**Zeitschrift:** Schweizer Archiv für Tierheilkunde SAT : die Fachzeitschrift für

Tierärztinnen und Tierärzte = Archives Suisses de Médecine Vétérinaire

ASMV : la revue professionnelle des vétérinaires

Herausgeber: Gesellschaft Schweizer Tierärztinnen und Tierärzte

**Band:** 123 (1981)

**Artikel:** Druck- und Strömungsverhältnisse in den oberen Luftwegen des

Pferdes bei partiellen Obstruktionen

Autor: Speirs, V.C. / Tschudi, P.R. / Gerber, H.

**DOI:** https://doi.org/10.5169/seals-592274

# Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

## **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 16.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Aus der Klinik für Nutztiere und Pferde der Universität Bern (Direktor: Prof. Dr. H. Gerber)

# Druck- und Strömungsverhältnisse in den oberen Luftwegen des Pferdes bei partiellen Obstruktionen

von V. C. Speirs, P. R. Tschudi und H. Gerber<sup>1</sup>

Bei den Erkrankungen der oberen Luftwege des Pferdes spielen die partiellen Obstruktionen eine wichtige Rolle. Sie sind oft Ursache einer wesentlichen Leistungsverminderung von Rennpferden. Obschon für die Behandlung solcher Erkrankungen, wie die Hemiplegia laryngis, eine Vielzahl von operativen Methoden angewendet werden, sind nur wenige Arbeiten über die Wirkungen von partiellen Obstruktionen publiziert worden. Gillespie, Tyler und Eberley haben 1966 die Grösse der Widerstände in den oberen Luftwegen gemessen; Attenburrow hat 1971 die Atemgeräusche in der Trachea während der Bewegung der Pferde mittels Stethoskop und Telemetriegeräten registriert und quantifiziert; auch Robinson et al. haben 1975 die Widerstände in den oberen Luftwegen qualitativ und quantitativ untersucht.

In diesem Artikel werden die Resultate von experimentellen Obstruktionen der oberen Luftwege bei Pferden beschrieben und diskutiert.

# **Material und Methoden**

Für die Versuche standen uns 7 erwachsene Warmblutpferde zur Verfügung, fünf gesunde, eines mit einer Hemiplegia laryngis und eines mit einer chronischen Pharyngitis. Um zusätzliche Veränderungen der Atemwiderstände zu vermeiden, wurden keine Sedativa angewandt.

Zur Messung des intratrachealen Druckes wurde ein 12 cm langer Katheter mit Hilfe eines Trokars und eines Führungsdrahtes perkutan in die Trachea eingebracht. Mehrere seitliche Öffnungen an der Katheterspitze sollten einen Verschluss des Katheters durch den hochviskösen Trachealschleim verhindern. Mit einem 100 cm langen und 3 mm dicken Verbindungsstück wurde der Katheter an einen Druckwandler (Statham, P 23 Db) angeschlossen.

Eine den Pferdekopf nasal der Augen luftdicht umschliessende Atemmaske leitete den Luftstrom der Atmungsluft durch einen Fleisch-Flow-Transducer (Grösse Nr. 4), welcher mit einem Pneumotachographen verbunden das Pneumotachogramm (PTG, Atemstromstärkenkurve) und daraus durch einen elektronischen Integrator das Spirogramm (SPG, Atemzugsvolumenkurve) zu messen ermöglichte.

Die drei Grössen Intratrachealdruck, Pneumotachogramm und Spirogramm wurden mit einem Dreikanalschreiber (Cardiopan 573) simultan registriert. Die Apparate wurden vor, während und nach jedem Versuch kalibriert.

Jede Untersuchung wurde zuerst im Ruhezustand und dann während einer Hyperventilation, ausgelöst mit einer intravenösen Injektion von 60 mg Lobelin®2, durchgeführt. Referenzwerte wur-

<sup>&</sup>lt;sup>1</sup> Korr. Adresse: Postfach 2735, CH-3001 Bern

<sup>&</sup>lt;sup>2</sup> Lobelin® «Ingelheim», Boehringer Sohn, Ingelheim, Rhein, BRD. 10 mg Lobelinum hydrochloricum pro ml sterile Lösung.



Abb. 1 Ventil zur Vergrösserung des Atemwiderstandes. Vorderansicht (oben). Seitenansicht; Ventil zur Vergrösserung des inspiratorischen Widerstandes (Mitte). Seitenansicht; Ventil zur Vergrösserung des exspiratorischen Widerstandes (unten).

Tabelle I: Gemessene und berechnete Parameter

| Parameter                                      | Abkürzung           | Einheit |
|------------------------------------------------|---------------------|---------|
| Inspirationsdauer                              | Id                  | sec     |
| Exspirationsdauer                              | Ed                  | sec     |
| Maximale Atemstromstärke, inspiratorisch       | MIS                 | 1/sec   |
| Maximale Atemstromstärke, exspiratorisch       | MES                 | 1/sec   |
| Mittlere Atemstromstärke, inspiratorisch       | MitIS               | 1/sec   |
| Mittlere Atemstromstärke, exspiratorisch       | MitES               | 1/sec   |
| Maximaler Druck, inspiratorisch                | MID                 | mm Hg   |
| Maximaler Druck, exspiratorisch                | MED                 | mm Hg   |
| Atemzugvolumen, inspiratorisch                 | $AZV_i$             | 1       |
| Atemzugvolumen, exspiratorisch                 | AZV                 | 1       |
| Atemminutenvolumen                             | AMV.                | 1       |
| Atemfrequenz                                   | $\mathbf{AF}$       | n/min   |
| Atemvolumen pro 0.75 sec, inspiratorisch       | $IV_{0.75}$         | 1       |
| Atemvolumen pro 0.75 sec, exspiratorisch       | $EV_{0.75}^{0.75}$  | 1       |
| Atemzeitquotient (Ed/Id)                       | AZQ                 |         |
| Konstante Inspirationszeit nach ATTENBURROW    |                     |         |
| (= Gesamte Inspirationsdauer innerhalb 10 sec) | IZK                 | sec     |
| Maximaler Inspirationsdruck plus               |                     |         |
| maximaler Exspirationsdruck                    | $\Delta \mathbf{D}$ | mm Hg   |

| ^   |      |    |      |  |
|-----|------|----|------|--|
| ( h | 10t1 | an | ten  |  |
| v   | 1OU  | CU | LCII |  |

| MitES:                      | MitIS       | MID : MIS        |
|-----------------------------|-------------|------------------|
| MES:                        | MIS         | MED: MES         |
| $EV_{0.75}$ : $EV_{0.75}$ : | $IV_{0.75}$ | $MID : AZV_i$    |
| $EV_{0.75}$ :               | MES         | $MED : AZV_e$    |
| $IV_{0.75}$ :               | MIS         | $\Delta D$ : AMV |

den von den gesunden Pferden erhoben, während Werte mit erhöhtem Atemwiderstand von einem Pferd mit chronischer Pharyngitis resp. Hemiplegia laryngis als auch von gesunden Pferden mit experimenteller Obstruktion der Atemwege ermittelt wurden.

