Zeitschrift: Schweizer Archiv für Tierheilkunde SAT : die Fachzeitschrift für

Tierärztinnen und Tierärzte = Archives Suisses de Médecine Vétérinaire

ASMV : la revue professionnelle des vétérinaires

Herausgeber: Gesellschaft Schweizer Tierärztinnen und Tierärzte

Band: 135 (1993)

Heft: 1

Artikel: Möhrengranulat (Daucus carota) in der Hundeernährung

Autor: Zentek, J. / Meyer, H.

DOI: https://doi.org/10.5169/seals-589117

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Institut für Tierernährung der Tierärztlichen Hochschule Hannover

Möhrengranulat (Daucus carota) in der Hundeernährung

J. Zentek und H. Meyer

Zusammenfassung

Bei 4 Hunden wurden die Einsatzmöglichkeiten von getrockneten, granulierten Möhren geprüft. Dazu wurde einer Grundration (Reis, Maiskleber, Fischmehl und Ergänzungen) ein Möhrengranulat (30%) zugelegt.

Bei guter Akzeptanz des Kontroll- und Versuchsfutters ergab sich durch die Zulage von Möhren ein deutlich höherer fäkaler Wasserverlust, begleitet von einer Abnahme der scheinbaren Verdaulichkeit der Rohnähr- und Mineralstoffe, insbesondere von Natrium und Kalium (ausser Phosphor). Die Verdaulichkeit der Möhren (Differenzberechnung) erreichte rund 70%. Der Gehalt an verdaulicher Energie betrug 1,2 MJ/100 g TS. Ein signifikanter Rückgang der pH-Werte in den Fäzes $(6,9 \rightarrow 6,1)$, höhere Laktatkonzentrationen und die vermehrte Abgabe flüchtiger Fettsäuren belegen eine Stimulation postilealer Fermentationsvorgänge.

In H₂-Exhalationstests ergab sich kein Unterschied zwischen den Prüfperioden: die renale Ausscheidung von Phenol, Indikan und Stickstoff war bei Supplementierung mit Möhren signifikant vermindert.

Schlüsselwörter: Hund - Möhren -Akzeptanz – Verdaulichkeit – Diätetik

Grounded carrots (Daucus carota) in dog nutrition

In feeding and balance trials with dogs (4) dried, grounded carrots were tested in addition (30%) to a basic dry food (rice, corn gluten, fish meal and supplements). The palatability of both mixtures was good: fecal water losses were increased after feeding the carrots. Apparent digestibilities of organic and inorganic matter, especially sodium and potassium (not phosphorus), decreased. Digestibility of carrots was calculated to reach 70% with 1,2 MJ of digestible energy per 100 g dry matter.

Reduced fecal pH $(6,9 \rightarrow 6,1)$, higher lactate concentrations and increasing excretion of volatile fatty acids were seen as results of the stimulated bacterial metabolism in the colon.

Diurnal pattern of breath hydrogen exhalation was similar in both periods: renal excretions of phenol, indican, and nitrogen were significantly reduced after supplementation with carrots as compared to control period.

Key words: dog - carrots - palatability digestibility - dietetics

Einleitung

Getrocknete Möhren sind in kleinen Mengen häufig Bestandteil von Alleinfuttermitteln für Hunde. Über Akzeptanz, Verdaulichkeit und Verträglichkeit – Eigenschaften, die vor allem bei Verwendung höherer Anteile im Mischfutter wichtig sind – liegen keine Untersuchungen vor. Neben rund 40% Zucker enthalten Möhren etwa 30% Zellwandbestandteile (Pektine, Zellulose, Hemizellulose) in der Trockenmasse (Becker und Nehring, 1969), die für Futterwert und Verträglichkeit entscheidend sind. Die Verdaulichkeit der Zellwandbestandteile soll nach Rubner (1915) rund 58% betragen.

