteten Vektor ligiert (T4 DNS Ligase, Bio-Labs). Mit den resultierenden Plasmiden wurden kompetente Zellen (E. coli XL1 Blue) nach der Calciumchlorid-Methode transformiert und die rekombinierten Bakterien aufgrund ihrer Farbe mit IPTG und X-Gal selektiert (nach Sambrook, 1989).

PCR

Zur Sondenherstellung für die Hybridisierung wurden PCRs von den verschiedenen Plasmiden durchgeführt. Templataufbereitung: eine Bakterienkolonie in 50 μ l H₂O geben, kurz vortexen, 10 min bei 98 °C inkubieren, auf Eis abkühlen, kurz zentrifugieren.

PCR-Ansatz (50 μ l): Templat 5 μ l, Primer (T3 und T7) je 20 pmol, dNTP's 10 nmol, Taq-Polymerase (Boehringer) 2.5 Units, Tris-HCl 10mM, MgCl₂ 1.5 mM, KCl 50 mM. 30 Zyklen à 94 °C 30 sec, 55 °C 30 sec, 72 °C 30 sec, gefolgt von 7 min 72 °C.

Für die Y-spezifische Kontroll-PCR galt folgender 25 μ l Ansatz: Templat 100 ng, Primer (Tab. 2) je 10 pmol, dNTP's 5 nmol, Taq-Polymerase (Boehringer) 2.5 Units, Tris-HCl 10mM, MgCl₂ 1.5 mM, KCl 50 mM. 30 Zyklen à 94 °C 30 sec, 60 °C 30 sec, 72 °C 30 sec, gefolgt von 7 min 72 °C.

Tabelle 2: Primersequenzen der Y-spezifischen PCR

Name	Sequenz (5'—>3')
ETHBY 6-2 (P1)	ATCCATAAAGGTTAAGCTGTCGA
ETHBY 6-2 (P2)	GGCTTTGTCTGAGGATCTTGTG
ETHBY 7-2 (P1)	GGCTATCCACTTCAGTATGCTTG
ETHBY 7-2 (P2)	AACCAGGTCTCCTGCATTAACAG

Southern-Blot

Die einzelnen Fragmente wurden mittels Southern-Blot auf ihre Spezifität überprüft. Dazu wurden in einem 1% Agarosegel je 1 µl der Amplikon-DNS während 2.5 h mit 5.5 V/cm aufgetrennt (Abb. 3a). Es folgten der Kapillar-Transfer der DNS-Fragmente auf eine Nylonmembrane (Hybond N, Amersham) und die DNS-Fixierung mittels UV-Crosslinking und Backen für 2 h bei 80 °C.

Hybridisierung

Als Sonden dienten PCR-Amplifikate, mit T3 und T7 als Primer, der verschiedenen Klone. Diese Fragmente wurden mit QIAEX aufgearbeitet und mit dem Prime-It II Random Primer Kit (Stratagene) [α - 32 P]dATP-markiert. Die Hybridisierungen wurden in Plastikmesszylinder in einem Rotationsinkubator unter folgenden Bedingungen durchgeführt: 15–16 h, 42 °C; 6 × SSPE, 5 × Denhardt's, 0,5% SDS, 50% Formamid, Salmon sperm 100 µg/ml.

Abbildung 3a:
Agarosegel-Elektrophorese für den
Southern-Blot.
Lane 1: Marker
λ-Hind III, 2: 1 μl
Tester-Amplikon,
3: 1 μl Driver-Amplikon mit männl.
DNS), 4: 1 μl Driver-Amplikon ohne
männl. DNS.

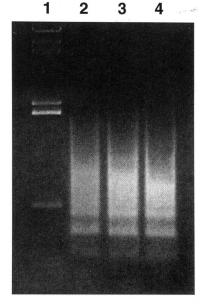


Abbildung 3b: Autoradiogramm der Y-spezifischen Sonde. Lanes wie in 3a).

