Zeitschrift: Schweizer Archiv für Tierheilkunde SAT : die Fachzeitschrift für

Tierärztinnen und Tierärzte = Archives Suisses de Médecine Vétérinaire

ASMV : la revue professionnelle des vétérinaires

Herausgeber: Gesellschaft Schweizer Tierärztinnen und Tierärzte

Band: 138 (1996)

Heft: 2

Artikel: Die PCR für den Nachweis von Lentiviren der kleinen Wiederkäuer

Autor: Zanoni, R.G. / Cordano, P. / Nauta, I.M. DOI: https://doi.org/10.5169/seals-589889

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die PCR für den Nachweis von Lentiviren der kleinen Wiederkäuer

R. G. Zanoni, P. Cordano, I. M. Nauta, E. Peterbans

Zusammenfassung

Die Polymerase-Kettenreaktion erfüllt alle Anforderungen an eine zukunftsträchtige diagnostische Routinetechnik. Sie ist schnell, relativ leicht durchzuführen und äusserst empfindlich. In einer für den Nachweis von Lentiviren der kleinen Wiederkäuer entwickelten PCR stellten wir unter idealen Bedingungen eine Nachweis-Sensitivität von wenigen Ziel-DNA-Kopien fest. Die diagnostische Anwendung der PCR erwies sich jedoch trotz Verfeinerung der Technik durch Eisatz einer ganzen Palette von geeigneten Primern als problematisch. Die Zuverlässigkeit der PCR blieb sowohl bei Blutproben als auch bei Milchproben weit hinter derjenigen der Serologie zurück. Interessanterweise wurde aber auch in 50% der Proben von seronegativen Tieren eine positive Reaktion festgestellt. Seronegative Virusträger sind bei Lentiviren vor allem im Zusammenhang mit verzögerter Serokonversion beschrieben worden (Rimstad et al., 1993). Aufgrund der trotz vielfältigen Vorkehrungen festgestellten Kontaminationsanfälligkeit der PCR kann dieses Resultat aber nicht abschliessend beurteilt werden. Anhand von publizierten Sequenzen von Lentiviren der kleinen Wiederkäuer wird gezeigt, dass durch Sequenzierung von PCR-Produkten und anschliessende phylogenetische Analyse wertvolle Einblicke in die molekulare Epidemiologie dieser Viren gewonnen werden könnten.

Schlüsselwörter: Caprines Arthritis-Encephalitis-Virus (CAEV) – Maedi-Visna-Virus (MVV) – PCR – PBMC – Milch – Molekulare Epidemiologie

PCR for the detection of small ruminant lentiviruses

The polymerase chain reaction has all attributes of a promising diagnostic technique. It is rapid, simple to perform and extremely sensitive. In a PCR developed for the detection of small ruminant lentiviruses (SRLV), we found under ideal conditions a detection sensitivity up to less than 10 template DNA copies. The diagnostic application of PCR was not fully satisfying, even when the technique was refined by the use of a panel of suitable primer pairs. The reliability of PCR in blood and milk samples was much lower than that of antibody detection using ELISA. Interestingly, a positive PCR result was also recorded in 50% of the samples of seronegative animals. Seronegative lentivirus carriers due do delayed seroconversion have been described previously (Rimstad et al., 1993). Due to sporadic occurence of false positive reactions in spite of contamination control, this result must be interpreted with caution unless the specificity of the fragments can be confirmed by sequencing. Using published sequences of SRLV, we show that sequencing of PCR products followed by phylogenetic analysis should allow to study molecular epidemiology of field strains.

Key words: caprine arthritis-encephalitis virus (CAEV) – maedi-visna virus (MVV) – PCR – PBMC – milk – molecular epidemiology