Die vorliegenden Untersuchungen hatten zum Ziel, Verträglichkeit und Verdaulichkeit grosser Mengen granulierter, lyophilisierter Möhren bei Hunden zu prüfen und mögliche Effekte auf die intestinale Mikroflora anhand verschiedener indirekter Parameter (fäkale Ausscheidung von organischen Säuren, renale Indikan-, Phenol- und Indolexkretion sowie H₂-Exhalation) zu beschreiben.

Tiere, Material und Methoden

Für die Versuche standen 4 adulte Beagles zur Verfügung (Körpermasse [KM] 13.5 ± 3.0 kg). Sie wurden während der Anfütterungsphase in Einzelzwingern, in der 5tägigen Versuchsphase in Stoffwechselkäfigen aus Edelstahl gehalten, die eine Sammlung von Kot und Harn gestatteten sowie eine Koprophagie ausschlossen.

Als Kontrollfutter diente eine Mischung, die aus thermisch aufgeschlossenem Reis und Maiskleber sowie notwendigen Ergänzungen zur Sicherung der Vitamin-, Mineral- und Ballaststoffversorgung bestand (Tab. 1).

Reis, gepufft	63,0 %	Sojaöl	6,8 %
Maiskleber	19,1 %	Zellulose	3,1 %
Fischmehl	2,5 %	vit. Mineralfutter ¹	5,8 %
Fischmehl	2,5 %	vit. Mineralfutter ¹	5,8 %

Tabelle 1: Zusammensetzung des Kontrollfutters

Die Hunde erhielten konsekutiv zunächst das Kontrollfutter und anschliessend ein Versuchsfutter, das im Verhältnis 70:30 aus der Kontrollmischung und einem Möhrengranulat (0,2–1 mm Partikelgrösse) bestand und in einem Horizontalmischer homogen gemischt wurde. Zur Verbesserung der Akzeptanz wurden beide Futtermischungen mit destilliertem Wasser angerührt und den Tieren in einer dem Erhaltungsbedarf entsprechenden Menge angeboten. Die Zusammensetzung der beiden Testfutter sowie des isolierten, granulierten Möhrenproduktes sind in Tabelle 2 aufgeführt.

		Kontroll- futter	Versuchs- futter	Möhren granulat isoliert
Trockensubstanz (TS), g/kg uS	917	911	903
in 1 kg TS				
Rohasche	(Ra), g	32,2	41,2	65,7
organische Substanz	(oS), g	968	959	934
Rohprotein	(Rp), g	220	181	109
Rohfett	(Rfe) g	149	109	19,7
Rohfaser	(Rfa), g	81,4	78,8	120
N-freie Extraktstoffe	(NfE), g	518	590	686
Bruttoenergie (GE1),	MJ	21,6	20,3	17,5
Ca, g		5,44	4,89	3,96
Mg, g		0,71	0,87	1,19
P, g		3,90	4,45	3,67
Na, g		2,83	2,62	2,84
K, g		2,47	10,1	23,1
Cu, mg		3,60	6,09	4,13
Zn, mg		41,4	32,7	26,8
Fe, mg		119	85,4	53,0
Mn, mg		16,6	16,5	19,4
Vitamin A IE (Tsd.) ²		11,4	8,1	
GE = Gross Energy Rfa und NfE berechnet anhand	= 17,5 kJ/g)		

berechnet anhand der Deklaration des Mineralfutter

Tabelle 2: Zusammensetzung der Mischfutter und des isolierten Möhrenproduktes

Die TS- und Energieaufnahme war zwischen beiden Versuchsdurchgängen weitgehend identisch (Tab. 3); das zugeteilte Futter nahmen die Hunde innerhalb kurzer Zeit vollständig auf.

