Zeitschrift: Schweizer Archiv für Tierheilkunde SAT : die Fachzeitschrift für

Tierärztinnen und Tierärzte = Archives Suisses de Médecine Vétérinaire

ASMV : la revue professionnelle des vétérinaires

Herausgeber: Gesellschaft Schweizer Tierärztinnen und Tierärzte

Band: 132 (1990)

Heft: 1

Artikel: Erste Erfahrungen bei der Schockbehandlung des Pferdes mit einem

Plasmaexpander auf Stärkebasis

Autor: Hermann, M. / Bretscher, R. / Thiébaud, G.

DOI: https://doi.org/10.5169/seals-588511

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ERSTE ERFAHRUNGEN BEI DER SCHOCKBEHANDLUNG DES PFERDES MIT EINEM PLASMAEXPANDER AUF STÄRKEBASIS

M. HERMANN, R. BRETSCHER, G. THIÉBAUD, D. MEISTER

ZUSAMMENFASSUNG

Ein in der Tiermedizin bislang kaum klinisch verwendeter kolloidaler Plasmaexpander, das HAES Steril 10% wird vorgestellt. Erste Erfahrungen mit der Anwendung von HAES bei klinischen Schockpatienten und aus einer an 2 Versuchspferden durchgeführten vergleichenden (HAES versus Ringerlaktat) hypervolaemischen Haemodilutionsstudie erlauben folgende vorläufigen Aussagen: HAES führt in einer Dosis von 10% des geschätzten Blutvolumens zu einem hochsignifikanten Abfall des PCV und zu einem signifikanten Abfall des Plasmaproteinspiegels; die Halbwertszeit wird aufgrund der Wirkung auf den PCV auf ca. 2 Stunden geschätzt. Es konnten keine Unverträglichkeitsreaktionen festgestellt werden. Weiterführende Untersuchungen sollen die günstigen Wirkungen von HAES erhärten. Nebst der Volumenwirkung soll vor allem die beim Menschen bewiesene Verbesserung der Mikrozirkulation durch HAES untersucht werden.

SCHLÜSSELWÖRTER: Pferd – Schock – Plasmaexpander – Kreislauf – Hämodilution

PRELIMINARY EXPERIENCE WITH A STARCH BASED PLASMA EXPANDER IN THE TREATMENT OF SHOCK IN HORSES

HAES Steril 10%^R is a colloidal plasma expander rarely used in veterinary medicine. In this study HAES was used in clinical cases for the treatment of shock and in a comparative hypervolemic hemodilution study (HAES versus lactated Ringer's solution) using two experimental horses. Injection of a HAES volume equivalent to 10% of estimated blood volume resulted in a highly significant drop in PCV and in a significant drop in total protein concentration. Half live of HAES was approximately two hours. No incompatibility reactions were observed. In man HAES improves microcirculation. Studies in progress may confirm a similar effect in the equine.

KEY-WORDS: horse - shock - plasmaexpander - circulation - hemodilution

EINLEITUNG

Unter Schock versteht man eine Dekompensation des peripheren Kreislaufes mit Mangeldurchblutung der terminalen kapillären Strombahn mit der Folge einer hypoxischen Gewebeschädigung. Die Ursachen sind vielfältig. Schockzustände werden beim Pferd am häufigsten in Zusammenhang mit dem Koliksyndrom diagnostiziert (Straub et al., 1978). Die meist sehr rasch auftretende hochgradige Hypovolämie, die Veränderung der Blutviskosität und die sie begleitenden Störungen der Mikrozirkulation und der Sauerstoffversorgung der Gewebe sind nicht selten die für die Prognose entscheidenden Parameter (Gerhards, 1983; Müller, 1977; Straub et. al., 1978). Die Wiederherstellung

physiologischer Kreislaufverhältnisse ist der erste, wichtigste und häufig schwierigste Schritt bei der Behandlung solcher Patienten. Zur erfolgreichen chirurgischen Behebung der Schockursache und für die dazu notwendige Allgemeinnarkose ist vorgängig eine möglichst vollständige und dauerhafte Verbesserung der Kreislaufsituation erforderlich (Byars, 1985).