Zur Vergrösserung des inspiratorischen und exspiratorischen Atemwiderstandes wurde ein Dichtungsring mit einem innern Durchmesser von 2,3 cm in die Öffnung der Atemmaske eingesetzt. Ein umkehrbares Einwegventil (Abb. 1), ebenfalls in die Öffnung der Atemmaske einsetzbar, ermöglichte wahlweise die Vergrösserung entweder des exspiratorischen oder des inspiratorischen Widerstandes. Mit einem Rohbaumwollknäuel wurde, ebenfalls zur Erhöhung des in- und exspiratorischen Widerstandes, der eine Nasengang eines Pferdes verstopft.

Für den Vergleich der Experimente wurden von den in der Tabelle I aufgeführten Grössen die Mittelwerte aus fünf aufeinanderfolgenden Atemzügen berechnet.

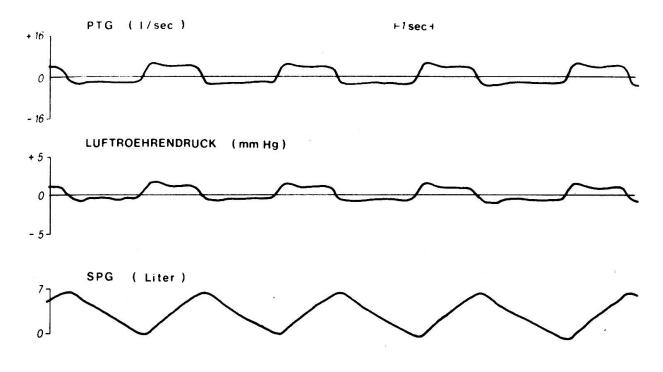
## Resultate

1. Wirkungen von Lobelin bei Pferden ohne Obstruktion der Atemwege.

Nach intravenöser Applikation von 60 mg Lobelin verstrich eine Latenzzeit von durchschnittlich 25,4 sec., bevor ein bis zwei unregelmässige Atemzüge, gefolgt von einer Serie von 10 bis 15 schnellen und tiefen Atemzyklen, auftraten. Vom Anstieg

der Atemfrequenz mit der Zunahme der Atemtiefe bis zur Normalisierung der Atmung dauerte es im Mittel 68,0 sec. Manchmal folgte der Hyperventilation eine kurze Apnoe. In der Abbildung 2 ist die Wirkung von Lobelin® auf das Pneumotachogramm, den Intratrachealdruck und das Spirogramm dargestellt. Mit diesen drei Grundgrössen lassen sich die Druck-Stromstärke-, Stromstärkevolumen-, und Druck-Volumen-Schleifen konstruieren (Abbildung 3). Die jeweils 4 Schleifen von drei verschiedenen Pferden sind einander sehr ähnlich in der Form, zeigen aber deutliche Unterschiede in der Grösse. Wie aus der Abbildung 3a ersichtlich, ergibt die Kombination von Atemstromstärke und Luftröhrendruck eine Hysteresisschleife; dies beobachteten wir bei allen Pferden. Eine Erklärung dafür ist in der unter Lobelineinfluss schlecht koordinierten Nüstern- und Kehlkopfknorpelbewegung von der Inspirationsstellung zur Exspirationsstellung zu suchen.

In der Abbildung 4 wurden die Stromstärke-Volumen-, resp. die Luftröhren-druck-Volumen-Schleifen, von fünf aufeinanderfolgenden Atemzügen aufgezeichnet. Die Umrisse der Schleifen sind annähernd gleich, jedoch variiert ihre Grösse.


2. Vergleich der Resultate von Pferden mit und ohne Obstruktion der Atemwege in Ruheatmung.

Während der Ruheatmung konnten keine Unterschiede zwischen den Resultaten der Pferde mit und denjenigen der Pferde ohne Obstruktion der Atemwege gesehen werden. Die Resultate sind in der Tabelle II zusammengefasst.

3. Vergleich der Resultate von Pferden mit und ohne Obstruktion der Atemwege unter dem Einfluss von Lobelin.

Die nach der Lobelininjektion erhaltenen Ergebnisse sind gesamthaft in der Tabelle III und Resultate, welche mehr als zweimal die Standardabweichung vom Mittelwert der Pferde ohne Obstruktion entfernt liegen, in der Tabelle IV aufgelistet. Lobelin bewirkt eine Erhöhung der Atemfrequenz (AF) und des Atemminutenvolumens (AMV) und eine Verkürzung der In- und Exspirationsdauer (Id, Ed). Der Atemzeitquotient (Ed: Id) ist meist kleiner als 1, was mit den Ergebnissen von Gretner (1975) übereinstimmt. Verbunden mit dem Anstieg der Atemfrequenz findet man einen allgemeinen Anstieg der verschiedenen Druckdifferenzen, Stromstärken und Volumina. Dass das exspiratorische Atemzugvolumen grösser ist als das inspiratorische lässt sich damit erklären, dass die inspirierte Luft erwärmt und mit Wasserdampf gesättigt wird (Fleisch, 1956). Bei eingehender Betrachtung der Tabelle IV fällt auf, dass der eine oder andere Parameter bei derselben Obstruktionsart sowohl grösser als  $\bar{x} + 2s$ als auch kleiner als  $\bar{x}$  – 2s werden kann (zum Beispiel maximale exspiratorische Stromstärke (MES) oder inspiratorisches Volumen innerhalb 0,75 sec. (IV 0,75). Die Ursache für solche widersprüchlichen Resultate liegt darin, dass die Messungen unter dem Einfluss von Lobelin noch nicht bei maximaler Atemtiefe stattfanden und die Pferde das Respirationsvolumen, die Atemstromstärke sowie den Druck willkürlich verändern konnten.

Die Druck-Stromstärke-, Stromstärke-Volumen- und Druck-Volumen-Schleifen sind wenig aussagekräftig. Einzig die Resultate der Pferde mit Obstruktionen in der Nasenhöhle und desjenigen mit Kehlkopfparalyse lassen auf eine Stromstärkenbegrenzung schliessen.



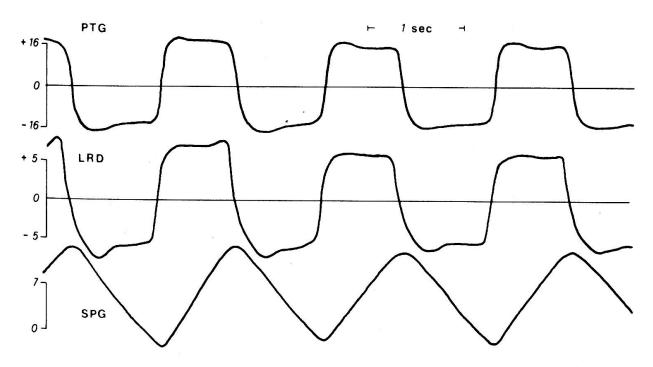



Abb. 2 Spirogramm (SPG), Pneumotachogramm (PTG) und Luftröhrendruck (LRD) vom Pferd Nr. 2 ohne Obstruktion der Luftwege vor (oben) und nach (unten) der intravenösen Injektion von 60 mg Lobelin.