	Kontrollfutter	Versuchsfutter
TS g	18,2 ± 0,23	18,2 ± 1,02
βp g	$4,00 \pm 0,05$	$3,30 \pm 0,18$
≀fe g	$2,71 \pm 0.03$	$1,99 \pm 0,11$
≀fa g	$1,48 \pm 0,02$	$1,43 \pm 0,08$
GE MJ	0,39 ± 0,0	0.37 ± 0.02
Ca mg	99 ± 1,3	89 ± 4,9
Mg mg	13 ± 0.2	16 ± 0.9
o mg	71 ± 0.9	81 ± 4,5
Na mg	52 ± 0.7	48 ± 2,7
C mg	45 ± 0.6	$184 \pm 10,3$
/it A IE	$207 \pm 2,6$	$147 \pm 8,3$

Tabelle 3: Nährstoffaufnahme (/kg KM/d)

Eine Beurteilung von Akzeptanz und Verträglichkeit des Futters sowie des allgemeinen Verhaltens der Hunde erfolgte täglich. Ausserdem wurden Verdauungs- und Bilanzuntersuchungen von 5tägiger Dauer angestellt. Als Parameter mikrobieller Aktivitäten im Intestinaltrakt wurden im Kot pH-Wert, flüchtige Fettsäuren und Milchsäure bestimmt, im Harn flüchtige Phenol- und Indolderivate sowie Indikan, ausserdem die N- und Harnstoffausscheidung. Weiterhin wurden H₂-Exhalationstests durchgeführt. Im Plasma erfolgte eine Quantifizierung von Retinol und Harnstoff.

Die Rohnährstoffe wurden nach der Weender Methode, Mengen- und Spurenelementgehalte nach nasser Veraschung atomabsorptionsspektrophotometrisch bzw. flammenemissionsspektrophotometrisch (Na, K) oder photometrisch (P, Vanadat-Molybdat-Methode) gemessen. Zur pH-Messung im Kot (Verdünnung des Ausgangsmaterials mit destilliertem Wasser, 1:10) diente ein elektrisches pH-Meter (Schott), zur Bestimmung der Laktatkonzentrationen ein Testsatz der Fa. Boehringer. Die flüchtigen Fettsäuren wurden im 1:4 verdünnten Kot und Zusatz einer Lösung mit innerem Standard (4-Methylvaleriansäure) gaschromatographisch (2 m Glassäule, Chromosorb WHP, 1% H₃PO₄, 5% OV 351) untersucht.

Die Bestimmung von Indikan im Harn erfolgte nach der Methode von Curzon und Walsh (1962), die Quantifizierung von flüchtigen Phenol- und Indolabkömmlingen nach der Methode von Aarbakke und Schjönsby (1976), allerdings abweichend von der Originalvorschrift durch Verwendung von Chloroform anstelle von Methylenchlorid als Extraktionsmittel und einer Kapillarsäule (Stabilwax DA, Restek). Bei den Exhalationstests wurde die Konzentration von Wasserstoff (Wärmeleitfähigkeitsdetektor) nach Auffangen der abgeatmeten Luft über eine Gummimaske gaschromatographisch (Molekularsiebsäule 2 m, 13X) ermittelt (Schwartz-Hafter, 1991). Die Retinolgehalte im Plasma wurden mittels HPLC (Shearer, 1986) untersucht.

Statistik: Zur statistischen Bewertung der Ergebnisse diente der t-Test nach Student. Signifikante Differenzen wurden wie folgt gekennzeichnet: $p<0,1=^*$, $<0,05=^{**}$, $<0,01=^{***}$.

Ergebnisse und Diskussion

Allgemeine Beobachtungen, Akzeptanz und Verträglichkeit

Sowohl das Kontrollfutter als auch die mit den Trockenmöhren supplementierte Mischung besassen eine hohe Akzeptanz und wurden von den Tieren zügig und vollständig gefressen. Bei nahezu gleicher TS-Aufnahme war die KM-Entwicklung in beiden Versuchsabschnitten positiv.

Die Kotkonsistenz war in beiden Durchgängen – trotz des bei Zulage der Möhren signifikant erhöhten Wassergehaltes – geformt. Auffällig war dabei – wie schon von Rubner (1915) erwähnt – die erhebliche Zunahme des Kotvolumens bei der Zulage von Möhren, die insbesondere durch einen signifikanten Abfall des TS-Gehaltes und einer damit einhergehenden höheren fäkalen Wasserausscheidung hervorgerufen wurde (Tab. 4).