Einleitung

Das caprine Arthritis-Encephalitis-Virus (CAEV) und das Maedi-Visna-Virus (MVV) sind Lentiviren der kleinen Wiederkäuer, die durch lebenslängliche Viruspersistenz und einen langsamen, chronisch-progredienten klinischen Verlauf gekennzeichnet sind. Während bei der CAEV-Infektion die chronische Carpitis, subklinische Mastitis und chronische Abmagerung im Vordergrund

stehen, sind die hauptsächlichsten Erscheinungen bei der MVV-Infektion chronische Lungenentzündung mit Dyspnoe und chronische Abmagerung (Peterhans et al., 1988). Der Kontagionsindex (klinische Penetranz) ist bei CAEV bei rund 30% aller infizierten Tiere und bei MVV wahrscheinlich noch geringer. Aufgrund der lebenslänglichen Persistenz dieser Infektionen ist die serologische Diagnose hervorragend geeignet, um infizierte Tiere zuverlässig zu identifizieren. Gerade im Zusammenhang

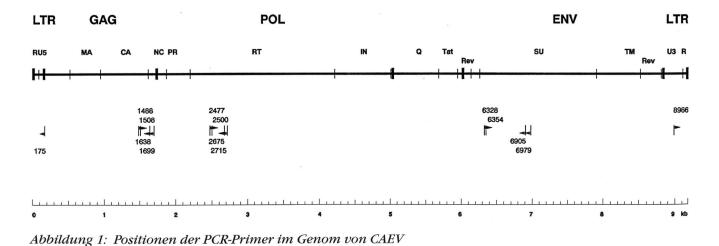
Schweizer Archiv für Tierheilkunde mit Eradikationsprogrammen stösst aber die auf dem Antikörpernachweis beruhende Diagnostik gelegentlich an ihre Grenzen. Ein schnelles, zuverlässiges und empfindliches Verfahren für den direkten Virusnachweis wäre deshalb eine willkommene Ergänzung zur Serodiagnostik. Aus diesem Grund haben wir eine Polymerase-Kettenreaktion (PCR) für den Nachweis von Lentiviren der kleinen Wiederkäuer entwickelt. Nach der In-vitro-Standardisierung der Technik für Ziegen- und Schaf-Lentiviren wurde die Eignung der PCR sowohl für den CAEV-DNA-Nachweis im Blut als auch für denjenigen in der Milch studiert.

Material und Methoden

Zellkulturen und Viren

CAEV und MVV wurden auf sekundären Ziegen-Synovial-Membran-Zellen (GSM) resp. auf Schaf-Plexus-Chorioideus-(SPC-) oder Lamm-Synovial-Membran-Zellen (LSM) gezüchtet (Zanoni et al., 1990; 1992).

Blut- und Milchproben


EDTA-antikoagulierte Blutproben und Milchproben wurden aus CAEV-infizierten Ziegenbeständen erhoben. Die Isolation der peripheren mononukleären Blutzellen (PBMC) aus 10 ml Blut erfolgte mittels Ficoll-Metrizoate-(1.077-)Gradienten-Zentrifugation (40 min bei 4 °C und 1200 g). 10 ml frisch gewonnener Milchproben wurden zur Gewinnung der Zellfraktion bei Raumtemperatur 10 min bei 600 g zentrifugiert.

DNA-Extraktion

Die DNA wurde aus den Zellen mittels Phenol-CIA (Chloroform-Isoamyl-Alkohol, Maniatis et al., 1982) isoliert und spektrophotometrisch quantifiziert. Die Eignung der extrahierten DNA (Integrität, Freiheit von Inhibitoren) wurde mittels Primern für einen Abschnitt auf dem Histon-H4-Gen verifiziert.

Polymerase-Kettenreaktion (PCR)

Als Primer wurden 30-mere (20 Basen Erkennungssequenz und 10 Basen für Restriktionsschnittstellen mit Überhang) in konservierten Regionen des Virus-Genoms verwendet (Abb. 1). Variable Positionen in der Primersequenz wurden durch Inosin ersetzt, um die Primerbindung zu verbessern. Das Reaktionsgemisch enthielt 1 µg (Zellkulturen, PBMC) resp. 5 µg (Milchzellen) zelluläre Ziel-DNA, 1 µM Primers, 1,5 mM Deoxyribonukleotide und 1 U Taq-Polymerase (Boehringer Mannheim) in Taq-Puffer [67 mM Tris-HCl (pH 8.8), 6,7 mM MgCl₂, 16,6 mM (NH₄)₂SO₄, 10 mM b-Merkaptoäthanol, 6,7 μM EDTA, 170 µg menschliches Serum-Albumin]. Die Proben wurden in 30 Zyklen (Denaturieren der Doppelstränge während 30 s bei 94 °C, Hybridisieren der Primer während 60 s bei 56 °C, Synthese des neuen Stranges während 60 s bei 74 °C) amplifiziert. Der letzte Syntheseschritt wurde auf 10 min verlängert, um die vollständige Synthese aller neuen Stränge zu garantieren. Amplifizierte Fragmente wurden nach der Gelelektrophorese entweder mittels Ethidium-Bromid direkt visualisiert oder nach Southern-Transfer und Hybridisierung mit spezifischen Sonden (Maniatis et al., 1982). Klonierte ho-