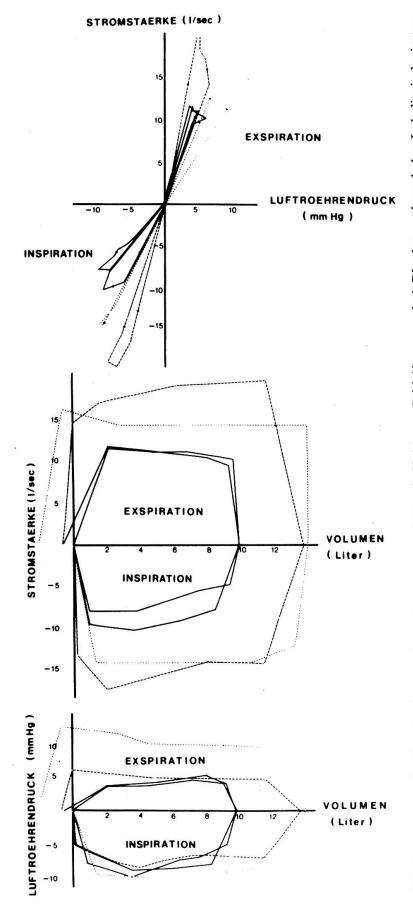
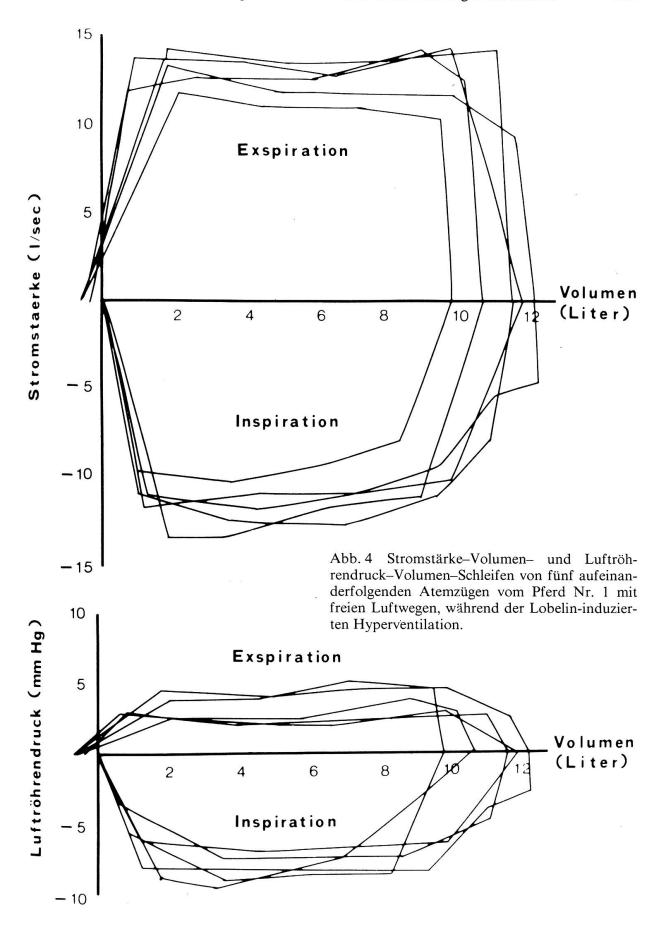




Abb. 3 Stromstärke-Druck-, Stromstärke-Volumen- und Druck-Volumen-Schleifen von drei Pferden während der Lobelin-induzierten Hyperventilation.

Pferd Nr. 1 (zwei Registrierungen)