	Kotabsatz g/kg KM/d	TS-Gehalt %	TS-Abgabe g/kg KM/d
Kontrollfutter	6,37±1,05	37,7±1,76	2,39±0,34
Versuchsfutter	17.8±2.10***	18,7±1,60***	3,32±0.47**

Tabelle 4: Kotabsatz, TS-Gebalt

Der pH-Wert der Fäzes fiel durch die Zulage der Möhren signifikant von rund 6,9 auf 6,1. Im wesentlichen ist diese Veränderung der Stimulation der mikrobiellen Laktatproduktion zuzuschreiben, da die Gehalte an flüchtigen Fettsäuren zwischen beiden Versuchsperioden weitgehend identisch blieben (Tab. 5). Ähnliche Beobachtungen bei Hunden machten Schuenemann et al. (1989), die bei höheren Laktatgehalten im Kot eine Tendenz zu tieferen pH-Werten feststellten.

		Kontrollfutter	Versuchsfutter
рН		6,85±0,44 (19)	6,14 ±0,39 (28)***
D-Laktat	mmol/1	0,11±0,10 (4)	0,27 ±0,19 (9)
L-Laktat	mmol/1	0,09±0,04 (4)	0,59 ±0,40 (9)**
Flüchtige Fetts.	,		
gesamt	mmol/1	129±37,2 (14)	125 ±49,3 (20)
Azetat	mmol/1	69,2±21,3	79,3 ±38,1
Propionat	mmol/1	36,1±12,5	33,9 ±18,8
i-Butyrat	mmol/1	3,21±1,77	1,52 ±2,08**
n-Butyrat	mmol/1	15,6±8,63	8,60 ±4,79***
i-Valerianat	mmol/1	4,49±2,43	1,12 ±1,11***
n-Valerianat	mmol/1	0,20±0,35	0

Tabelle 5: Parameter mikrobieller Aktivität im Kot

Unter Einbeziehung des erheblich grösseren Kotvolumens in der Zulageperiode lag die Gesamtausscheidung flüchtiger Fettsäuren (berechnet aus der fäkalen Wasserabgabe und den Konzentrationen der flüchtigen Fettsäuren), in der Zulageperiode mit rund 1800 µmol/kg KM/d mehr als 3fach über den Werten der Kontrollperiode (520 µmol/kg KM/d), was die intensive Stimulierung des kolonalen mikrobiellen Stoffwechsels belegt. Bei der Verteilung der flüchtigen Fettsäuren im Kot deuten sich eine Verschiebung zugunsten des Azetats sowie geringere Anteile der C4- und C5-Säuren nach Zulage der Möhren an.

Die *pulmonale H₂-Exhalation* wurde ergänzend zur Beschreibung der Lokalisation der mikrobiellen Aktivitäten im Intestinaltrakt herangezogen. Sie lag in beiden Versuchsabschnitten in vergleichbarer Grössen-

ordnung (Abb. 1). Diese Beobachtung bestätigt, dass die fermentierbaren Inhaltsstoffe der Möhrenzulage, wie zu erwarten, im wesentlichen erst im Dickdarm umgesetzt wurden, da nach vorliegenden Untersuchungen an Hunden (Schwartz-Hafter, 1991) der überwiegende Anteil des postprandial exhalierten Wasserstoffs aus dem Dünndarm stammt. Diese Beobachtungen werden durch Untersuchungen an fistulierten Schweinen (Kesting und Bolduan, 1987) bestätigt; bei hoher Gesamtverdaulichkeit der organischen Substanz von Möhren (90,5 %) hatte bis zum Ende des Ileums keine Verdauung stattgefunden.