Wie aus der Humanmedizin bekannt ist, eignen sich Plasmaexpander mit hohem Molekulargewicht, rasch eintretender Wirkung und möglichst langer Verweildauer im Kreislaufsystem am besten zur Schockbehandlung. Beim Pferd wurden nur wenige kontrollierte Studien der Schockbehandlung durchgeführt (Müller, 1977). Die Medikamentenauswahl sowie deren Dosierung erfolgte häufig empi-

risch. Es ist das Ziel dieser Mitteilung, aufgrund eigener, guter klinischer Erfahrungen auf die Vorteile eines für die Pferdemedizin neuen Präparates, einer 10%igen Lösung von «mittelmolekularer» Hydroxyäthylstärke (HAES Steril 10%, Fresenius AG, Stans) hinzuweisen.

TIERE, MATERIAL UND METHODEN

Seit Beginn 1988 haben wir die an der Veterinär-Medizinischen Pferdeklinik der Universität Zürich vorgestellten Schockpatienten mehrheitlich mit HAES Steril 10% behandelt. Diese Lösung enthält Hydroxyäthylstärke in einer Konzentration von 100 g/l in isotonischer Natriumchloridlösung und weist ein gewichtsgemitteltes Molekulargewicht Mw von 200 000 und einen Hydroxyäthylierungsgrad von 0,5 auf (10% HAES 200/0,5 Produktebeschreibung Firma Fresenius).

Bei neun Patienten wurde eine systematische Aufarbeitung der veränderten Parameter vorgenommen. Die Auswahl dieser Patienten erfolgte zufällig und hing vor allem von günstigen zeitlichen und personellen Gegebenheiten ab. Somit sind Schockursache, -grad und -dauer sowie der Zeitpunkt des Behandlungsbeginns mit HAES Steril 10%^R unterschiedlich. Die gemessenen Parameter sowie die verabreichte Menge des Plasmaexpanders waren jedoch standardisiert. Bei jedem Patienten wurde HAES Steril 10%^R in einer Dosis intravenös verabreicht, die 10% der geschätzten Blutmenge (8% des Körpergewichtes) entsprach, das heisst ca. 8 ml/kg Körpergewicht. Die Verabreichungsgeschwindigkeit betrug bei den Fällen 1-4 ungefähr 5 ml/kg/ Std., weil wir bis zu diesem Zeitpunkt passiv infundierten. Bei den Fällen 5–9 verwendeten wir eine Infusionspumpe (Schoch Elektronik, Regensdorf) zur schnelleren Infusion und erreichten eine Infusionsgeschwindigkeit von ungefähr 10 ml/kg/Std. In den entnommenen EDTA-Blutproben wurden PCV (Hämatokrit-Zentrifuge der Firma Hettich), Plasmaproteine (refraktometrisch) und bei drei Patienten die Thrombozytenzahlen (Coulter-Counter Contraves Analyser 80, Zürich) bestimmt. Die Verabreichungsdauer von HAES Steril 10% und die Messdauer der Blutparameter variierten von Patient zu Patient. Nebst HAES Steril 10%^R erhielten die Pferde je nach Aetiologie Präparate wie Ringerlaktatlösung, Antibiotika, Nicht-Steroide-Entzündungshemmer (NSAID), Glukokortikoide, Vitamin E, Selen und Heparin. Eine gewisse Beeinflussung der gemessenen Parameter durch diese Präparate ist möglich.

Aufgrund der vielversprechenden Resultate dieser klinischen Studie haben wir beschlossen, eine vergleichende

Untersuchung an zwei Versuchspferden durchzuführen. In Anlehnung an die in der Humanmedizin bei intermittierendem Hinken durchgeführte hypervolaemische Haemodilution (Kiesewetter und Jung, 1984; 1987) haben wir zwei Versuchspferden 5 bzw. 4 Liter HAES Steril 10% innert 90 (6 ml/kg/Std.) bzw. 60 (8 ml/kg/Std.) Minuten intravenös verabreicht. In regelmässigen Abständen wurden PVC, Erythrozytenzahl, Leukozytenzahl, Plasmaproteinspiegel, Blutgerinnung, Thrombozytenzahl, Herzfrequenz und Blutdruck (unblutig) bestimmt. Diese Parameter wurden an denselben 2 Pferden, nach einem behandlungsfreien Intervall von 30 Tagen, nach der Verabreichung einer gleichgrossen Menge Ringerlaktat bestimmt und mit jenen nach der HAES-Verabreichung verglichen.