| Tabelle II (Legende s. S. 302) | (Legen | de s. S. | . 302)                    |            | Inspiration | ation                                           |      |                                           |                                       |                    | Exspiration | ation |            |                                     |                    |                                     |       |                           |
|--------------------------------|--------|----------|---------------------------|------------|-------------|-------------------------------------------------|------|-------------------------------------------|---------------------------------------|--------------------|-------------|-------|------------|-------------------------------------|--------------------|-------------------------------------|-------|---------------------------|
| Pferd                          | Id     | Ed       | $(Id + Ed) \frac{Ed}{Id}$ | d) Ed      | AF          | MID                                             | MIS  | MitIs                                     | AZV <sub>i</sub>                      | IV <sub>0.75</sub> | MED         | MES   | MitES AZVe |                                     | EV <sub>0.75</sub> | $\nabla D$                          | AMV   | IZK                       |
| ■ 9                            |        | 0.8      | 1.9                       | 8.0        | 31.7        | 11.4                                            | 16.1 | 12.6                                      | 10.2                                  | 8.1                | 12.3        | 12.7  | 10.3       | 11.0                                | 10.0               | 23.7                                | 325.4 | 5.6                       |
| 2 •                            | 1.5    | 1.1      | 2.6                       | 0.7        | 23.1        | 6.6                                             | 9.4  | 8.3                                       | 12.6                                  | 7.0                | 15.1        | 13.0  | 11.3       | 13.0                                | 9.6                | 25.0                                | 390.8 | 5.8                       |
| 1 △                            | 1.0    | 6.0      | 1.9                       | 6.0        | 31.6        | 9.2                                             | 8.2  | 8.2                                       | 7.0                                   | 5.2                | 4.3         | 9.4   | 9.4        | 7.1                                 | 6.3                | 13.5                                | 221.0 | 5.2                       |
| 1 △                            | 8.0    | 8.0      | 1.6                       | 1.0        | 36.6        | 8.9                                             | 10.2 | 10.2                                      | 7.7                                   | 7.0                | 2.5         | 11.4  | 8.6        | 8.4                                 | 7.1                | 11.5                                | 281.7 | 5.0                       |
| 1 △                            | 0.7    | 9.0      | 1.3                       | 8.0        | 46.1        | 10.0                                            | 18.1 | 17.3                                      | 12.9                                  | 12.9               | 1           | 22.0  | 21.0       | 12.9                                | 12.9               | ı                                   | 595.3 | 9.9                       |
| 1.                             | 8.0    | 0.8      | 1.7                       | 1.0        | 36.0        | 1                                               | 16.8 | 15.5                                      | 12.2                                  | 10.7               | E           | 15.6  | 14.3       | 12.8                                | 11.9               | i.                                  | 436.9 | 5.0                       |
| 4 \( \tag{4}                   | 1.0    | 6.0      | 1.9                       | 6.0        | 32.9        | 15.9                                            | 14.3 | 14.3                                      | 15.3                                  | 11.6               | 19.0        | 20.8  | 18.8       | 16.5                                |                    | 34.9                                | 502.2 | 5.2                       |
| 7                              | 8.0    | 0.8      | 1.6                       | 1.1        | 37.5        | 12.5                                            | 17.5 | 17.1                                      | 17.1                                  | 7.7                | 10.7        | 20.4  | 9.61       | 17.5                                | 8.9                | 23.3                                | 643.1 | 5.3                       |
| 7                              | 1.0    | 6.0      | 1.9                       | 1.0        | 31.2        | 10.9                                            | 13.9 | 12.6                                      | 18.4                                  | 4.7                | 8.8         | 16.3  | 15.5       | 18.4                                |                    | 19.7                                | 574.4 | 5.1                       |
| 5 △                            | Ξ      | 0.7      | 1.9                       | 0.7        | 32.2        | 15.8                                            | 16.7 | 13.8                                      | 13.6                                  | 8.7                | 11.4        | 20.0  | 19.0       | 13.0                                | 12.6               | 27.2                                | 438.0 | 5.9                       |
| ×                              | Ξ      | 1.0      | 2.1                       | 6.0        | 28.9        | 8.8                                             | 13.3 | 12.1                                      | 12.2                                  | 9.2                | 9.9         | 14.5  | 13.5       | 13.1                                | 10.1               | 15.3                                | 350.0 | 55.2                      |
| S                              | 0.1    | 0.2      | 0.3                       | 0.1        | 3.0         | 9.0                                             | 2.5  | 3.0                                       | 2.1                                   | 1.3                | 3.4         | 2.1   | 2.3        | 3.0                                 | 2.1                | 3.8                                 | 42.4  | 4.1                       |
|                                |        |          | MitES<br>MitIS            | MES<br>MIS | ۔۔ای        | $\frac{\mathrm{EV}_{0.75}}{\mathrm{IV}_{0.75}}$ | EV   | $\frac{\mathrm{EV}_{0.75}}{\mathrm{MES}}$ | $\frac{\text{IV}_{0.75}}{\text{MIS}}$ | ı,                 | MID<br>MIS  | 2 2   | MED<br>MES | $\frac{\text{MID}}{\text{AZV}_{i}}$ | $\frac{D}{N_i}$    | $\frac{\text{MED}}{\text{AZV}_{e}}$ | s     | $\frac{\triangle D}{AMV}$ |
| ■ 9                            | 8      |          | 8.0                       | 0.8        |             | 1.2                                             | 0.8  | 20.00                                     | 0.5                                   |                    | 0.7         | 1     | 0          | 1.1                                 |                    | 1.1                                 | )     | 70.0                      |
| 2 •                            |        |          | 1.4                       | 1.4        |             | 1.4                                             | 0.7  |                                           | 0.7                                   |                    | 1.1         | _     | 1.2        | 0.8                                 |                    | 1.2                                 | _     | 0.09                      |
| 1 △                            |        |          | 1.1                       | 1.1        |             | 1.2                                             | 0.7  | - 5                                       | 9.0                                   |                    | 1.1         | Ö     | 5          | 1.3                                 |                    | 9.0                                 | 0     | 90'                       |
| 1 △                            |        |          | 1.0                       | 1.1        |             | 1.0                                             | 9.0  |                                           | 0.7                                   |                    | 6.0         | Ö     | 7          | 1.1                                 |                    | 0.3                                 | 0     | .04                       |
| $1 \triangle$                  |        |          | 1.2                       | 1.2        |             | 1.0                                             | 9.0  | V-2"                                      | 0.7                                   |                    | 0.5         | 1     |            | 0.8                                 |                    | I                                   |       | ·                         |
| <b>1</b> ►                     |        |          | 6.0                       | 6.0        |             | 1.1                                             | 0.8  | 22<br>CD824                               | 9.0                                   |                    | ı           | 1     |            | ļ                                   |                    | I                                   | ,     |                           |
| 4 ∇                            |        |          | 1.3                       | 1.5        |             | 1.2                                             | 0.7  |                                           | 8.0                                   |                    | 1.1         | 0     | 6.0        | 1.0                                 |                    | 1.1                                 | )     | 90.0                      |
| 7                              |        |          | 1.2                       | 1.2        |             | 1.7                                             | 0.5  | 10                                        | 0.3                                   |                    | 8.0         | 0     | 5          | 9.0                                 |                    | 0.5                                 | 0     | .03                       |
| 7                              | •      |          | Π.                        | 1.2        |             | 1.2                                             | 0.4  |                                           | 0.4                                   |                    | 0.7         | 0.5   | 5          | 0.7                                 |                    | 9.0                                 | 0     | 70.                       |
| 2 ▷                            |        |          | 1.4                       | 1.2        |             | 1.4                                             | 9.0  |                                           | 0.5                                   |                    | 6.0         | 0     | 9          | 1.2                                 |                    | 0.8                                 |       | 90.                       |
| ×                              |        |          | 1.1                       | 1.1        |             | 1.0                                             | 0.7  |                                           | 0.7                                   |                    | 0.7         | 0.4   | 4          | 0.7                                 |                    | 0.5                                 | 0     | 0.04                      |
| S                              |        |          | 0.2                       | 0.1        |             | 0.1                                             | 0.0  | 2                                         | 0.1                                   |                    | 0.1         | 0.    | 2          | 0.1                                 |                    | 0.1                                 | 0     | .01                       |