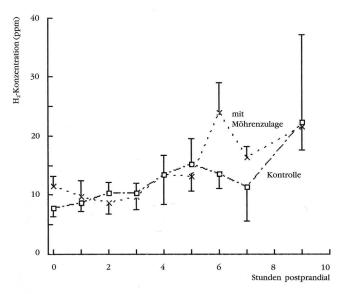


Abbildung 1: Diurnaler Verlauf der H₂-Konzentrationen im Exhalat

Die renale Ausscheidung des im Rahmen des intestinalen mikrobiellen Stoffwechsels aus aromatischen Aminosäuren gebildeten Phenols reduzierte sich gegenüber der Kontrollperiode signifikant (Tab. 6).

	Kontroll- futter	Versuchs- futter
μg	118±10,2	16,1 ±19,4**
μg	10,6±12,2	5,96 ±11,9
μg .	14,8±17,9	$20,6 \pm 41,2$
μg	63,2±97,2	96,4 ±89,9
μg	3,3± 1,1	1,3 ± 0,6**
	μg μg μg	futter μg 118 ±10,2 μg 10,6±12,2 μg 14,8±17,9 μg 63,2±97,2

Tabelle 6: Renale Ausscheidung mikrobieller Umwandlungsprodukte von Aminosäuren (/kg KM/d)

War Phenol in jeder Harnprobe vorhanden, so konnten die Abbauprodukte des Tryptophans, insbesondere Indol, nur in 2 von 4 Sammelharnproben aus der Kontrollperiode und in 1 Probe bei Zufütterung der Möhren - dafür jedoch in hoher Konzentration - nachgewiesen werden, so dass die Interpretation dieser Daten zunächst vorsichtig erfolgen muss. Die renale Indikanausscheidung liegt nach vorliegenden Erfahrungen bei Hunden (Meyer et al., 1989a) im Rahmen des Erwartungsbereiches (0,7-5 mg/kg KM/d); sie war in der Zulagephase, bei einer (kalkulierten) weitgehend ausgeglichenen Tryptophanaufnahme, signifikant niedriger als in der Kontrollperiode, so dass sich infolge der Möhrenzufütterung eine reduzierte Bildung potentiell gesundheitsschädlicher mikrobieller Stoffwechselprodukte zeigt, vermutlich aufgrund einer pH-Absenkung im Dickdarm mit Hemmung proteolytischer Bakterien.

Verdaulichkeit der Rohnährstoffe, Effekte auf den Proteinstoffwechsel

Die Zufütterung von Möhren bewirkte - ausser beim Rohfett - eine allgemeine Depression der Verdaulichkeit der Rohnährstoffe (Tab. 7) sowie eine Abnahme der verdaulichen Futterenergie.

	Kontroll- futter	Versuchs- futter	Möhren
TS	86,8±2,10	81,6±6,71	69,2
OS	88,6±1,85	83,0±6,65	69,9
Ra	34,2±11,6	49,3±9,39*	69,3
Rp	85,7±1,80	76,1±9,30*	34,5
Rfe	95,5±1,25	95,2±6,88	91,3
Rfa	47,5±8,43	33,1±15,6	36,2
NfE	94,3±1,51	89,6±5,11	89,6
GE	89,4±1,74	84,0±6,79	68,42

Tabelle 7: Scheinbare Verdaulichkeit der Robnährstoffe und der Energie (%)

Die scheinbare Verdaulichkeit des Rohproteins lag bei dem Versuchsfutter signifikant niedriger als in der Kontrollgruppe. Bei rund 25% niedrigerer Rp-Versorgung (3,3 bzw. 4 g/kg KM/d) in der Zulageperiode liessen sich deutlich reduzierte Harnstoffgehalte im Plasma ermitteln (Tab. 8); neben der unterschiedlichen Proteinaufnahme und -verdaulichkeit kann eine Fixierung von Stickstoff in dem angesäuerten Darmmilieu (mikrobielle N-Utilisation) vorgelegen haben, ohne dass die einzelnen Faktoren quantitativ zu gewichten sind. Als Folge der geringeren Stickstoffbelastung reduzierten sich die renale Stickstoff- und Harnstoffexkretion nachhaltig (Tab. 8); von dem scheinbar verdauten Stickstoff wurden in der Kontrollperiode rund 98% und in dem Zulageversuch 81% renal ausgeschieden.