RESULTATE

Die unterschiedlichen Ausgangsbedingungen bei den Patienten der klinischen Studie (Tab. 1) erfordern eine differenzierte Betrachtung der Resultate. Die wichtigsten Ergebnisse sind in Tabelle 2 sowie in den Abbildungen 1 und 2 für jeden einzelnen Patienten aufgeführt.

Wie aus den aufgeführten Zahlen hervorgeht, betrug der PCV-Abfall zwischen 7 und 34% des Ausgangswertes und war hochsignifikant. Die Abnahme des Plasmaproteingehaltes war im Verlauf und nach der HAES-Infusion geringgradiger. Ausser bei den Patienten 4 und 9 blieb die Abnahme der Plasmaproteine unter 10% des Ausgangswertes. Der gepaarte t-Test (Sachs, 1984) fiel für die PCV-Abnahme hochsignifikant (P < 0.01) und für die Plasmaprotein-Abnahme signifikant (P < 0.01) aus.

Die Resultate der durchgeführten Vergleichsstudie mit HAES Steril 10%^R und Ringerlaktat-Lösung an zwei gesunden Versuchspferden sind der Abbildung 3 zu entnehmen. Der tiefste PCV-Wert konnte jeweils unmittelbar am Ende der Infusion von HAES Steril 10%^R gemessen werden. Beim Pferd 2 betrug der PCV-Abfall 34,3% des Ausgangswertes, beim Pferd 1 28,5%. Nach der Infusion einer gleichen Menge Ringerlaktat konnte unmittelbar am Ende der Infusion ein PCV-Abfall von 15,1% bzw. 14,7% des Ausgangswertes gemessen werden.

Ein Wiederanstieg der PCV-Werte konnte 90 Minuten nach Ende der HAES-Infusion bzw. 60 und 150 Minuten nach der Ringerlaktatinfusion verzeichnet werden. Nach Ringerlaktatverabreichung wurde innert 240 bei Pferd 2 bzw. 60 Minuten bei Pferd 1 ein PCV-Wert gemessen, welcher über dem Ausgangswert lag. Nach der HAES-Infusion hingegen wurde der Ausgangs-PCV während der Messperiode von 410 Minuten nicht erreicht. Wie zu er-

SCHOCKBEHANDLUNG DES PFERDES MIT EINEM PLASMAEXPANDER AUF STÄRKEBASIS

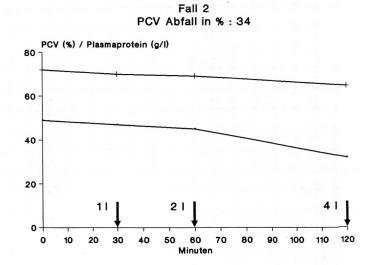
Tabelle 1: Übersicht über die Patienten

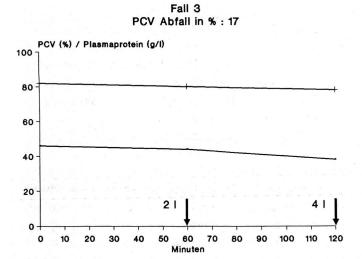
Fall Nr.	Diagnose	klinischer Zustand	PCV (%) PP (g/l) PCV = 53	
Signalement		Puls/min.		
1. Hengst, 18jährig	Dünndarmileus;	hochgradiger Schock		
Westfale, 560 kg	postoperative Typhlitis/Colitis	Puls: 88/min.	PP = 65	
2. Wallach, 10jährig	postoperative Salmonellose	hochgradiger Schock	PCV = 49	
Irland, 550 kg		Puls: 50/min.	PP = 72	
3. Wallach, 6jährig	paralytischer	hochgradiger Schock	PCV = 46	
Friesenpferd, 450 kg	Ileus postoperativ	Puls: 72/min.	PP = 82	
4. Wallach, 27jährig	Peritonitis nach	hochgradiger Schock	PCV = 40	
Island, 300 kg	multiplen Darmulcera	Puls: 80/min.	PP = 80	
5. Wallach, 6jährig	Dünndarmileus	mittelgradiger Schock	PCV = 55	
Quarter Horse, 500 kg		Puls: 60/min.	PP = 50	
6. Stute, 7jährig	Harnblasenruptur	hochgradiger Schock	PCV = 58	
XX, 520 kg		Puls: 74/min.	PP = 88	
7. Wallach, 15jährig	Kreuzschlag mit	hochgradiger Schock	PCV = 50	
Polen, 400 kg	Festliegen	Puls: 90/min.	PP = 54	
8. Wallach, 18jährig	Dünndarmsubileus	mittelgradiger Schock	PCV = 52	
Holland, 500 kg		Puls: 64/min.	PP = 91	
9. Wallach, 5jährig	Meterorismus coli	hochgradiger Schock	PCV = 52	
Dänemark, 520 kg	et caeci, Peritonitis	Puls: 68/min.	PP = 60	