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tabelle III (Legende s. S. 302) | (Leger | nde s. S | . 302)         |     | Inspira | piration                                        |     |              |                                       |                    | Exspiration | ation |            |                         |                    |                         |      |                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------|----------|----------------|-----|---------|-------------------------------------------------|-----|--------------|---------------------------------------|--------------------|-------------|-------|------------|-------------------------|--------------------|-------------------------|------|------------------------|
| ■ 2.6 2.5 5.1 1.0 11.9 1.4 2.7  1.1 2.0 4.2 0.9 14.3 3.7 3.5  1.1 2.0 4.2 0.9 14.3 3.7 3.5  1.1 1.8 2.4 4.2 1.3 14.2 3.5 2.0  2.4 3.0 5.4 1.1 13.8 1.1 2.3  2.1 2.3 4.4 1.1 13.8 1.1 2.3  2.1 2.3 4.4 1.1 13.8 1.1 2.3  2.0 3.1 5.0 1.6 11.9 1.8 4.3  2.1 2.2 6 4.8 1.2 12.5 2.9 6.1  2.2 2.6 4.8 1.2 12.5 2.9 6.1  2.1 2.5 4.6 1.1 17.4 3.0 4.1  1.1 1.4 2.5 0.2 11.4 1.9 1.7  2.1 2.5 4.6 1.1 17.4 3.0 4.1  3.1 1.4 2.5 0.2 11.4 1.9 1.7  2.1 2.5 4.6 1.1 1.4 0.9 0.7  2.1 2.5 2.0 1.1 0.9 1.2 0.5  2.1 2.0 0.5 1.2 0.5  2.1 2.0 0.5 1.2 0.5  2.1 1.0 1.3 1.8 0.6  2.1 1.0 1.3 1.8 0.6  2.1 1.1 1.1 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pferd                           | PI     | Ed       | (Id + Ed       |     | AF      | MID                                             | MIS | MitIs        | $AZV_i$                               | IV <sub>0.75</sub> | MED         | MES   | MitES      | MitES AZVe              | IV <sub>0.75</sub> | ΔD                      | AMV  | IZK                    |
| ◆       2.1       2.0       4.2       0.9       14.3       3.7       3.5         △       1.6       2.5       4.1       1.6       14.5       2.5       1.6         △       1.8       2.4       4.2       1.3       14.2       3.5       2.0         △       2.4       3.0       5.4       1.1       13.8       1.1       2.3         △       1.5       1.9       3.3       1.2       19.0       3.3       2.5       2.0         ○       2.0       3.1       5.0       1.6       11.9       1.8       4.3         ○       2.2       2.6       4.8       1.2       12.5       2.9       6.1         ○       2.2       2.6       4.8       1.2       10.8       1.7       3.0         ○       2.4       3.1       5.5       1.3       10.8       1.7       3.0         ○       2.4       3.1       5.5       1.3       10.8       1.7       3.0         ○       2.4       3.1       5.5       1.3       10.8       1.7       3.0         ○       2.4       3.1       5.5       1.1       1.9       1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ■ 9                             | 2.6    | 2.5      | 5.1            | 1.0 | 11.9    | 1.4                                             | 2.7 | 1.6          | 4.3                                   | 1.2                | 2.2         | 3.0   | 1.6        | 4.3                     | 1.6                | 3.6                     | 50.5 | 5.1                    |
| <ul> <li>□ 1.6 2.5 4.1 1.6 14.5 2.5 1.6</li> <li>□ 1.8 2.4 4.2 1.3 14.2 3.5 2.0</li> <li>□ 2.4 3.0 5.4 1.3 11.1 1.1 2.3</li> <li>□ 2.4 3.0 5.4 1.3 11.1 1.1 2.5</li> <li>□ 2.1 2.3 4.4 1.1 13.8 1.1 2.5</li> <li>□ 2.0 3.1 5.0 1.6 11.9 1.8 4.3</li> <li>□ 2.2 2.6 4.8 1.2 12.5 2.9 6.1</li> <li>□ 2.2 2.6 4.8 1.2 12.5 2.9 6.1</li> <li>□ 2.4 3.1 5.5 1.3 10.8 1.7 3.0</li> <li>□ 1.1 1.4 2.5 0.2 11.4 1.9 1.7</li> <li>□ 1.1 1.4 2.5 0.2 11.4 1.9 1.7</li> <li>□ 1.1 1.4 2.5 0.2 11.4 1.9 1.7</li> <li>□ 1.0 1.1 0.9 1.2 0.5</li> <li>□ 1.1 0.9 1.2 0.0</li> <li>□ 0.5 1.2 2.0 1.1 0.6</li> <li>□ 0.5 1.2 2.0 1.1 0.6</li> <li>□ 0.5 1.2 1.3 1.8 0.6</li> <li>□ 0.8 1.0 1.8 0.7</li> <li>□ 0.1 1.1 1.4 1.5 1.3 0.5</li> <li>□ 0.1 1.1 1.4 1.4 1.5 1.5 0.5</li> <li>□ 0.1 1.1 1.4 1.4 1.4 1.5 0.5</li> <li>□ 0.1 1.1 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 •                             | 2.1    | 2.0      | 4.2            | 6.0 | 14.3    | 3.7                                             | 3.5 | 2.7          | 6.1                                   | 1.8                | 4.9         | 3.3   | 3.0        | 6.3                     | 2.0                | 9.8                     | 87.7 | 5.1                    |
| <ul> <li>L.8</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 △                             | 1.6    | 2.5      | 4.1            | 1.6 | 14.5    | 2.5                                             | 1.6 | 1.6          | 4.1                                   | 1.8                | 2.0         | 3.2   | 2.5        | 4.4                     | 2.0                | 4.6                     | 58.9 | 3.8                    |
| △       2.4       3.0       5.4       1.3       11.1       1.1       2.3         △       2.1       2.3       4.4       1.1       13.8       1.1       2.5         ○       1.5       1.9       3.3       1.2       19.0       3.3       2.5         ○       2.0       3.1       5.0       1.6       1.9       1.8       4.3         ○       2.2       2.6       4.8       1.2       12.5       2.9       6.1         ○       2.4       3.1       5.5       1.3       10.8       1.7       3.0         ○       2.4       3.1       5.5       1.3       10.8       1.7       3.0         ○       2.4       3.1       5.5       1.3       10.8       1.7       3.0         ○       2.1       2.5       4.6       1.1       1.4       1.9       1.7       3.0         ○       3.1       5.5       1.3       10.8       1.7       3.0       1.7         ○       1.1       1.4       1.9       1.7       3.0       1.2       0.7         ○       1.2       0.5       1.2       0.7       1.2       0.5       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 △                             | 1.8    | 2.4      | 4.2            | 1.3 | 14.2    | 3.5                                             | 2.0 | 2.0          | 4.5                                   | 1.7                | 2.8         | 4.1   | 2.4        | 4.1                     | 2.0                | 6.3                     | 63.8 | 4.2                    |
| A       2.1       2.3       4.4       1.1       13.8       1.1       2.5         □       2.0       3.1       5.0       1.6       19.0       3.3       2.5         □       2.0       3.1       5.0       1.6       11.9       1.8       4.3         □       2.2       2.6       4.8       1.2       12.5       2.9       6.1         □       2.2       2.6       4.8       1.2       12.5       2.9       6.1         □       2.1       2.5       1.3       10.8       1.7       3.0         □       2.1       2.5       1.4       1.9       1.7       3.0         MitES       MES       EV <sub>0.25</sub> EV       FV       1.7       1.7         □       1.1       1.4       1.3       1.7       0.5       0.7       0.5       0.7       0.5       0.7       0.5       0.7       0.5       0.7       0.5       0.7       0.5       0.7       0.5       0.7       0.5       0.7       0.5       0.7       0.5       0.7       0.5       0.7       0.5       0.7       0.5       0.7       0.5       0.7       0.5       0.7       0.5 </td <td>1 △</td> <td>2.4</td> <td>3.0</td> <td>5.4</td> <td>1.3</td> <td>11.1</td> <td>1.1</td> <td>2.3</td> <td>2.5</td> <td>5.9</td> <td>1.5</td> <td>8.0</td> <td>2.9</td> <td>1.3</td> <td>5.8</td> <td>2.0</td> <td>1.9</td> <td>65.2</td> <td>4.4</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 △                             | 2.4    | 3.0      | 5.4            | 1.3 | 11.1    | 1.1                                             | 2.3 | 2.5          | 5.9                                   | 1.5                | 8.0         | 2.9   | 1.3        | 5.8                     | 2.0                | 1.9                     | 65.2 | 4.4                    |
| □       2.0       3.1       5.0       1.5       19.0       3.3       2.5         □       2.0       3.1       5.0       1.6       11.9       1.8       4.3         □       2.2       2.6       4.8       1.2       12.5       2.9       6.1         □       2.2       2.4       3.1       5.5       1.3       10.8       1.7       3.0         2.1       2.5       4.6       1.1       17.4       3.0       4.1         1.1       1.4       2.5       0.2       11.4       1.9       1.7         MittS       MittS       MittS       EV <sub>0.75</sub> EV <sub>0.75</sub> EV <sub>0.75</sub> MittS       MittS       MittS       EV <sub>0.75</sub> EV <sub>0.75</sub> EV <sub>0.75</sub> 1.1       1.9       1.1       1.3       0.5       0.7         1.2       2.0       1.1       0.9       1.2       0.7       0.5         1.2       2.0       1.2       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5 <t< td=""><td>1 ▲</td><td>2.1</td><td>2.3</td><td>4.4</td><td>1:1</td><td>13.8</td><td>1.1</td><td>2.5</td><td>2.0</td><td>4.6</td><td>1.1</td><td>1.1</td><td>3.4</td><td>2.0</td><td>4.6</td><td>2.0</td><td>2.2</td><td>63.3</td><td>4.7</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 ▲                             | 2.1    | 2.3      | 4.4            | 1:1 | 13.8    | 1.1                                             | 2.5 | 2.0          | 4.6                                   | 1.1                | 1.1         | 3.4   | 2.0        | 4.6                     | 2.0                | 2.2                     | 63.3 | 4.7                    |
| □ 2.0 3.1 5.0 1.6 11.9 1.8 4.3 □ 2.2 2.6 4.8 1.2 12.5 2.9 6.1 □ 2.1 2.5 4.6 1.1 17.4 3.0 4.1 □ 1.1 1.4 2.5 0.2 11.4 1.9 1.7 □ 1.1 1.4 2.5 0.2 11.4 1.9 1.7  MitES MES EV <sub>0.75</sub> EV MitIS O.9 1.2 0.7 □ 1.0 1.1 0.9 1.2 0.7 □ 1.1 0.9 1.2 0.7 □ 1.2 2.0 1.1 0.6 □ 0.5 1.2 2.0 1.1 0.6 □ 0.5 1.2 2.0 1.1 0.6 □ 0.5 1.2 0.05 □ 0.5 1.2 0.05 □ 0.6 1.1 0.1 1.3 0.5 □ 0.8 1.0 1.8 0.7 □ 0.1 0.3 1.4 1.2 □ 0.2 0.1 1.1 1.3 0.5 □ 0.3 1.4 1.2 0.5 □ 0.4 0.1 1.1 1.4 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 \( \tag{4}                    | 1.5    | 1.9      | 3.3            | 1.2 | 19.0    | 3.3                                             | 2.5 | 2.2          | 3.7                                   | 1.4                | 3.2         | 3.2   | 2.7        | 4.2                     | 1.7                | 6.5                     | 70.1 | 4.4                    |
