Zeitschrift: Schweizer Archiv für Tierheilkunde SAT : die Fachzeitschrift für

Tierärztinnen und Tierärzte = Archives Suisses de Médecine Vétérinaire

ASMV : la revue professionnelle des vétérinaires

Herausgeber: Gesellschaft Schweizer Tierärztinnen und Tierärzte

Band: 93 (1951)

Heft: 11

Artikel: Prüfungsergebnisse einiger Hämoglobinometer

Autor: Spörri, H. / Almasy, F.

DOI: https://doi.org/10.5169/seals-593189

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Aus dem veterinär-physiologischen Institut (Direktor: Prof. Dr. W. Frei) und dem veterinär-chemischen Laboratorium (Leiter: Prof. Dr. F. Almasy) der Universität Zürich

Prüfungsergebnisse einiger Hämoglobinometer

(Sahli-, Zeiß-Ikon-, Spencer-Hämoglobinometer)

Von H. Spörri und F. Almasy

Die stets zunehmende Zahl von Blutproben, welche den diagnostisch tätigen Laboratorien zur Untersuchung eingesandt wird, zeigt, daß der tierärztliche Praktiker die sich hier bietenden Hilfen mehr und mehr auszuwerten sucht. In der heutigen hämatologischen Diagnostik spielt — soweit es sich um das rote Blutbild handelt — die Bestimmung des Volumens des einzelnen Erythrozyten, des Färbekoeffizienten (Hämoglobingehalt pro Erythrozyt in 10⁻¹² g) sowie des Hämoglobingehaltes pro Erythrozytenvolumeneinheit (sog. Sättigungsindex) eine bedeutende Rolle, denn diese Daten vermögen wertvolle Anhaltspunkte über die Pathogenese und damit auch für die Therapie der diversen Anämieformen (normozytäre, makro- bzw. megalozytäre, normochrome und hypochrome Anämie¹) zu geben.

Eine genaue Berechnung des Färbekoeffizienten und des Sättigungsindexes ist selbstredend nur bei möglichst exakter Hämoglobinbestimmung möglich.

Während fast eines halben Jahrhunderts war der von Sahli konstruierte Apparat für die klinische Hb-Bestimmung das wohl am besten geeignete Instrument. Heute allerdings vermag es die Anforderungen nicht mehr voll zu befriedigen. Hierauf hat der eine von uns in einer kurzen Mitteilung in dieser Zeitschrift bereits hingewiesen (Spörri, 1951 [1]). Neben den unvermeidbaren Fehlern bei der Markierung der Meßpipette und Graduierung des Teströhrchens machen sich bei der Hb-Bestimmung nach der

¹) Eine hyperchrome Anämie im strengen Sinne des Wortes dürfte es nicht geben, da die Hämoglobinsättigung (Hb pro Volumeinheit) der roten Blutkörperchen bei gesunden Individuen immer maximal ist. Ist die Hämoglobinbeladung des einzelnen Erythrozyten vergrößert (erhöhter Färbekoeffizient), was z. B. bei der infektiösen Anämie der Pferde häufig der Fall ist, dann ist auch das Volumen des einzelnen Erythrozyten entsprechend vergrößert (makrozytäre Anämie), der Hb-Sättigungsindex ist dabei aber nicht über die Norm erhöht. Demnach sollte man in derartigen Fällen nicht von Hyperchromie, sondern von Makrozytose sprechen.

Sahli'schen Methode noch folgende Faktoren störend bemerkbar: a) die Nachdunkelung der salzsauren Hämatinlösung, b) die ungleiche Farbe der Standard- und der zu prüfenden Hämatinlösung beim Arbeiten mit Tierblut (die standardisierte Hämatinlösung wird aus Menschenblut hergestellt), c) der subjektive Ablesefehler, d) der Pipettierfehler beim Abmessen der zu untersuchenden Blutprobe.

In den letzten Jahren ist eine ziemlich große Zahl von neuen Hämoglobinometern auf dem Markt erschienen. Im Bestreben, die hämatologischen Untersuchungen einerseits möglichst exakt, andererseits — insbesondere auch wegen des spärlichen technischen Personals — möglichst einfach und rationell zu gestalten, war es von Interesse, einige uns als zweckdienlich und zuverlässig erscheinende Hämoglobinometer, nämlich das deutsche Zeiß-Ikonund das amerikanische Spencer-Instrument einer näheren Prüfung bei Tierblutuntersuchungen (Pferd) zu unterziehen.