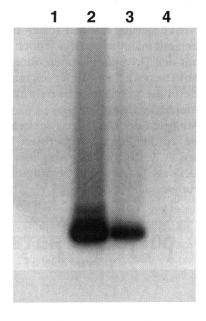
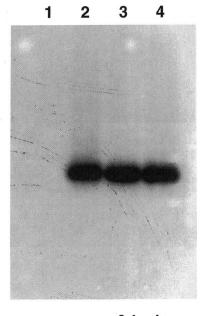



Abbildung 3c: Autoradiogramm einer unspezifischen Sonde. Lanes wie in 3a).

Schweizer Archiv für Tierheilkunde

Der stringenteste Waschschritt bestand in $0.1 \times SSC$, 0,1% SDS 10 min bei 65 °C. Die Membranen wurden auf X-Ray-Filmen (Fuji RX) unterschiedlich lang exponiert.

Sequenzierung

Zum Sequenzieren wurde Plasmid-DNS mit QIAGEN-tip 100 aufgearbeitet. Sequenziert wurde mit dem Dye Deoxy Terminator Cycle Sequencing Kit (Applied Biosystem). Die Auftrennung und Analyse der Proben erfolgte mit einem 373A DNA Sequencer (Applied Biosystem).

Resultate

Nach der dritten Hybridisierungs-/Amplifizierungsrunde wurden acht Bänder ausgeschnitten (Abb. 2), aufgearbeitet und kloniert. Mittels Southern-Blot konnte gezeigt werden, dass es sich bei zweien dieser acht Bänder um Yspezifische Sequenzen handelt, d.h. es gab eine Hybridisierung mit den Tester- und den Driveramplikonen mit männlicher DNS, jedoch kein Signal in der Lane mit den Driveramplikonen ohne männliche DNS (Abb. 3b). Die restlichen Bänder zeigten unspezifische Hybridisierungsergebnisse, d.h. Hybridisierung mit allen drei Amplikonen (Abb. 3c).

Aufgrund der Sequenzen der beiden Yspezifischen Klone wurden Primer synthetisiert. Die damit durchgeführten PCRs ergaben nur Amplifikationen mit männlicher DNS als Templat und bestätigten somit die Hybridisierungsergebnisse (Abb. 4).

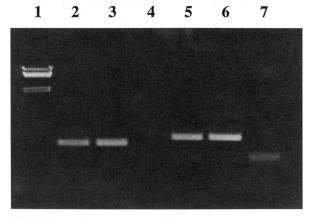


Abbildung 4: Agarosegel-Elektrophorese von Y-spezifischen PCR-Produkten. Lane 1: Marker λ-Hind III, 2, 3, 5 und 6: männl. Rinder-DNS als Templat, 4 und 7: weibl. Rinder-DNS als Templat.

Diskussion

Von acht klonierten Bändern waren zwei Y-spezifisch und sechs unspezifisch. Verglichen mit der Arbeit von Lisitsyn et al. (1994) ist dies eine gute Ausbeute.

Man muss jedoch beachten, dass sich Tester und Driver durch das gesamte Y-Chromosom unterschieden. Prinzipiell müssten bei der Anwendung von GDRDA alle 200–1000 bp langen Fragmente des Y-Chromosoms, die bei der Verdauung mit *Bgl* II entstehen, mittels PCR amplifiziert werden. Es ist anzunehmen, dass im vorliegenden Versuch nicht alle Fragmente isoliert wurden.

In Abb. 3b ist das Autoradiogramm einer Yspezifischen Sonde zu sehen. Dabei fällt auf, dass das Signal bei der Tester-DNS (Lane 2) stärker ist als bei der DNS vom Driver mit männlicher DNS (Lane 3). Dies kann man folgendermassen begründen: die Fragmente des Y-Chromosoms kommen im Tester viermal konzentrierter vor als im Driver mit männlicher DNS, da dieser auch noch weibliche DNS enthält.

Die GDRDA hat den Vorteil, dass als Ausgangsmaterial weniger als $10~\mu g$ DNS ausreichen, da mit der Amplikonproduktion genügend Verarbeitungsmaterial geschaffen wird.

Die Anwendung der GDRDA kann mit zunehmend kleiner werdendem Unterschied zwischen Driver und Tester problematisch sein. Ist man zum Beispiel an einem einzigen Allel interessiert, so sind die Chancen, dass dieser Unterschied zu einer zusätzlichen Schnittstelle des eingesetzten Restriktionsenzyms führt, sehr klein (Myers, 1993). Diese Wahrscheinlichkeit vergrössert sich allerdings, wenn man in parallelen Ansätzen verschiedene Restriktionsenzyme einsetzt.