| □ 2.2 2.6 4.8 1.2 12.5 2.9 6.1  2.1 2.5 4.6 1.1 17.4 3.0 4.1  1.1 1.4 2.5 0.2 11.4 1.9 1.7  MitES MES EV <sub>0.75</sub> EV <sub>0.75</sub> ME  □ 1.0 1.1 0.9 1.2 0.7  □ 1.1 0.9 1.2 0.7  □ 1.2 2.0 1.1 0.6  □ 0.5 1.2 2.0 1.1 0.6  □ 1.2 2.0 1.1 0.6  □ 0.5 1.2 0.5  □ 0.5 1.2 0.5  □ 0.5 1.2 0.5  □ 0.5 1.2 0.5  □ 0.5 1.2 0.5  □ 0.5 1.2 0.5  □ 0.5 1.2 0.5  □ 0.5 1.2 0.5  □ 0.5 1.2 0.5  □ 0.5 1.2 0.5  □ 0.7 0.8 1.0 1.8 0.7  □ 0.1 0.3 1.4 1.2  □ 0.2 0.7 0.4 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                               | 2.0    | 3.1      | 5.0            | 1.6 | 11.9    | 1.8                                             | 4.3 | 3.0          | 9.9                                   | 1.6                | 2.3         | 4.1   | 2.4        | 0.9                     | 2.8                | 4.1                     | 66.3 | 3.9                    |
| 2.1 2.5 4.6 1.1 17.4 3.0 4.1  2.1 2.5 4.6 1.1 17.4 3.0 4.1  1.1 1.4 2.5 0.2 11.4 1.9 1.7  MitES MES EV <sub>0.75</sub> EV <sub>0.75</sub> EV <sub>0.75</sub> MitIS 0.9 1.2 0.7  Δ 1.1 0.9 1.2 0.7  Δ 0.5 1.2 2.0 1.1 0.6  Δ 0.5 1.2 2.0 1.2 0.5  Δ 0.5 1.2 2.0 1.2 0.5  Δ 0.5 1.2 0.05  Δ 0.6 1.1 0.3 1.8 0.6  Δ 0.8 1.0 1.8 0.7  Δ 0.1 0.3 1.4 1.1  Δ 0.1 1.4 1.4 0.6  Δ 0.2 0.7 0.4 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                               | 2.2    | 2.6      | 4.8            | 1.2 | 12.5    | 2.9                                             | 6.1 | 5.1          | 6.1                                   | 1.7                | 2.2         | 2.0   | 8.0        | 8.9                     | 2.4                | 5.1                     | 77.0 | 4.6                    |
| 2.1       2.5       4.6       1.1       17.4       3.0       4.1         1.1       1.4       2.5       0.2       11.4       1.9       1.7         I.1       1.4       2.5       0.2       11.4       1.9       1.7         MittS       MES       EV <sub>0.75</sub> /MittS       EV       EV         MittS       MittIS       MittIS       EV       MittIS       MittIS       MittIS       MIT         D       1.0       1.1       0.9       1.2       0.7       0.7       0.7       0.5       0.7       0.5       0.7       0.5       0.7       0.5       0.7       0.5       0.7       0.5       0.7       0.5       0.7       0.5       0.7       0.5       0.7       0.5       0.7       0.7       0.4       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1       0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 △                             | 2.4    | 3.1      | 5.5            | 1.3 | 10.8    | 1.7                                             | 3.0 | 2.5          | 4.6                                   | 1.3                | 2.3         | 3.2   | 1.4        | 4.5                     | 1.6                | 4.0                     | 50.1 | 4.3                    |
| MitES MES EV <sub>0.75</sub> EV <sub>0.75</sub> EV <sub>0.75</sub> MitIS MitIS IV <sub>0.75</sub> MES EV <sub>0.75</sub> EV <sub>0.75</sub> MES EV <sub>0.75</sub> E | ×                               | 2.1    | 2.5      | 4.6            | 1.1 | 17.4    | 3.0                                             | 4.1 | 2.7          | 5.2                                   | 1.8                | 2.1         | 4.1   | 2.8        | 5.0                     | 2.4                | 5.2                     | 86.2 | 4.7                    |
| MES EV <sub>0.25</sub> 1.1 1.3  0.9 1.2  2.0 1.1  2.0 1.1  2.0 1.2  1.2 1.3  1.3 1.8  1.3 1.8  1.3 1.8  1.4 1.4  0.7 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S                               | 1.1    | 1.4      | 2.5            | 0.2 | 11.4    | 1.9                                             | 1.7 | 1.6          | 8.0                                   | 1:1                | 0.2         | 1.2   | 1.4        | 6.0                     | 1.1                | 1.9                     | 49.1 | 0.5                    |
| 1.1 1.3<br>0.9 1.2<br>2.0 1.1<br>2.0 1.2<br>1.2 1.3<br>1.3 1.8<br>1.3 1.2<br>1.0 1.8<br>0.3 1.4<br>1.1 1.3<br>1.4 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |        |          | MitES<br>MitIS | ME  | S       | $\frac{\mathrm{EV}_{0.75}}{\mathrm{IV}_{0.75}}$ | EV  | 7.0.75<br>ES | $\frac{\text{IV}_{0.75}}{\text{MIS}}$ | امر                | MID<br>MIS  | K K   | MED<br>MES | MID<br>AZV <sub>i</sub> |                    | MED<br>AZV <sub>e</sub> |      | $\frac{\Delta D}{AMV}$ |
| 0.9 1.2 2.0 1.1 2.0 1.2 1.3 1.3 1.4 1.4 1.4 0.7 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ■ 9                             |        |          | 1.0            | 1:1 |         | 1.3                                             | 0.5 |              | 0.5                                   |                    | 0.5         | 0     | 1.         | 0.3                     |                    | 0.5                     |      | 0.07                   |
| 2.0 1.1<br>2.0 1.2<br>1.2 1.3<br>1.3 1.8<br>1.0 1.8<br>0.3 1.4<br>1.1 1.3<br>1.4 0.7 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 •                             |        |          | 1.1            | 0.0 |         | 1.2                                             | 0.7 |              | 0.5                                   |                    | 1.1         | _     | 1.5        | 9.0                     |                    | 0.8                     |      | 0.10                   |
| 2.0 1.2<br>1.2 1.3<br>1.3 1.8<br>1.0 1.8<br>0.3 1.4<br>1.1 1.3<br>0.7 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 △                             |        |          | 1.6            | 2.0 |         | 1.1                                             | 9.0 |              | 1.1                                   |                    | 1.6         | 0     | 9.         | 9.0                     |                    | 9.0                     | Ī    | 80.0                   |
| 1.2 1.3<br>1.3 1.8<br>1.3 1.2<br>1.0 1.8<br>0.3 1.4<br>1.1 1.3<br>1.4 1.4<br>0.7 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 \( \triangle \)               |        |          | 1.2            | 2.0 |         | 1.2                                             | 0.5 |              | 8.0                                   |                    | 1.7         | 0     | <i>L</i> . | 0.8                     |                    | 0.7                     | Ī    | 0.10                   |
| 1.3 1.8<br>1.3 1.2<br>1.0 1.8<br>0.3 1.4<br>1.1 1.3<br>0.7 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1  \triangle$                  |        |          | 0.5            | 1.2 |         | 1.3                                             | 0.7 |              | 9.0                                   |                    | 0.5         | 0     | .3         | 0.2                     | 528                | 0.1                     | _    | 0.03                   |
| 1.3 1.2<br>1.0 1.8<br>0.3 1.4<br>1.1 1.3<br>1.4 1.4<br>0.7 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1▲                              |        |          | 1.0            | 1.3 |         | 1.8                                             | 9.0 |              | 0.5                                   |                    | 0.4         | 0     | .3         | 0.2                     | 52                 | 0.2                     |      | 0.03                   |
| 1.0 1.8<br>0.3 1.4<br>1.1 1.3<br>1.4 1.4<br>0.7 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 ∨                             |        |          | 1.2            | 1.3 |         | 1.2                                             | 0.5 |              | 0.5                                   |                    | 1.3         |       | 0.         | 0.9                     |                    | 8.0                     |      | 60.0                   |
| 0.3 1.4<br>1.1 1.3<br>1.4 1.4<br>0.7 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                               |        |          | 8.0            | 1.0 |         | 1.8                                             | 0.7 | _            | 0.4                                   |                    | 0.4         | 0     | 9.         | 0.3                     |                    | 0.4                     |      | 90.0                   |
| 1.1 1.3 1.4 1.4 0.7 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                               |        |          | 0.1            | 0.3 |         | 1.4                                             | 1.2 |              | 0.3                                   |                    | 0.5         | 0     | 5.         | 0.5                     |                    | 0.3                     |      | 0.07                   |
| 1.4 1.4 0.7 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 △                             |        |          | 9.0            | 1.1 |         | 1.3                                             | 0.5 |              | 0.4                                   |                    | 9.0         | 0     | 7.         | 0.4                     |                    | 0.5                     |      | 0.08                   |
| 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                               |        |          | 1.1            | 1.4 |         | 1.4                                             | 9.0 |              | 0.4                                   | 100                | 6.0         | 0     | 0.5        | 0.0                     | 900                | 0.5                     |      | 80.0                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S                               |        |          | 0.2            | 0.7 |         | 0.4                                             | 0.1 |              | 0.2                                   |                    | 0.7         | 0     | 0.1        | 0.7                     |                    | 0.1                     |      | 0.05                   |