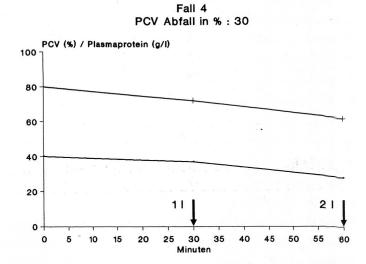
warten war, änderten sich die Erythrozytenzahlen pro μ l parallel zu den PCV-Werten. Sowohl nach der HAES- wie nach der Ringerlaktatinfusion sanken PCV-Werte und Erythrozytenzahlen unter die für das Halbblut-Pferd angegebenen unteren Grenzen der Normalwerte von 32 Vol% bzw. 6,0 Mio Ec/ μ l. Der Verlauf der Leukozytenzahl zeigte in allen vier Fallstudien einen initialen Abfall, welcher aber die untere Normalgrenze von 4500/ μ l nicht unterschritt (Arbeitswerte in der Laboratoriumsdiagnostik, 1976).

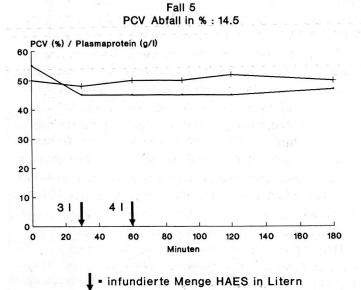
Interessant ist der Verlauf des refraktometrisch bestimmten Plasmaproteinspiegels. Nach HAES-Infusion erniedrigte sich der Plasmaproteinspiegel um 8% bzw. 13% des Ausgangswertes. 120 bzw. 90 Minuten nach Infusionsende zeigte die Plasmaproteinkurve einen Anstieg, welcher von einem zweiten langsamen Abfall gefolgt wurde. Nach Ringerlaktatinfusion konnte eine Erniedrigung des Plasmaproteinspiegels um 13% bzw. 11% beobachtet werden. Schon 60 Minuten nach Infusionsende zeichnete sich ein Wiederanstieg des Plasmaproteinspiegels ab, welcher nur von einem leichten Abfall gefolgt wurde. In beiden Studien blieben die gemessenen Plasmaproteinspiegel innerhalb des Normalbereiches von 60 bis 80 g/Liter (Arbeitswerte in der Laboratoriumsdiagnostik, 1976).

Die zusätzlich bestimmten Parameter (Pulsfrequenz, unblutiger systolischer und diastolischer Blutdruck, Thrombozytenzahlen, Gerinnungswerte Quick, PTT und TT) zeigten in keiner der Studien nennenswerte Schwankungen, insbesondere waren zwischen den HAES- und Ringerlaktat-Infusionslösungen keine Unterschiede feststellbar. Eine detaillierte oder graphische Wiedergabe dieser Werte erübrigt sich deshalb.


DISKUSSION UND SCHLUSSFOLGERUN-GEN


Die Resultate der klinischen Studie und des Haemodilutionsversuches zeigen, dass mit der verabreichten HAES-Menge eine signifikante Erniedrigung des PCV erzielt werden kann. Nach Persson (1975a) beträgt die physiologische Variation des PCV beim Pferd bis zu 15% bei Aufregung und bis zu 30% bei körperlicher Höchstleistung (Persson, 1975b). Diese für die Equiden einzigartige starke physiologische Variation des PCV ist auf die Rolle der Milz als Erythrozytenreservoir zurückzuführen. Angst, Stress usw. führen durch Erhöhung des Sympathikotonus zu einer Milzkontraktion und zur Ausschüttung von Erythrozyten in die Blutbahn. Ein solcher PCV-Anstieg ist bei Kolikpatienten nicht zu erwarten, da sie sich infolge ihrer