Beim Rind liegen bereits verschiedene Yspezifische Sonden vor (Perret et al., 1990; Miller und Koopman, 1990; Cotinot et al., 1991), die z. B. für die Geschlechtsdiagnose bei Embryonen herangezogen werden. In der vorliegenden Arbeit ging es darum, die Möglichkeit zu prüfen, ob mittels GDRDA Yspezifische Sequenzen isoliert werden können. Der gezeigte Ansatz muss nicht auf das Rind beschränkt bleiben und liesse sich z. B. zur Isolierung von W-spezifischen Sequenzen bei Vögeln anwenden. Das besondere Interesse hierzu liegt darin, dass bei diversen Vogelarten eine phänotypische Geschlechtsdiagnose äusserst schwierig ist. Für die Erhaltung gefährdeter Vogelarten (Greifvögel, Papageienarten etc.) können Kenntnis und damit Nachweisbarkeit des Geschlechts vorhandener Tiere von zentraler Bedeutung sein.

Literatur

Cotinot C., Kirszenbaum M., Leonard M., Gianquinto L., Vaiman M. (1991): Isolation of bovine Y-derived sequence: potential use in embryo sexing. Genomics 10, 646–653.

Lamar E. E., Palmer E. (1984): Y-encoded, species-specific DNA in mice: Evidence that the Y chromosome exists in two polymorphic forms in inbred strains. Cell *37*, 171–177.

Lisitsyn N.A., Lisitsyn N.M., Wigler M. (1993): Cloning the difference between two complex genomes. Science 259, 946-951.

Lisitsyn N.A., Segre J.A., Kusumi K., Lisitsyn N. M., Nadeau J. H., Frankel W.N., Wigler M. H., Lander E.S. (1994): Direct isolation of polymorphic markers linked to a trait by genetically directed representational difference analysis. Nature Genetics *6*, 57–63.

Miller J. R., Koopman M. (1990): Isolation and characterization of two male-specific DNA fragments from the bovine gene. Animal Genetics *21*, 77–82.

Myers R. M. (1993): The pluses of subtraction. Science 259, 942–943.

Perret J., Shia Y.C., Fries R., Vassart G., Georges M. (1990): A polymorphic satellite sequence maps to the pericentric region of the bovine Y chromosome. Genomics 6, 482–490.

Sambrook J., Fritsch E.F., Maniatis T. (1989): Molecular cloning. A laboratory manual. Cold Spring Harbour Laboratory Press, USA, 1.82–1.86.

Korrespondenzadresse: G. Wigger, Inst. für Nutztierwissenschaften, Gruppe Züchtungsbiologie, ETH-Zentrum, TAN. CH-8092 Zürich

ASAL INFORMATIK

- · Einfache Bedienung
- · Schneller, komfortabler Rechnungslauf
- Schnittstelle zu GST-Herdenprogramm
- · Integrierte Buchhaltung
- Anschluss von Analysegeräten
- Individuell konfigurierbar
- Und vieles mehr

Tierarzt-Programm

Interessiert?

Verlangen Sie eine unverbindliche Demo in Ihrem Haus unter der Telefonnummer

061 / 751 80 30 (9.00 - 16.00 Uhr)

- Ein gutes Röntgenbild ist das Ergebnis aus vielen wichtigen Einzelheiten.
- Überlassen Sie nichts dem Zufall wählen Sie ein Röntgen-Gerät von:

• RAYMASTER A-300/100

2-Puls - 150fach bewährt!

• RAYPOWER A-500/125

high frequency -

ohne Kompromisse.

• RAYSTAR 60/100

high frequency,

der Stärkste Portable!

EDV-Generalunternehmung

Buchackerweg 14 CH-4146 Hochwald

Büelmatt 12 · CH-6204 Sempach-Schweiz

Tel. 0041 41 460 21 20 Fax 0041 41 460 32 83

Verkauf Schweiz: Provet AG, Lyssach Tel. 034 45 40 66