		Kontroll- futter	Versuchs- futter
Plasma		ara un servicio de la compansión de la comp La compansión de la compa	
Harnstoff	μmol/ml	9,32±3,16	5,33±2,33
Renale Aussc	beidung		
Stickstoff Harnstoff	mg/kg KM/d mg/kg KM/d	539±59,7 1100±263	324±37,6* 628±259**

Tabelle 8: Harnstoffgehalte im Plasma und renale Ausscheidung von Stickstoff und Harnstoff

Scheinbare Verdaulichkeit und renale Ausscheidung der Mengenelemente

Bei den Mengenelementen fiel in der Zulageperiode eine signifikant höhere Verdaulichkeit des Phosphors auf, während die von Natrium und Kalium abnahm. Entsprechende Verschiebungen der Na- und K-Abgaben wurden auch bei anderen Futtermitteln gesehen, die zu vermehrten postilealen Fermentationsvorgängen führen (z. B. Tapiokastärke) bzw. höhere Anteile pflanzlicher Strukturstoffe aufweisen (Koch-Erhorn, 1987; Meyer et al., 1989b).

	Kontroll- futter	Versuchs- futter	
Ca	$1,60 \pm 20,8$	2,03 ± 15,9	
Mg	$33,3 \pm 9,08$	30.3 ± 9.84	
P	$27,2 \pm 12,5$	59,6 ± 9,17***	
Na	90.8 ± 1.72	56,5 ± 5,60***	
K	$93,4 \pm 1,12$	85,6 ± 5,22**	

Tabelle 9: Scheinbare Verdaulichkeit der Mengenelemente (%)

Bei weitgehend identischer Na-Aufnahme (50 mg/kg KM/d) lag die renale Na-Ausscheidung bei Zufütterung von Möhrengranulat signifikant unter den Werten der Kontrollperiode. Diese Beobachtung bestätigt indirekt die Ergebnisse der Verdauungsversuche und steht mit der deutlich niedrigeren verfügbaren Na-Menge in diesem Versuchsdurchgang in Zusammenhang, die bei 24,9 mg/kg KM/d gegenüber 45,4 mg/kg KM/d (berechnet aus der Na-Zufuhr und der scheinbaren Verdaulichkeit) im Kontrollversuch lag; insgesamt war die Na-Bilanz jedoch innerhalb der versuchstechnisch gegebenen Fehlergrenzen weitgehend ausgeglichen.

	Kontrollfutter- mg/kg KM/d	% der Aufn.	Versuchsfutter mg/kg KM/d	% der Aufn.
Ca	1,21 ± 1.66	1,22	$0,75 \pm 0,22$	0,84
Mg	$3,21 \pm 0,74$	24,9	$2,43 \pm 0,52$	15,2
P	$22,5 \pm 3,68$	31,7	29,4 ± 4,34*	36,3
Na	43.3 ± 6.78	83,3	22,3 ± 9,17***	46,5
K	$46,9 \pm 5,98$	104	117 ± 3,41***	65,0

Tabelle 10: Renale Ausscheidung der Mengenelemente

Die renale *K*-Abgabe stieg infolge der höheren Aufnahme in der Zulagephase signifikant an, allerdings wurden nur 65% des aufgenommenen Kaliums auf diesem Weg eliminiert (Kontrollperiode: 104%); diese Beobachtung bestätigt die in den Verdauungsversuchen ermittelte geringere scheinbare K-Verdaulichkeit.

Wasserhaushalt

Die Hunde kompensierten die höheren fäkalen Wasserverluste nach Aufnahme von Möhren durch eine nahezu dieser Ausscheidung gleichkommende höhere Trinkwasseraufnahme (Tab. 11); die renale Wasserausscheidung blieb zwischen beiden Behandlungsgruppen weitgehend gleich.