M. HERMANN, R. BRETSCHER, G. THIÉBAUD, D. MEISTER


Abb. 1: Fälle 1-6

Fall 1 PCV Abfall in %: 11 PCV (%) / Plasmaprotein (g/l) 4,5 1

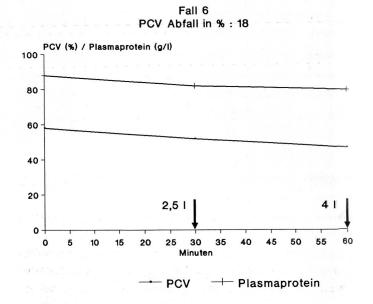


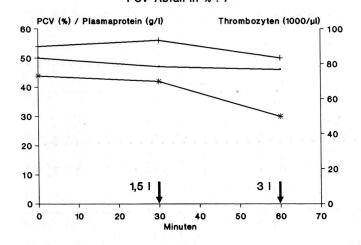
Tabelle 2: Einfluss der HAES-Infusion (Menge in l) auf PCV (%), Plasmaproteinspiegel (PP; g/l) und Thrombozytenzahl ($1000/\mu l$)

		Minuten nach Infusions- beginn					Infusions- menge			
Fall		0	30	60	90	120	180	ml/kg	ml/kg /Std.	
1	HAES			2		4,	5	8,0	4,0	
	PCV	53		51		47				
	PP	65		63		60				
2	HAES		1	2		4		7,5	3,5	
	PCV	49	47	45		32				
	PP	72	70	69		65				
3	HAES			2		4		9,0	4,5	
	PCV	46		44		38				
	PP	82		80		78				
4	HAES		1	2				6,5	6,5	
	PCV	40	37	28						
	PP	80	72	62						
5	HAES		3	4				8,0	8,0	
	PCV	55	45	45	45	45	47			
	PP	50	48	50	50	52	50			
6	HAES		2,5	4				8,0	8,0	
	PCV	58	52	47						
	PP	88	82	80						
7	HAES		1,5	3				7,5	7,5	
	PCV	50	47	46						
	PP	54	56	50						
	Throm-									
	boz.	73	70	50						
8	HAES		2,5	4				8,0	8,0	
	PCV	52	44	39	38					
	PP	91	84	81	80					
	Throm-									
	boz.	144	145	130						
	HAES		2	5				9,5	9,5	
	PCV	52	47	40		36	37			
	PP	60	56	56		48	48			
	Throm-									
	boz.	97	113	98		119	110			

Grundkrankheit bereits in einem adrenergen Zustand befinden.

Zur Interpretation der Resultate bei unseren Haemodilutionsstudien können Stress und Aufregung bei der Blutentnahme vernachlässigt werden, da sie sowohl bei der HAES-wie bei der Ringerlaktatstudie ähnlich waren. Aus der Haemodilutionsstudie geht hervor, dass mit einer HAES-Infusion der Plasmaproteingehalt weniger absinkt als mit Ringerlaktat. Wird der refraktometrisch bestimmte Plasmaproteingehalt als Mass für den onkotischen Druck betrachtet, so darf man dies als eine Stabilisierung des onkotischen Druckes durch die kolloidale HAES-Lösung ansehen.

Die in drei klinischen Fällen bestimmte Thrombozytenzahl im Verlauf der HAES-Behandlung erlaubt keine Schlussfolgerung bezüglich der Variation der Thrombozytenzahl und -funktion.


Trotz der raschen und hochsignifikanten Erniedrigung des PCV vermochte der Ausgang der Krankheit häufig nicht günstig beeinflusst zu werden, mussten doch 6 der 9 klinischen Patienten euthanasiert werden. Aus den Resultaten der klinischen Fälle 5 und 9 geht hervor, dass die Volumenwirkung von HAES Steril 10% mindestens 2 Stunden anhält. Erst 2 Stunden nach Infusionsende konnte bei diesen zwei Patienten ein leichter PCV-Wiederanstieg gemessen werden. Der Verlauf der Haemodilutionskurven deutet ebenfalls darauf hin, dass HAES beim Pferd mindestens 2 Stunden wirksam bleibt. Nach der Untersuchung von Müller (1977) über die Verweildauer von Physiogel (4%ige Gelatinelösung) beträgt die Halbwertszeit dieses Präparates beim Pferd 1,5 Std.