Methodik, Apparate

Die Untersuchungen wurden an 44 mit Oxalat stabilisierten Pferdeblutproben durchgeführt. Von 36 Proben wurde der Hb-Gehalt mit 3 verschiedenen Hämoglobinometern, nämlich dem Original Sahli, dem Zeiß-Ikon und dem Spencer je dreifach bestimmt. Bei 8 weiteren Proben wurde die Prüfung nur mit dem Zeiß- und dem Spencer-Apparat durchgeführt.

Zum Vergleich der Leistungsfähigkeit der erwähnten visuellen Hämoglobinometer mit derjenigen eines objektiven lichtelektrischen Kolorimeters bestimmten wir die optische Dichte nahezu aller Blutproben auch mit dem Junior Spektrophotometer von Coleman¹). Das Blut wurde hierzu mit Ammoniak hämolysiert (1 Tropfen 2,5%-iger Ammoniak auf 1 ccm Blut) und mit Wasser 1:200 verdünnt. Die optische Dichte log. I₀/I dieser Lösungen wurde bei 16 mm Schichtdicke mit der Wellenlänge 540 mu gemessen. Sie ist der Hämoglobinkonzentration proportional und kann, wie nachstehend dargelegt wird, als deren Maß dienen.

Wir beziehen die Ergebnisse aller vier kolorimetrischen Hämoglobin-Bestimmungsmethoden auf die nach Van Slyke manometrisch bestimmte Sauerstoffkapazität des Blutes. Die durch eine große Zahl von Untersuchungen erwiesene Genauigkeit und Zuverlässigkeit der modernen Blutgasanalyse rechtfertigt ohne Zweifel die Wahl dieser Vergleichsgrundlage.

¹) Die Anschaffung des Coleman-Spektrophotometers war durch die finanzielle Hilfe der Jubiläumsspende der Universität Zürich möglich, wofür wir dieser Stiftung zu bestem Dank verpflichtet sind.

Konstruktion und Arbeitsweise des Blutgasmanometers nach Van Slyke sowie des Coleman Spektrophotometers und des altbekannten Sahli-Hämometers sollen hier nicht näher beschrieben werden. Bezüglich des ersteren verweisen wir auf: Peters and Van Slyke, Quantitative Clinical Chemistry, 1932, bezüglich des zweiten auf: Hawk, Oser, and Summerson, Practical Physiological Chemistry, 1947. Nähere Angaben über die neueren visuellen Hämoglobinometer Zeiß-Ikon und Spencer mögen hingegen von Interesse sein.

Das Zeiß-Ikon Hämoglobinometer

Dieses Instrument wurde von Rostoski [2] 1934 erstmals auf der Tagung der Deutschen Gesellschaft für innere Medizin vorgeführt. Für die Hb-Bestimmung werden 30 mm³ Blut mit 2 cm³ 0,1/n HCl in einen Glastrog gegeben. Genau 5 Minuten nach dem Vermischen des Blutes mit der HCl wird die Ablesung in einem speziellen kleinen Kolorimeter vollzogen. Als Vergleichsstandard dient ein braungefärbter Gelatinekeil, der auf einer drehbaren Scheibe montiert ist und am Trog mit der zu untersuchenden Hämatinlösung vorbeigeführt wird, wobei die miteinander zu vergleichenden braunen Flächen scharf aneinander grenzen (ein Vorteil gegenüber dem Sahli-Hämometer, wo das Untersuchungs- und Standardröhrchen durch eine relativ breite, schwarze Brücke voneinander getrennt sind, was den Farbvergleich beeinträchtigt. Bei der Verwendung für Tierblut haftet dem Apparat der gleiche Fehler an wie dem Sahli-Hämometer, nämlich der, daß die Farbnuance des Standards nicht genau mit derjenigen des salzsauren Tierbluthämatins übereinstimmt. Salzsaures Pferdehämatin z. B. weist bekanntlich einen mehr graubraunen, "kühleren" Farbton auf, als das als Standard dienende salzsaure Hämatin aus Menschenblut. Die Ablesungen werden dadurch unsicher, ja geradezu irritierend, indem der Versuch, die beiden Gesichtsfelder auf gleiche Farbintensität zu bringen, infolge ungleicher Farbqualität der Felder nur unvollkommen gelingen kann. Der Apparat erlaubt, die Hb-Werte sowohl in absoluten Einheiten (g% Hämoglobin) wie auch in relativen Einheiten (Prozente, Hämometereinheiten) zu bestimmen.