Die genauen Koordinaten der Sense-Primer im CAEV-Genom (Saltarelli et al., 1990) sind über den Primer-Symbolen mit Ausrichtung nach links, diejenigen der Antisense-Primer unterhalb der Primer-Symbole mit Ausrichtung nach rechts angegeben. Der Massstab unter der Abbildung gibt die Genomgrösse in Kilobasen (kb) an. LTR: Long terminal repeat mit den Abschnitten R, U5, U3. GAG: Group antigens mit den Abschnitten MA (Matrix-Protein), CA (Capsid-Protein) und NC (Nucleocapsid-Protein). POL: Polymerase mit den Abschnitten PR (Protease), RT (Reverse Transcriptase) und IN (Integrase). Regulatorische Abschnitte Q (virus

infectivity factor, vif), tat (transactivation of transcription) und rev (regulator of virus expression). ENV: Envelope mit den Abschnitten SU (Surface Protein) und TM (Transmembrane Protein). mologe PCR-Fragmente dienten nach Random-Priming (Boehringer Mannheim, Mannheim, Deutschland) in Anwesenheit von [a³²P] dCTP (Amersham, Buckinghamshire, Great Britain) als radioaktive Sonden. Als Kontaminationskontrolle wurde bei jedem PCR-Ansatz eine Probe ohne DNA (Aq.dest.) und eine Probe mit zellulärer DNA von nichtinfizierten Zellen mitgeführt.

Phylogenetische Analyse

Für die phylogenetische Analyse wurden die homologen DNA-Fragmente zunächst mittels der Pileup-Routine des GCG-Programmpakets (Anonymous, 1991) ausgerichtet untereinandergereiht und anschliessend mit dem Maximum-Likelihood-Algorithmus des PHYLIP-Programmpakets (Felsenstein, 1993) analysiert.

Resultate

Etablierung und Sensitivität in vitro

Eine CAEV-Infektion kann mit der PCR in Zellkulturen bereits nach einem Tag sicher nachgewiesen werden, währenddem virale Proteine mittels Immunoblot erst nach 5 Tagen sichtbar werden (Zanoni et al., 1990). Die PCR weist unter idealen Bedingungen eine ausserordentlich hohe Sensitivität auf. Zur besseren Quantifizierung der Nachweisgrenze wurden PCR-Produkte in das E.-coli-Plasmid pUC19 kloniert (Zanoni et al., 1992). Nach photometrischer Bestimmung des DNA-Gehaltes des Ausgangsmaterials und Berechnung der entsprechenden Kopienzahl konnte mittels geeigneten Verdünnungsreihen die Nachweisgrenze genau bestimmt werden. Dank der 100prozentigen Homologie der Primer-Bindungsstellen und der Abwesenheit von Fremd-DNA konnten mittels Ethidium-Bromid-Färbung rund 100 als Kopiervorlagen verwendete Plasmide mit einem klonierten GAG-Fragment (212 Basenpaare) nachgewiesen werden. Nach Hybridisierung mit einer homologen Sonde sank die PCR-Nachweisgrenze um zwei Zehnerpotenzen auf wenige Ausgangskopien (Abb. 2).