Beim Pferd kann die für den Menschen empfohlene Dosierung und Infusionsrate aus finanziellen und technischen Gründen (Katheterdurchmesser, Viskosität des Präparates) nicht ohne weiteres angewendet werden. Die von uns angewandte Dosierung liegt deshalb ca. 50% unter der beim Mensch empfohlenen Dosis von 20 ml/kg Körpergewicht (Produktebeschreibung Firma Fresenius). Wir wählten eine Infusionsrate bis 10 ml/kg Körpergewicht pro Std., beim Menschen wird die doppelte Infusionsgeschwindigkeit empfohlen (Produktebeschreibung Firma Fresenius). In einer beim Menschen durchgeführten Vergleichsstudie von Thompson (1979) zeichnete sich HAES Steril 10%^R durch einen hohen relativen Volumeneffekt von 130% aus. Im Vergleich dazu zeigte Dextran 40 10% eine bessere maximale Volumenwirkung (200%). Die Wirkung von HAES tritt jedoch schneller ein als diejenige von Dextran 40. Die durch Plasmavolumenmessung beim Menschen bestimmte Volumenhalbwertszeit beträgt 3-4 Stunden. Diese Zeit entspricht in der Humanmedizin einer mittleren Volumenhalbwertszeit. Längerfristige Volumenwirkungen (6-8 Std.) wurden nur mit Plasma Steril 6% gemessen.

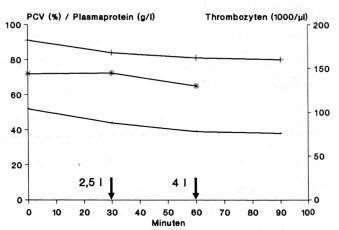
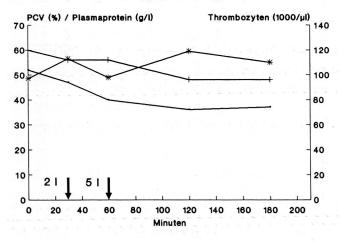

Untersuchungen beim Menschen (Kiesewetter und Jung, 1987; Landgraf et. al., 1981; Müller-Bühl et. al., 1982) mit In-