Das Spencer Hämoglobinometer

1935 schlug der Däne Philipsen vor, unverdünntes Blut zur Hb-Bestimmung zu verwenden, um so den Verdünnungsfehler zu vermeiden. Nach seiner Anweisung wurde das sog. Sicca-Hämometer gebaut, wobei mit Natriumhydrosulfit reduziertes und mit Saponin hämolysiertes Blut auf kolorimetrischem Wege mit grünem Licht von konstanter Intensität untersucht wird (zit. nach Romijn, 1946 [3]).

Auf einem ähnlichen Prinzip beruht auch das Spencer-Hämo-

meter. Bei diesem Apparat wird allerdings Oxy-Hb verwendet. Unverdünntes Blut wird mit Saponin hämolysiert und in eine Mikrocuvette verbracht. Die Lichtabsorption dieses Blutes wird mit derjenigen eines als Standard dienenden gefärbten Glaskeiles verglichen. Zur Verwendung kommt grünes Licht, das von Oxy-Hb bekanntlich stark absorbiert wird (β -Bande) und für welches das menschliche Auge maximale Empfindlichkeit besitzt. Dieses Instrument weist gegenüber dem Sahli-Hämometer folgende Vorteile auf: 1) es muß keine bestimmte Blutmenge abgemessen werden, 2) das Blut muß nicht verdünnt werden, 3) da die Bestimmung mit Oxy-Hb durchgeführt wird, braucht — im Gegensatz zur Kolorimetrierung von salzsaurem Hämatin — kein Zeitfaktor berücksichtigt zu werden, 4) die Farben des zu untersuchenden Blutes und des Standards stimmen miteinander überein; die Einstellung gleicher Farbstärke der beiden Gesichtsfelder ist zuverlässig und kann mehrmals in völliger Ruhe wiederholt werden. Der Apparat ist mit Skalen versehen, welche es gestatten, die Hb-Werte sowohl in absoluten (g%) wie auch in relativen Einheiten (% der Norm) abzulesen.

Erythrozytenzahl und Sauerstoffkapazität pro Erythrozyt

Die verwendeten Blutproben stammten aus der klinischen Praxis. Es erschien wünschbar, Proben mit abnormer Hämoglobinbeladung (Sauerstoffkapazität) der Erythrozyten sicherzustellen und erforderlichenfalls speziell zu berücksichtigen. Zu diesem Zweck haben wir die Erythrozytenzahl in Parallelbestimmungen (einerseits mit einer Türk'schen und andererseits mit einer Bürker'schen Zählkammer) ermittelt. Die Übereinstimmung lag innerhalb 3%. Durch Division der O₂-Kapazität pro cem Blut mit der Erythrozytenzahl pro cem Blut ergab sich die durchschnittliche O₂-Kapazität eines Erythrozyten als Maß der Hämoglobinbeladung. Unter den untersuchten Blutproben befand sich keine, deren Hämoglobinfüllung zu besonderen Vorkehrungen Anlaß gegeben hätte (vgl. die Kol. 11 und 12 der nachfolgenden Tabelle).

Ergebnisse

Unsere Resultate sind in Tab. 1 zusammengefaßt. Die Kolonnen 2, 3 und 4 enthalten den mittels Sahli-, Spencer- und Zeiß-Apparat ermittelten Hämoglobingehalt der Blutproben in g%. Kol. 5a enthält die photoelektrisch gemessene optische Dichte des 200-fach verdünnten Blutes, welche durch Multiplikation mit (vgl. die Angaben am Fuß der Tabelle):

$$ext{F} = rac{73,6 ext{ (durchschnittliche O}_2 ext{-Kapazität der Blutproben)}}{ ext{(durchschnittliche optische Dichte der Blutproben)}} = rac{73,6 imes 0,1525}{0,5348} = 20,99$$

den Hämoglobingehalt in g% liefert (Kol. 5b). Der Faktor 73,6 entspricht der Bindung von 100/73,6=1,36 ccm Sauerstoff durch 1 g Hämoglobin (vgl. Hawk, Oser und Summerson, l. c.). Die Daten der Kol. 6 sind Mittelwerte aus 2—3 Einzelbestimmungen der O_2 -Kapazität; der mittlere Fehler der Mittelwerte ist gleichfalls angegeben.