	Wasseraufr	ahme	Wasserabga	be
	gesamt	Kot.	Harn	gesamt
Kontrollfutter	33,7±7,93	4,05±0,66	20,7±6,50	24,7±6,34
Versuchsfutter	47,2±8,13	14,4±1,76	20,5±4,30	34,9±4,95
Differenz	+ 13,5**	+ 10,4***	- 0,2	+ 10,2**

Tabelle 11: Wasserhaushalt (ml/kg KM/d)

Retinolgehalte im Plasma

Die Zufütterung der Möhren hatte – bei jeweils bedarfsdeckender Vitamin A-Versorgung über das Futter – in diesen Untersuchungen keinen Einfluss auf die Retinolkonzentrationen im Plasma, die ein etwas höheres Niveau (Kontrolle: 1063 ± 270 ; Zulage 963 \pm 230 ng/ml) erreichten, als von Schweigert (1989) unter Verwendung einer vergleichbaren Methodik ermittelt wurde.

Überlegungen zur Fütterungspraxis

Die vorliegenden Untersuchungsergebnisse zeigen, dass

- der Einsatz getrockneter Möhren aufgrund ihrer guten Akzeptanz und Verträglichkeit bei Hunden möglich ist (die Verwertung roher oder weniger stark granulierter Möhren kann anders sein!).
- infolge einer Stimulation des kolonalen mikrobiellen Stoffwechsels erhöhte fäkale Wasser-, Na- und K-Verluste entstehen, die eine ausreichende Mineralstoffsupplementierung erforderlich machen.

Möhren sind in der geprüften Darreichungsform als Zulage zu hochverdaulichen Futtermitteln geeignet, da sie zu einer ausreichenden Darmperistaltik und Dickdarmfüllung beitragen. Bei Hunden (und Katzen) mit Darmträgheit erscheint eine Dosierung von 10% zu einem Trockenfutter oder rund 3 g/kg KM/d möglich. In höheren Anteilen - wie in dieser Untersuchung vorliegend - könnten sie als voluminöser Bestandteil in Reduktionsdiäten eingesetzt werden.

Der Vitamin A-Spiegel im Plasma lag in der Versuchsperiode nur um 10% tiefer als in der Kontrollphase, obwohl die Vitamin A-Aufnahme um 30% geringer war (Tab. 3). Wegen einer möglichen Vitamin A-Freisetzung aus der Leber und des nicht bekannten Carotingehaltes im Möhrengranulat kann die Frage, ob Möhren auch eine geeignete Quelle zur Vitamin A-Versorgung der Hunde sind, nicht abschliessend beantwortet werden.

Les carottes séchées granulées (Daucus carota) dans l'alimentation des chiens

La possibilité d'emploi de carottes séchées granulées a été testée chez 4 chiens. A cette fin, un granulé de carottes (30%) a été ajouté à une ration de base consistant en riz, gluten de mais, farine de poisson et compléments.

Malgré une bonne acceptation de la nourriture contrôlée et de la nourriture testée, l'addition de carottes a nettement induit une perte d'eau fécale accompagnée d'une diminution de la digestibilité apparente des éléments nutritifs principaux et des minéraux, en particulier le sodium et le potassium (sans le phosphore). La digestibilité des carottes était environ 70% (calcul par différence). Le contenu en énergie digestible s'élevait à 1,2 MJ/100 g MS. Une diminution significative du pH des fèces $(6.9 \rightarrow 6.1)$, une concentration en lactate plus élevée et une production augmentée d'acides gras volatiles indiquaient une stimulation postiléale des processus de fermentation.

Dans les tests d'exhalation de H₂, aucune différence est apparue entre les périodes d'éssais; l'excrétion rénale du phénol, de l'indican et de l'azote étaient significativement diminuée par l'apport des carottes.