Abb. 2: Fälle 7-9


Fall 7 PCV Abfall in % : 7

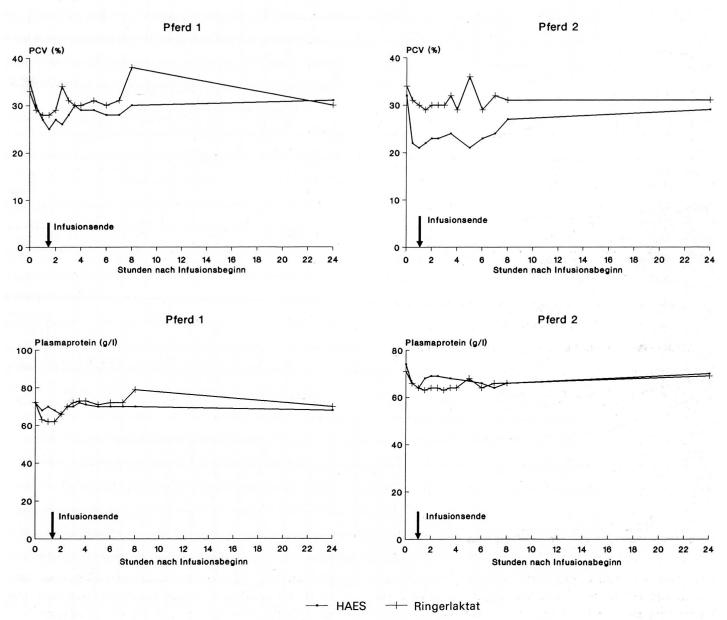
Fall 8 PCV Abfall in % : 24

Fall 9 PCV Abfall in % : 28

I • infundierte Menge HAES in Litern

-- PCV -- Plasmaprotein -- Thrombocyten

fusionen von HAES Steril 10%^R lassen positive rheologische und antithrombotische Wirkungen sowie eine Verbesserung des klinischen Zustandes von Patienten mit peripheren Durchblutungsstörungen erkennen. Weiter konnte gezeigt werden, dass HAES-Präparate im Vergleich mit Dextran-Präparaten weniger unerwünschte Nebenwirkungen (anaphylaktoide, kardiopulmonale, hämostatische und renale Nebenwirkungen) verursachen (Kiesewetter und Jung, 1987; Maurer und Berardinelli, 1968; Schöning 1980). Ähnliche vergleichende Untersuchungen beim Pferd sind uns nicht bekannt. Weder bei den hier vorgestellten klinischen Patienten (n = 9) sowie weiteren an der medizinischen Pferdeklinik mit HAES Steril 10%^R behandelten Pferden (n = 63) noch bei den beiden Versuchspfer-


den konnten wir in Zusammenhang mit der Verabreichung von HAES Steril 10%^R Nebenwirkungen feststellen. Die Verträglichkeit von HAES beim Pferd scheint auch nach wiederholter Verabreichung sehr gut zu sein. Beim Gebrauch von Plasmaexpandern auf Gelatine- oder Dextranbasis sind beim Pferd vereinzelte Unverträglichkeitsreaktionen beschrieben worden (Müller, 1977).

Die Verbesserung des Blutvolumens, der Kammerfüllungsdrucke, des Herzzeitvolumens, der Sauerstofftransportkapazität, des Sauerstoffverbrauches und der Organfunktionen wurde für Menschen mit Hypovolaemie- und Schockzuständen dokumentiert (Hankeln et. al., 1988; Lazrove et. al., 1980).

In einer prospektiven Studie soll die Wirkung des Präpa-

SCHOCKBEHANDLUNG DES PFERDES MIT EINEM PLASMAEXPANDER AUF STÄRKEBASIS

Abb. 3: Verlauf des PCV und der Plasmaproteinkonzentration nach HAES- und Ringerlaktatinfusion bei Pferd 1 (5 1) und Pferd 2 (4 1)

rates HAES Steril 10%^R beim Kolikpferd eingehender untersucht werden. In Anlehnung an die in der Humanmedizin durchgeführten Messungen werden dabei folgende zusätzlichen Parameter untersucht: Hämodynamik, Blutrheologie, Blutgerinnung, Sauerstofftransport und Säure-Basen-Haushalt.

LITERATUR

Arbeitswerte in der Laboratoriumsdiagnostik. Tierärztl. Prax. 4, 83-102 (1976). - Byars T. D. (1985): Intensive care

of the colic patient. Proceedings Second Equine Res. Symp, Atlanta, 28–32. — Gerhards H. (1983): Verbrauchskoagulopathie und Hyperfibrinolyse bei Pferden mit Kolik. Zbl. Vet. Med. A. 30, 373–385. — HAES Steril 10%, Produktbeschreibung der Firma Fresenius, Bad-Homburg v. d. H. — Hankeln K., Siebert-Spelmeyer C., Böhmert F., Beez M., Lanjewski P. (1988): Die Wirkung von kolloidalen Volumenersatzmitteln und Ringer-Laktat auf Hämodynamik und Sauerstoffverbrauch von Intensivpatienten. Infusionstherapie 15, 33–38, 1988. — Kiesewetter H., Jung F. (1984):

Hämorheologische Therapie bei peripherer arterieller Verschlusskrankheit. Fortschritte der Medizin 34, 921/943, 924/948. - Kiesewetter H., Jung F. (1987): Durchblutungsstörungen. Hämatokrit als Risikofaktor, Haemodilution als mögliche Therapie. Arzneimitteltherapie 5, 151–162. – Landgraf H., Ehrly A. M., Saeger-Lorenz K., Vogel V. (1981): Untersuchungen über den Einfluss mittelmolekularer HES auf die Fliesseigenschaften des Blutes gesunder Probanden. Infusionstherapie, 8, 200. – Lazrove S., Waxmann K., Shippy C., Shoemaker W. C. (1980): Die Wirkung von Albumin und HES-Infusionen auf Hämodynamik, Blutvolumen und Sauerstofftransport chirurgischer Intensivpatienten. Crit. Care Med. 8, 302. – Maurer P. H., Berardinelli B. (1968): Immunological Studies with HES. Transfusion 8, 265. – Müller M. (1977): Verweildauer und Verträglichkeit eines Gelatine-Präparates beim Pferd. Vet. Med. Diss., Bern. - Müller-Bühl U., Comberg H. U., Diehm C., Allenberg J., Mörl H. (1982): Hämodilutions-Therapie der arteriellen Verschlusskrankheit mit Hydroxyäthylstärke 200/0,5. München. Med. Wschrift 124, 241-243. - Persson S. B. G. (1975a): The Circulatory Significance of the Splenic Red Cell Pool. Proc. AAEP 303-311, Michigan. - Persson, S. B. G. (1975b): Blood Volume and Work Performance. Proc. AAEP 321-326, Michigan. - Sachs L.: (1984): Angewandte Statistik. Springer Verlag, Berlin, 6. Auflage. - Schöning B. (1980): Inzidenz pathergischer Nebenwirkungen von HES Allergologie 3, 369. – Straub R., Müller M., Gerber H. 1978): Der Schock beim Pferd. Schweiz. Arch. Tierheilk. 120, 488-499. - Thompson W. L. (1979): Coagulopathy of Dextran, HES and Albumin. Critical Care Med. 7, 188.