Um die Genauigkeit der 3 Hämoglobinometer sowie der photoelektrischen Methode unter Bezug auf die Sauerstoffkapazität des Blutes zu vergleichen, dividieren wir den mit diesen Apparaten ermittelten Hämoglobingehalt durch die O_2 -Kapazität der betreffenden Blutprobe und prüfen den Durchschnitt sowie die Streuung der erhaltenen Quotienten $Q = Hb/(O_2$ -Kapazität), die in Kol. 7, 8, 9 und 10 zusammengestellt sind.

Am Fuß dieser Kolonnen sind die Durchschnitte: 79,33 (Sahli), 74,71 (Spencer), 78,67 (Zeiß-Ikon) der Quotientenwerte vermerkt. Sie geben zu erkennen, daß keines der drei Hämoglobinometer dem Verhältnis 100 ccm O₂ pro 73,6 g Hämoglobin entspricht. Auch der nächstbenachbarte Spencer-Durchschnitt zeigt zum geforderten Wert die Differenz 74,71 - 73,6 = 1,11, die statistisch signifikant ist; der t-Test (vgl. z. B. A. Lindner, Statistische Methoden, Basel, 1945) ergibt t = 2.89, n = 43, was eine unterhalb 1% liegende Wahrscheinlichkeit des zufälligen Auftretens dieser Differenz anzeigt. Der früher viel benützte Wert 1,34 ccm O₂ pro g Hämoglobin (vgl. z. B. Heilmeyer (4)) liefert mit 100/1,34 = 74,6 eine gute Übereinstimmung mit dem Spencer-Durchschnitt, während der Sahli- und Zeiß-Durchschnitt auch diesen Wert stark übertreffen. Um mit der Sauerstoff bindung von 1,36 (bzw. 1,34) ccm O₂ pro g Hämoglobin innerhalb ihrer Fehlerstreuung in Übereinstimmung zu gelangen, sind die Absolutangaben (in g% Hb) der drei Hämoglobinometer danach mit den Korrekturfaktoren: Sahli 0,928 (bzw. 0,941), Zeiß-Ikon 0,936 (bzw. 0,949), Spencer 0,985 (bzw. 0,999) zu multiplizieren.

Weitere Auskünfte liefert die Streuung der in Kol. 7, 8, 9 und 10 gebrachten Quotientenwerte. Angenommen, zur kolorimetrischen Hämoglobinbestimmung sowie zur Ermittlung der O_2 -Kapazität kämen fehlerfreie Meßmethoden zur Anwendung, wäre