Tabelle IV: Zusammenstellung der Resultate, welche ausserhalb des Bereichs von  $\bar{x} + 2$  Standardabweichungen der Kontrollpferde lagen, von Pferden mit Obstruktionen der oberen Luftwege.

| Parameter               | Reihe von Symbologomes $<$ oder $>$ als der $<$ $\overline{x} - 2S$ | len mit Wert<br>Mittelwert $\pm 2$ S.A.<br>$> \overline{x} + 2$ S |
|-------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|
| IZK                     | _                                                                   | 2                                                                 |
| Id                      | $\triangle \triangle \triangle \Box$                                | •                                                                 |
| ED                      | Δ                                                                   |                                                                   |
| Id + Ed                 | Δ                                                                   | _                                                                 |
| Ed/Id                   | _                                                                   | -                                                                 |
| AF                      | _                                                                   | $\triangle \triangle \Box$                                        |
| MID                     | _                                                                   |                                                                   |
| MIS                     | Δ                                                                   | _                                                                 |
| MitIs                   | _                                                                   | _                                                                 |
| $AZV_i$                 | -                                                                   |                                                                   |
| $IV_{0.75}$             | $\nabla$                                                            | Δ                                                                 |
| MED                     | · —                                                                 | lacktriangleright                                                 |
| MES                     | Δ                                                                   | $\triangle \ \Box \ \Box \ \Box$                                  |
| Mit ES                  | _                                                                   | $\triangle \ \Box \ \Box \ \triangle$                             |
| $AZV_e$                 | _                                                                   | _                                                                 |
| EV <sub>0.75</sub>      | -                                                                   |                                                                   |
| $\Delta D$              |                                                                     | $\blacksquare \bullet \triangledown \Box \triangle$               |
| AMV                     | Δ                                                                   | $\triangle \blacktriangle \triangledown \Box \Box \triangle$      |
| MitES/MitIS             |                                                                     | _                                                                 |
| MES/MIS                 |                                                                     | ullet                                                             |
| $EV_{0.75}/IV_{0.75}$   |                                                                     | $lackbox{\square} \Delta$                                         |
| $EV_{0.25}/MES$         | $\triangle \Box \Box \triangle \triangle$                           |                                                                   |
| IV <sub>0.75</sub> /MIS |                                                                     | -                                                                 |
| MID/MIS                 | _                                                                   | $\bullet \   \nabla \   \triangle \   \Delta$                     |
| MED/MES                 | <del>-</del>                                                        |                                                                   |
| MID/AZV <sub>i</sub>    | -                                                                   |                                                                   |
| MED/AZV <sub>e</sub>    | <del>-</del>                                                        |                                                                   |

Tabelle II: Daten von Pferden mit Obstruktionen der oberen Luftwege während der Ruheatmung.

- chronische Pharyngitis, verstopfte Nasenhöhle, □ Kehlkopfparalyse
- △ vergrösserter inspiratorischer Atemwiderstand
- ▲ vergrösserter exspiratorischer Atemwiderstand
- ∇ vergrösserter inspiratorischer und exspiratorischer Atemwiderstand

Tabelle III: Daten von Pferden mit Obstruktionen der oberen Luftwege während der Lobelininduzierten Hyperventilation.