Aufgrund der genomischen Heterogenität der Lentiviren der kleinen Wiederkäuer konnten jedoch nicht alle Laborisolate mit allen verwendeten Primer-Paaren amplifiziert werden. Alle in CAEV- oder MVV-infizierten Zellkulturen amplifizierbaren Fragmente aus konservierten Genomabschnitten (GAG, POL, LTR) wurden deshalb kloniert und sequenziert (Zanoni et al., 1992). Aufgrund der so erhaltenen Sequenzdaten wurden dann weitere geeignete Primer-Sequenzen (sogenannte innere Primer oder «Nested Sets») ausgewählt (Abb. 1). Wiederum aufgrund der Heterogenität der Lentiviren wurden diese Primer in der Folge allerdings nicht zur Reamplifikation von PCR-Produkten der äusseren Primer verwendet, sondern als eigenständige, zusätzliche Primerpaare. Weitere Primerpaare wurden auch auf dem ENV-Abschnitt des Genoms ausgewählt (Abb. 1).

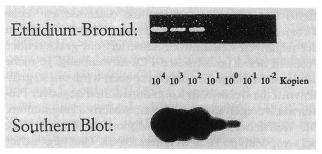


Abbildung 2: Sensitivität der PCR mit klonierten GAG-Fragmenten (212 Basenpaare) Die Sensitivitäten des PCR-Nachweises von rekombinanten Plasmiden bei direkter DNA-Färbung mittels Ethidium-Bromid (10²) oder nach Hybridisierung mit einer homologen radioaktiven Sonde (Southern blot, 10°) sind vergleichend dargestellt.

CAEV-Nachweis in peripheren mononukleären Blutzellen

Der Nachweis einer CAEV-Infektion in seropositiven Tieren erwies sich trotz dem Einsatz von mehreren Primer-Sets als unbefriedigend (Abb. 3). Wiederum zeigte sich ein drastischer Unterschied zwischen der Sensitivität des direkten Nachweises mit Ethidium-Bromid und derjenigen bei Hybridisierung des PCR-Produktes mit radioaktiven Sonden (Proben 10, 11, 12). Die schwache Hybridisierung der positiven Kontrolle (Probe 1) ist auf eine Heterogenität der verwendeten GAG-Sonde (MVV ZZV

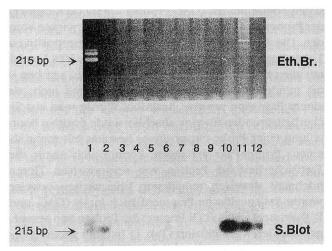


Abbildung 3: Nachweis von viralen GAG-Fragmenten in mononukleären Blutzellen Der Nachweis des spezifischen Fragmentes (215

Basenpaare) mittels Ethidium-Bromid (Eth. Br.) und Southern blot (S.Blot) ist vergleichend dargestellt. Die schwache Hybridisierung der positiven Kontrolle (Probe 1) ist auf eine Heterogenität der verwendeten Sonde von 17% zurückzuführen. Die Kontamination in der negativen Kontrolle (Probe 2) wird erst im Southern blot ersichtlich. Proben 3–10: Blutproben von seropositiven Ziegen.

1050) von 17% zum PCR-Produkt (isländisches Visna-Virus) zurückzuführen. Das schwach positive Signal in der negativen Zellkontrolle illustriert ein gravierendes Problem der diagnostischen PCR-Anwendung. Je mehr die Sensitivität auf die Spitze getrieben wird, um so grösser wird die Gefahr von Kontaminationen negativer Proben mit wenigen Kopien von amplifizierten Fragmenten. Die Treffsicherheit der PCR-Diagnose in Blutzellen lag bei seropositiven Tiere weit unter 100%. Dies liegt sicher auch an der geringen Zahl von virusinfizierten Leukozyten. Bei einem Anteil von 1 auf 10⁶ bis 10⁵ Leukozyten (Haase, 1986) ergeben sich nämlich nur 100 bis 1000 infizierte Zellen pro 10 ml Vollblut.

CAEV-Nachweis in Milchproben

Als Alternative zum Nachweis von viraler DNA in Blutzellen wählten wir den Nachweis in Milchzellen. Aufgrund der Tatsache, dass CAEV hauptsächlich über Kolostrum und Milch ausgeschieden wird (Adams et al., 1983) und dass ein relativ hoher Prozentsatz von CAEV-infizierten Tieren eine subklinische, interstitielle Mastitis mit erhöhtem Zellgehalt in der Milch aufweisen (Krieg and Peterhans, 1990; Ryan et al., 1993), schien uns dieses Kompartiment potentiell besser geeignet als das Blut.