Premières expériences avec le traitement d'états de choc chez le cheval à l'aide d'un expanseur de plasma à base d'amidon

On présente une solution colloidale servant d'expanseur de plasma nouvelle en médecine vétérinaire, le HAES Steril 10%^R. Les premières expériences faites sur des patients en état de choc et les résultats obtenus lors d'une étude comparative d'hémodilution hypervolémique (HAES versus solution de Ringer) effectuée sur deux chevaux sains permettent les conclusions provisoires suivantes: HAES dosé à 10% du volume sanguin conduit à une diminution hautement significative de l'hématocrite et significative du taux de protéines plasmatiques; le temps de demi-vie comporte environ 2 heures; on n'a pu constater aucune réaction secondaire lors de l'application de HAES. Une étude en cours devrait permettre d'objectiver les avantages de HAES. En plus de l'action volumique on étudiera en particulier l'amélioration de la microcirculation sous l'influence de HAES connue chez l'homme.

Prime esperienze nella terapia dello shock nel cavallo con una soluzione espansiva a base di amido

Viene presentata una soluzione colloidale espansiva del plasma, l'HAES Steril 10%^R, fino ad ora raramente introdotta in medicina veterinaria. Le prime esperienze nell'uso dell'HAES fatte con pazienti in stato clinico di shock e i risultati di uno studio comparato condotto su 2 cavalli sani, dopo aver prodotto loro artificialmente un'emodiluzione ipervolemica (HAES versus Ringer di lattato), permettono le sequenti conclusioni provvisorie: HAES determina, con un dosaggio del 10% rispetto al volume sanguigno stimato, una diminuzione altamente significativa del PCV e significativa del tasso plasmaproteico; dopo averne asservato l'azione si ritiene che il tempo di dimezzamento si situi attorno alle 2 ore; nessuna reazione secondaria all'applicazione ha potuto essere constatata. Analisi in corso dovrebbero poter ancora meglio accertare i vantaggi dell'HAES. Inoltre accanto alla suddetta azione sul volume sanguigno verrà esaminato l'eventuale effetto migliorativo dell'-HAES sulla microcircolazione, già conosciuto nell'uomo.

Adresse: M. Hermann Veterinär-Medizinische Klinik Winterthurerstrasse 260 CH-8057 Zürich

Manuskripteingang: 12. Juni 1989

4. Klinischer Neurologiekurs in Bern

Kurs für praktizierende Tierärzte 20./21. April 1990 in Bern Thema: NEUROLOGISCHE UNTERSUCHUNGSTECHNIKEN

Reflexuntersuchung mit Lokalisation des Problems (anhand von Fallvorstellungen); Liquorpunktionstechnik und Liquoruntersuchung; Röntgentechnik, - wie macht man gute Röntgenaufnahmen von Kopf und Wirbelsäule unter Praxisbedingungen -; Was sind die Indikationen und Möglichkeiten der Elektrodiagnostik.

Kursgebühr: 300 SFr.

Anmeldeschluss: 1. März 1990

Anmeldung bei:

Berner Fachgruppe für Neurologie, Dr. C. Griot Institut für Tierneurologie

Bremgartenstrasse 109a, Postfach 2735

3001 Bern · Telefon 031 - 23 83 82