- chronische Pharyngitis, verstopfte Nasenhöhle, □ Kehlkopfparalyse
- △ vergrösserter inspiratorischer Atemwiderstand
- ▲ vergrösserter exspiratorischer Atemwiderstand
- ∇ vergrösserter inspiratorischer und exspiratorischer Atemwiderstand

Individuelle Unterschiede zwischen den einzelnen Pferden als auch Differenzen zwischen den verschiedenen Aufzeichnungen eines Pferdes erschweren eine Interpretation.

#### Diskussion

Die dargestellten Experimente zeigen, dass Funktionsprüfungen der oberen Luftwege, obschon beim Menschen wertvolle Diagnosehilfen, beim Pferd von geringem diagnostischen Nutzen sind.

Der entscheidende Grund liegt darin, dass Lobelin zwar eine Hyperventilation aber keine maximale Atemtiefe hervorruft und Obstruktionen daher schon sehr erheblich sein müssen, um messbare Veränderungen zu erzeugen. Mit den gebräuchlichen klinischen Untersuchungsmethoden sind bereits Befunde zu erheben, bevor Widerstandsveränderungen messbar sind. Als Beispiel dafür kann das Pferd mit der Hemiplegia laryngis, einer recht häufigen Funktionsstörung, herangezogen werden, an welchem keine Veränderungen der Messwerte erhoben werden konnten. Zu ähnlichen Ergebnissen in bezug auf die Hemiplegia laryngis kamen auch Robinson et al. (1976) bei Untersuchungen an Pferden und Schiratzki (1965) bei solchen an Menschen. Unter starker körperlicher Belastung hat allerdings Berendes (1965) beim Menschen eine Beeinträchtigung der Ventilation messen können. Daraus schliessen wir, dass Funktionsprüfungen dieser Art nur bei hohen Atemstromstärken zu verwertbaren Resultaten führen. Um eine annähernd gleich starke körperliche Arbeit und damit Vertiefung der Ventilation zu erzeugen, wie es mit dem Ergometer beim Menschen üblich ist, müssten die zu prüfenden Pferde auf einem Laufband belastet werden.

Da geringfügige Obstruktionen der Atemwege keine messbaren Veränderungen des Atemwiderstandes erzeugt haben, jedoch oft auffällige Geräusche während der Arbeit des erkrankten Pferdes hervorrufen, verdient unserer Meinung nach die Technik von Attenburrow (1971) weiterhin unsere Aufmerksamkeit.

# Zusammenfassung

Die Auswirkungen von Obstruktionen der oberen Luftwege auf den Atemluftstrom von Pferden wurden untersucht und diskutiert. Respiratorische Parameter wurden erhoben während der Ruheatmung einerseits und während einer Lobelin-induzierten Hyperventilation andererseits. Die Resultate von Pferden ohne Obstruktionen der Luftwege wurden mit denjenigen von Pferden mit natürlich auftretenden und künstlich erzeugten Obstruktionen verglichen. Es wurde gefolgert, dass die unter den genannten Bedingungen erzeugten Atemstromstärken noch zu klein waren, um messbare Veränderungen der respiratorischen Parameter zu verursachen. Mit der beschriebenen Methode können nur erhebliche Obstruktionen entdeckt werden. Deshalb werden einige Anregungen zur Verbesserung der Atemfunktionsteste bei Obstruktionen der oberen Luftwege gemacht.

#### Résumé

On examine et discute les effets des obstructions des voies respiratoires supérieures sur le flux respiratoire chez le cheval. Des paramètres respiratoires ont été enregistrés au repos ainsi que durant une hyperventilation produite par l'injection intraveineuse de Lobéline.

Les résultats des chevaux sans obstruction des voies respiratoires sont comparés avec ceux des chevaux souffrant d'obstructions naturelles ou artificielles. On constate que le flux respiratoire obtenu dans les conditions de l'expérience est trop faible pour permettre des variations mesurables des paramètres respiratoires; on ne peut, par cette méthode, découvrir que des obstructions importantes. C'est pourquoi quelques suggestions sont faites pour améliorer les tests de fonctions respiratoires dans l'optique des obstructions des voies respiratoires supérieures.

#### Riassunto

Si studiano e si discutono gli effetti dell'ostruzione delle vie respiratorie superiori del cavallo nei confronti della corrente respiratoria. Sono stati fissati parametri respiratori durante la respirazione a riposo da un lato e durante una iperventilazione indotta con lobelina dall'altro. I risultati ottenuti da cavalli senza ostruzione delle vie respiratorie sono stati paragonati con quelli ottenuti da soggetti con ostruzioni artificiali o spontanee. Si conclude che il rafforzamento della corrente respiratoria ottenuto alle condizioni citate è troppo ridotto per causare misurabili modificazioni dei parametri respiratorii. Con il metodo descritto si possono solo scoprire rilevanti occlusioni. Perciò si danno alcuni consigli per il miglioramento dei test di funzionalità respiratoria nelle ostruzioni delle vie respiratorie superiori.

# **Summary**

The effects of upper respiratory tract obstructions on air flow in horses were examined and discussed. The measurements were made on recordings obtained while the horses were breathing quietly at rest and also during hyperventilation produced by the intravenous injection of a respiratory stimulant (Lobelin). Results from horses with unobstructed airways were compared with those from horses with naturally occuring and experimentally induced upper respiratory tract obstructions. It was concluded that the flows achieved under the conditions of this project were insufficient to produce measurable changes in the respiratory parameters. Generally, the method described could only be expected to reveal the presence of severe obstructions. Some suggestions for the development of respiratory function tests in horses are made.

#### Literaturverzeichnis

Attenburrow, D. P.: Some observations on the Sound Vibrations produced by Air Flow in the Respiratory Tract of Horses at Exercise. Vet. Ann. 12, 6–11 (1971). – Berendes, J.: Neuere Ergebnisse über Bewegungsstörungen des Kehlkopfes. Arch. Ohr.-, Nas.- u. Kehlkopfheilk. 169, 1–172 (1956). – Fleisch, A.: Le Pneumotachographe. Helv. Physiol. Acta. 14, 363–368 (1956). – Gillespie, J. R., Tyler, W. S. and Eberley, V. E.: Pulmonary Ventilation and Resistance in Emphysematous and Control Horses. J. Appl. Physiol. 21, 416–422 (1966). – Gretener, P.: Der Atemzeitquotient bei gesunden und lungenkranken Pferden. Proc. 3rd Meeting Academic Society for Large Animals Vet. Med. Zürich, 211–221 (1975). – Robinson, N. E., Sorenson, P. R. and Goble, D. O.: Patterns of Airflow in Normal Horses and Horses with Respiratory Disease. Proc. 21st Ann. Congr. AAEP, 1975. – Schiratzki, H.: Upper Airway Resistance During Mouth Breathing in Patients with Unilateral and Bilateral Paralysis of the Recurrent Laryngeal Nerve. Acta Oto-lar. 59, 475–496 (1965).

Manuskripteingang: 26.2.1981