Insgesamt wurden 82 Ziegen, wovon 40 im ELISA seropositiv und 42 seronegativ waren, aus infizierten Beständen untersucht. Als Primer wurden je zwei Paare im GAG-, POL- und ENV- und ein einzelnes Paar im LTR-Genomabschnitt von CAEV (Saltarelli et al., 1990) eingesetzt (Abb. 1). Je nach Primerpaar konnte das spezifische DNA-Fragmente nach Hybridisierung mit einer spezifischen Sonde bei 6% (GAG-Primer) - 53% (LTR-Primer) der Proben von seropositiven Tieren nachgewiesen werden. Die Treffsicherheit bei Proben von seropositiven Tieren liegt somit bestenfalls bei knapp über 50%. Von 14 mit allen Primerpaaren untersuchten Proben ergaben 9 mit mindestens einem Primerpaar und 3 mit mehr als einem Paar eine positive Reaktion. Würde man aus Sicherheitsgründen für eine abschliessende positive Beurteilung einer Probe ein positives Resultat mit mehr als einem Primer-Paar verlangen, könnte sich somit die Treffsicherheit bei Proben von seropositiven Tieren nochmals drastisch reduzieren. Überraschenderweise wurde das spezifische Fragment auch in 3% (GAG- und POL-Primer) - 50% (LTR-Primer) der Proben von seronegativen Tieren amplifiziert (Tab. 1). In einer anderen Untersuchung wurden ebenfalls bei 25% der untersuchten seronegativen Ziegen Virusträger gefunden (Rimstad et al., 1993). Aufgrund von Problemen mit Kontaminationen, die möglicherweise nicht immer in den mitgeführten Kontrollen entdeckt werden, muss dieses Resultat allerdings sehr vorsichtig interpretiert werden. Eine abschliessende Beurteilung würde unter diesen Umständen weitere Probenerhebungen bei PCR-positiven Tieren oder die Sequenzierung und den phylogenetischen Vergleich aller amplifizierten Fragmente erfordern.

Tabelle 1: Amplifikation von DNA aus 82 Milchproben

Primer-Paar ¹	Hybridisierung positiv/seropositiv		Hybridisierung positiv/seronegativ	
	Verhältnis	%	Verhältnis	%
LTR (294 bp)	21/40	53	21/42	50
GAG (212 bp)	2/34	6	2/40	5
GAG (131 bp)	6/33	18	1/37	3
ENV (652 bp)	3/35	9	6/40	15
ENV (552 bp)	3/31	10	6/37	16
POL (239 bp)	4/19	21	5/37	14
POL (176 bp)	4/25	16	1/39	3
ALLE Paare ²	9/14	64^{3}	19/37	51 ³
	3/14	21^{4}	9/37	24^4

¹ In Klammern ist die Länge des PCR-Produktes in Basenpaaren (bp) angegeben

Tabelle 2: Durchschnittliche Heterogenität in publizierten Sequenzen von Lentiviren der kleinen Wiederkäuer¹

A: Durchschnitt der paarweisen Vergleiche aller Sequenzen

	LTR	GAG	RT ²	ENV
N^3	39%	21%	18%	29%
AA ⁴		18%	13%	34%
AAC ⁵		12%	8%	23%

B: Durchschnitt der paarweisen Vergleiche der MVV-Sequenzen

	LTR	GAG	RT	ENV
N	20%	15%	15%	22%
AA -		11%	7%	22%
AAC		7%	4%	14%

C: Vergleich von 2 CAEV-Sequenzen

	LTR GA	AG RT	ENV
N	16%	8%	11%
AA		9%	23%
AAC	CONTRACTOR	7%	8%

Durchschnitt des Anteils der Heterogenität an der gesamten Sequenz aus allen möglichen paarweisen Vergleichen