Il granulato di carote (Daucus carota) nell'alimentazione del cane

In 4 cani è stata sperimentata la possibilità di utilizzare un granulato di carote essiccate. Perciò alla razione di base (riso, glutine di mais, farina di pesce e aggiuntivi) è stato aggiunto un granulato di carote (30%). A parità di gradimento del mangime di controllo e del mangime sperimentato si riscontrò con l'aggiunta di carote una maggiore perdita di acqua attraverso le feci, accompagnata da una riduzione della digeribilità delle sostanze nutrienti di base e i sali minerali, spezialmente il sodio ed il potassio (ma non il fosforo). La digeribilità delle carote (calcolo sottrattivo) raggiunse il 70%. Il contenuto in energia digeribile era di 1,2 MJ/100 g di sostanza secca. La diminuzione significativa del pH nelle feci $(6.9 \rightarrow 6.1)$, una maggior concentrazione di lattato e una maggior produzione di acidi grassi volatili, dimostrano una stimolazione della fermentazione post-ileale. Nel test di esalazione di H2 non si rilevò alcuna

differenza tra i periodi d'esame: l'eliminazione renale di fenolo, indicano e azoto era significativamente inferiore nel gruppo supplementato con le carote.

Literatur

Aarbakke J., Schjönsby H. (1976): Value of urinary simple phenol and indican determinations in the diagnosis of the stagnant loop syndrome; Scand. J. Gastroent. 11, 409-414

Becker M., Nehring K. (1969): Handbuch der Futtermittel, 1. Band; Verlag Paul Parey, Hamburg, Berlin

Curzon G., Walsh J. (1962): A method for the determination of urinary indoxye sulfate (indican); Clin. Chim. Acta 7, 657-663

Kesting U., Bolduan G. (1987), zit. nach Jentsch W., Hoffmann L., Schiemann R. (1989): Untersuchungen zur energetischen Verwertung von Wurzelfrüchten und Verarbeitungsprodukten durch adulte Schweine; Arch. Anim. Nutr. 39, 981–992

Koch-Erborn B. (1987): Prüfung schwerverdaulicher Futtermittel auf ihre Eignung als Komponenten in Adipositas-Diäten für Hunde; Vet. Diss. Hannover

Meyer H., Arndt J., Behfeld T., Elbers H., Schuenemann C. (1989a): Praecaecale und postileale Verdaulichkeit verschiedener Eiweisse; Fortschr. Tierphysiol. Tierernährung 19, 59–77

Meyer H., Behfeld T., Schuenemann C., Mühlum A. (1989b): Intestinaler Wasser-, Natrium- und Kaliumstoffwechsel; Fortschr. Tierphysiol. Tierernährung 19, 109–119

Rubner M. (1915): Über die Verdaulichkeit der Zellmembranen der gelben Rüben; Arch. Anat. Physiol., physiol. Abt., 265–271

Schuenemann C., Muehlum A., Junker S., Wilfarth H., Meyer H. (1989): Praecaecale und postileale Verdaulichkeit verschiedener Stärken sowie pH-Werte und Gehalte an organischen Säuren in Dünndarmchymus und Faeces; Fortschr. Tierphysiol. Tierernährung 19, 31-58

Schwartz-Hafter G. (1991): Untersuchungen zur postprandialen $\rm H_2$ -Exhalation beim Hund; Vet. Diss. Hannover

Schweigert F.A. (1989): Insensivity of dogs to the effects of nonspecific bond vitamin A in plasma; Int. J.Vit. Nutr. Res. 58, 23-25

Shearer M.J. (1986): Vitamins. in: LIM C. K.: HPLC of small molecules; IRL Press, Oxford, Washington, 157–219

Korrespondenzadresse: Dr. Jürgen Zentek und Prof. Dr. b.c. H. Meyer, Institut für Tierernährung der Tierärztlichen Hochschule Hannover, Bischofsholer Damm 15, D-3000 Hannover 1

Manuskripteingang: 20. Januar 1992