² Proben, die mit allen Primer-Paaren untersucht wurden

³ Positive Hybridisierung des PCR-Produktes von mindestens einem Primer-Paar

^f Positive Hybridisierung der PCR-Produkte von mehr als einem Primer-Paar

² Kodierende Region für die Reverse Transkriptase auf dem POL-Abschnitt

³ Nukleinsäuren

⁴ Abgeleitete Aminosäuren

Nur nichtkonservierte Aminosäuresubstitutionen berücksichtigt

Molekulare Epidemiologie

Die PCR mit anschliessender Sequenzierung von amplifizierten Fragmenten erlaubt theoretisch eine zuverlässige und rasche epidemiologische Typisierung von Virusisolaten (Brown et al., 1994). Die höchste durchschnittliche genomische Heterogenität (39%) findet man bei den publizierten Sequenzen von Lentiviren der kleinen Wiederkäuer im LTR-Genomabschnitt. Vergleicht man nur die publizierten Sequenzen von Maedi-Visna-Viren untereinander, so reduziert sich diese Heterogenität auf 20% und bei CAE-Viren (nur 2 Sequenzen) auf 16%. Die höchste Heterogenität fndet man bei den Maedi-Visna-Virus-Sequenzen erwartungsgemäss im ENV-Abschnitt (Tab. 2). Die Variabilität im GAG- und POL-Abschnitt liegt bei 15%. Analysiert man die ausgerichtet untereinandergereihten LTR-Sequenzen (444 Positionen) mit dem Maximum-Likelihood-Algorithmus des PHYLIP-Programmpakets (Abb. 4), so wird deutlich, dass die publizierten CAEV-Sequenzen (LTRCAECH: Sherman et al., 1986, und LTRCAECO: Saltarelli et al., 1990) klar von den MVV-Sequenzen abgesetzt sind. Die publizierten Sequenzen von

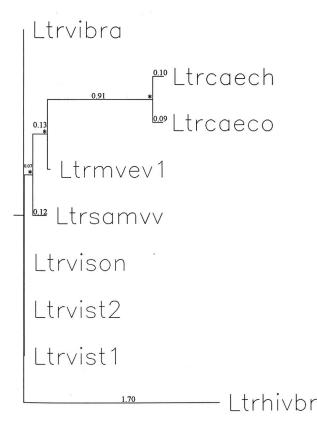


Abbildung 4: Phylogenetischer Baum der publizierten LTR-Sequenzen

Die Sequenzen (siehe Text) wurden mit dem Maximum-Likelihood-Algorithmus des PHYLIP-Programmpaketes analysiert. Zur Verbesserung des definitiven Baumes wurde die globale Neugruppierung der gefundenen Bäume zugelassen. Insgesamt wurden 349 Bäume analysiert. Signifikante Astlängen sind in Substitutionen pro analysierte DNA-Position angegeben, und signifikante Verästelungen sind mit einem Stern gekennzeichnet.

Abkömmlingen des isländischen Visna-Virus (LTRVISON: Sonigo et al., 1985; LTRVIBRA: Andresson et al., 1993; LTRVIST1/2: Staskus et al., 1991) sind untereinander sehr nahe verwandt. Etwas weiter entfernt sind die Maedi-Visna-Viren aus Südafrika (LTRSAMVV: Quérat et al., 1990) und aus Schottland (LTREV1: Sargan et al., 1991). Die publizierte Sequenz des HIV-Isolates BRU (LTRHIVBR: Wain-Hobson et al., 1985) wurde als weit entfernt verwandte Sequenz in die Analyse miteinbezogen.

Die Gruppierung der Sequenzen in eine Maedi-Visnaund in eine CAE-Gruppe war auch bei allen anderen analog analysierten Genomabschnitten ersichtlich. Es bleibt allerdings noch die spannende Frage zu klären, ob diese klare Gruppierung auch bei Feldisolaten zutrifft.

Diskussion

Die Entdeckung der Polymerase-Kettenreaktion vor 10 Jahren gab Anlass zu grossen Erwartungen in vielen Gebieten der Molekularbiologie und nicht zuletzt auch in der Diagnostik von Infektionskrankheiten. Die PCR hat in der Virologie geradezu zu einer Explosion von Sequenzdaten geführt. Auch für die Sero-Diagnostik der Lentiviren der kleinen Wiederkäuer wäre der direkte Virusnachweis mittels PCR eine sehr willkommene Ergänzung. Die diagnostische Anwendung der PCR errwies sich allerdings als nicht ganz unproblematisch. Wir fanden in einer für die Lentiviren von kleinen Wiederkäuern entwickelten PCR unter idealen Umständen mit klonierten PCR-Fragmenten zwar eine ausserordentlich hohe Nachweis-Sensitivität der PCR von wenigen Kopien. Gerade diese hohe Sensitivität bereitet aber dem Diagnostiklabor Probleme. Ohne sehr strikte räumliche und eventuell sogar personelle Trennung von Arbeitsbereichen für die Vorbereitung der Proben, Reaktionsgemische, Amplifikation, Analyse der Amplifikationsprodukte, Klonierungen und Hybridisierungen bleibt die Kontamination eine dauernde Bedrohung. Ein für die Lentiviren der kleinen Wiederkäuer spezifisches Problem ist der geringe Anteil von infizierten Zellen im Blut (1 von 10⁶-10⁵ Leukozyten) und möglicherweise auch in der Milch. Ausserdem findet man in publizierten Sequenzen von CAE- und Maedi-Visna-Viren immerhin auch in konservierten Genomabschnitten wie GAG und POL eine durchschnittliche Heterogenität von rund 20% (Tab. 2). Dies zusammen mag wohl die niedrige Sensitivität der PCR sowohl in Blut- wie auch in Milchproben (53%) erklären. Eine Verbesserung des Nachweises könnte möglicherweise mittels Standardisierung der PCR auf den spezifischen Zellgehalt anstelle des DNA-Gehaltes der Proben erreicht werden. Die Relevanz des hohen Anteils von positiven PCR-Resultaten (50%) bei seronegativen Tieren kann nicht abschliessend beurteilt werden. Ähnliche Resultate wurden zwar auch von anderen Autoren beschrieben (Rimstad et al., 1993). Aufgrund von gelegentlich in den negativen Kontrollen beobachteten Kontaminationen in unserer Untersuchung bedürfte es jedoch weiterer Abklärungen zur Absicherung der Spezifität. Die Authentizität der PCR-Produkte könnte z.B. durch Sequenzierung der PCR-Produkte bestätigt werden, was allerdings einen nicht unerheblichen Aufwand darstellt. Dieser Aufwand lohnt sich allerdings gerade auch unter einem epidemiologischen Aspekt. Aufgrund der genomischen Heterogentät der Lentiviren ist zu erwarten, dass jedes Isolat eine einzigartige Sequenz aufweist. Mittels Sequenzierung von PCR-Fragmenten und anschliessender phylogenetischer Analyse können somit durch Vergleich mit bekannten Sequenzen sehr rasch Schlüsse bezüglich der Verwandtschaft und der Herkunft von Isolaten gezogen werden. Falls sich die deutliche Trennung von Maedi-Visna-Virus- und CAE-Virus-Sequenzen auch für Feldisolate bestätigen sollte, wäre es zum Beispiel ohne weiteres möglich, die Frage der Reinfektion von CAEV-negativen Beständen durch Schafe zu beantworten. Dagegen steht aber zur Zeit leider noch die geringe Treffsicherheit in direkt aus den Tieren gewonnenem Untersuchungsmaterial. Die Lösung dieses Dilemmas liegt in der verfeinerten klassischen Virologie: Die Lentiviren müssen zunächst in verbesserten Zellkultursystemen angereichert werden, bevor sie mittels PCR und Sequenzierung zuverlässig analysiert werden können.

Literatur

Anonymous (1991): Program Manual for the GCG Package, Version 7, April 1991, 7th ed., 575 Science Drive, Madison, Wisconsin, USA 53711: Genetics Computer Group.

Adams D.S., Klevjer-Anderson P., Carlson J.L., McGuire T.C., Gorbam J.R. (1983): Transmission and control of caprine arthritis-encephalitis virus. Am. J. Vet. Res. 44, 1670–1675.

Andresson O.S., Elser J.E., Tobin G.J., Greenwood J.D., Gonda M.A., Georgsson G., Andresdottir V., Benediktsdottir E., Carlsdottir H.M., Mantyla E.O., Rafnar B., Palsson P.A., Casey J.W., Petursson G. (1993): Nucleotide sequence and biological properties of a pathogenic proviral molecular clone of neurovirulent visna virus. Virology 193, 89–105.

Brown E.W., Yuhki N., Packer C., Obrien S.J. (1994): A lion lentivirus related to feline immunodeficiency virus: epidemiologic and phylogenetic aspects. J. Virol. 68, 5953–5968.

Felsenstein J. (1993): PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle.

Haase A.T. (1986): Pathogenesis of lentivirus infections. Nature 322, 130–136.

Krieg A., Peterbans E. (1990): Die Caprine Arthritis-Encephalitis in der Schweiz: Epidemiologische und klinische Untersuchungen. Schweiz. Arch. Tierheilk. 132, 345–352.

Maniatis T., Fritsch E.F., Sambrook J. (1982): Molecular cloning: a laboratory manual, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

Peterbans E., Zanoni R., Krieg T., Balcer T. (1988): Lentiviren bei Schaf und Ziege: Eine Literaturübersicht. Schweiz. Arch. Tierheilk. 130, 681–700.

Quérat G., Audoly G., Sonigo P., Vigne R. (1990): Nucleotide Sequence Analysis of SA-OMVV, a Visna-Related Ovine Lentivirus – Phylogenetic History of Lentiviruses. Virology 175, 434–447.

Rimstad E., East N.E., Torten M., Higgins J., Derock E., Pedersen N.C. (1993): Delayed seroconversion following naturally acquired caprine arthritis-encephalitis virus infection in goats. Am.J.Vet.Res. 54, 1858–1862.

Ryan D.P., Greenwood P.L., Nicholls P.J. (1993): Effect of caprine arthritis encephalitis virus infection on milk cell count and n-acetyl-beta-glucosaminidase activity in dairy goats. J.Dairy.Res. 60, 299–306.

Saltarelli M., Quérat G., Konings D.A.M., Vigne R., Clements J.E. (1990): Nucleotide Sequence and Transcriptional Analysis of Molecular Clones of CAEV which Generate Infectious Virus. Virology 179, 347–364.

Sargan D.R., Bennet I.D., Cousens C., Roy D.J., Blacklaws B.A., Dalziel R.G., Watt N.J., McConnell I. (1991): Nucleotide Sequence of EV1, a British Isolate of Maedi- Visna Virus. J.Gen. Virol. 72, 1893–1903.

Sherman L., Gazit A., Yaniv A., Dahlberg J.E., Tronick S.R. (1986): Nucleotide sequence analysis of the long terminal repeat of integrated caprine arthritis encephalitis virus. Virus Research 5, 145–155.

Sonigo P, Alizon M., Staskus K., Klatzmann D., Cole S., Danos O., Retzel E., Tiollais P, Haase A., Wain-Hobson S. (1985): Nucleotide sequence of the visna lentivirus: relationship to the AIDS virus. Cell 42, 369–382.

Staskus K.A., Retzel E.F., Lewis E.D., Silsby J.L., St.Cyr S., Rank J.M., Wietgrefe S.W., Haase A.T., Cook R., Fast D., Geiser P.T., Harty J.T., Kong S.H., Labti C.J., Neufeld T.P., Porter T.E., Shoop E., Zachow K.R. (1991): Isolation of Replication-Competent Molecular Clones of Visna Virus. Virology 181, 228–240.

Wain-Hobson S., Sonigo P., Danos O., Cole S., Alizon M. (1985): Nucleotide Sequence of the AIDS Virus, LAV. Cell 40, 9–17.

Zanoni R., Pauli U., Peterbans E. (1990): Detection of caprine arthritis-encephalitis- and maedi-visna viruses using the polymerase chain reaction. Experientia 46, 316–319.

Zanoni R.G., Nauta I.M., Kubnert P., Pauli U., Pobl B., Peterbans E. (1992): Genomic heterogeneity of small ruminant lentiviruses detected by PCR. Vet. Microbiol. 33, 341–351.

Dank

Diese Arbeit wurde durch das Bundesamt für Veterinärwesen finanziell unterstützt. Wir danken dem Schweizerischen Ziegengesunheitsdienst für die bereitwillige Mithilfe bei der Probenerhebung.

Korrespondenzadresse: Dr. R. Zanoni, Institut für Veterinär-Virologie, Länggass-Strasse 122, CH-3012 Bern