1	2	3	4	5a	5b	6	7	8	9	10	11	12
Blut	Sahli	Spen- cer	Zeiß	Pho elekt		$\mathrm{O_2 ext{-}Kapazit\"{a}t}$	2/6	3/6	4/6	5b/6	Ery- thro- zyten	6/11 in
Nr.	g % Hb	g % Hb	g % Hb	opt. Dichte	g % Hb	$\mathrm{cm^3O_2/cm^3~Blut}$. 7.	7.2	-, -	a 160	in Mill/ mm ³	Einheit. 10 ¹¹
2			6							9		
1		10,9	12,0			$0,\!1500\!\pm\!0,\!0010$		72,6	80,0		5,75	2,70
2		12,0	13,4			$0,\!1627\!\pm\!0,\!0011$		73,8	82,5		5,92	2,75
3		9,9	9,7			$0,\!1306\!\pm\!0,\!0001$		72,5	71,0		5,61	2,32
4		10,7	11,7	0,460	9,7	$0,1455 \pm 0,0002$		73,5	80,5	66,7	5,82	2,50
5		10,5	11,0	0,509	10,7	$0,\!1451\!\pm\!0,\!0002$		72,3	75,8	73,7	5,84	2,49
6		14,0	15,8	0,660	13,9	$0,\!1955\!\pm\!0,\!0003$		71,6	80,9	71,1	10,37	1,89
7		11,9	12,8	0,563	11,8	0.1647 ± 0.0001	-	72,3	77,7	71,7	6,53	2,52
8		11,8	11,9	0,563	11,8	$0,1620 \pm 0,0007$	200	72,9	73,5	72,9	5,91	2,74
9	10,4	10,2	10,4	0,492	10,3	$0,1395 \pm 0,0001$	74,5	73,1	74,5	73,9	6,35	2,20
10	13,6	13,6	13,5	0,603	12,7	$0,1797 \pm 0,0002$	75,7	75,7	75,1	70,7	8,34	2,16
11	9,9	9,7	10,0	0,456	9,6	$0,1296 \pm 0,0002$	76,5	74,9	77,2	74,1	5,83	2,22
12	12,2	11,3	11,8	0,526	11,1	0.1499 ± 0.0003	81,5	75,4	78,8	74,1	7,77	1,93
13	13,0	12,8	13,8	0,613	12,9	$0,1783 \pm 0,0007$	72,9	71,8	77,4	72,4	7,56	2,36
14	12,3	11,2	11,8	0,570	12,0	$0,1559 \pm 0,0003$	79,0	71,9	75,8	77,0	6,93	2,25
15	13,9	12,4	14,4	0,624	13,1	$0,1704 \pm 0,0004$	81,5	72,8	84,5	76,9	7,25	2,35
16	10,5	10,3	10,6	0,475	10,0	0.1341 ± 0.0001	78,3	76,8	79,0	74,5	5,72	2,34
17	10,2	10,1	10,2	0,477	10,0	0.1381 ± 0.0006	73,9	73,1	73,9	72,4	5,22	2,65
18	12,2	12,1	12,2	0,570	12,0	0.1661 ± 0.0008	73,4	72,8	73,4	72,2	6,71	2,48
19	12,1	11,5	12,5	0,551	11,6	$0,1595 \pm 0,0017$	75,9	72,1	78,4	72,8	6,73	2,37
20	9,5	9,1	9,1	0,420	8,8	$0,1188 \pm 0,0003$	80,0	76,6	76,6	74,2	4,50	2,63

				0 0								
$ \begin{array}{ c c c } 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array} $	13,5 12,5 13,0 12,4	$ \begin{array}{c c} 12,2 \\ 11,4 \\ 11,7 \\ 11,7 \end{array} $	13,9 12,4 12,8 12,8	0,600 0,554 0,585 0,559	12,6 11,6 12,3 11,7	$\begin{array}{c} 0,1700 \pm 0,0002 \\ 0,1561 \pm 0,0009 \\ 0,1559 \pm 0,0004 \\ 0,1598 \pm 0,0004 \end{array}$	79,5 80,0 83,5 77,6	71,8 73,0 75,1 73,2	81,8 79,4 82,2 80,1	74,1 74,3 79,0 73,4	7,26 6,57 6,86 7,31	2,34 2,38 2,27 2,19
26 27 28 29	10,1 13,5 11,4 12,6 11,7	9,3 $11,5$ $10,6$ $11,1$ $11,1$	9,8 12,6 11,6 11,4 11,6	0,453 0,550 0,513 0,515 0,505	9,5 11,5 10,8 10,8 10,6	$\begin{array}{c} 0,1267 \pm 0,0010 \\ 0,1545 \pm 0,0006 \\ 0,1463 \pm 0,0003 \\ 0,1450 \pm 0,0009 \\ 0,1448 \pm 0,0004 \end{array}$	79,8 87,5 78,0 87,0 80,9	73,5 74,5 72,5 76,5 76,7	77,4 81,6 79,3 78,6 80,2	75,0 74,5 73,8 74,5 73,3	5,74 7,31 6,70 7,27 5,91	2,21 2,21 2,18 2,00 2,45
30 31 32 33 34 35	12,9 11,9 12,6 13,8 10,7 10,9	11,1 11,7 11,8 12,2 10,0 10,1	$ \begin{array}{c c} 13,1 \\ 11,9 \\ 12,3 \\ 12,7 \\ 10,5 \\ 10,2 \end{array} $	$\begin{array}{c} 0,537 \\ 0,538 \\ 0,563 \\ 0,570 \\ 0,449 \\ 0,475 \end{array}$	$ \begin{array}{c c} 11,3 \\ 11,3 \\ 11,8 \\ 12,0 \\ 9,4 \\ 10,0 \end{array} $	$0,1553\pm0,0010$ $0,1567\pm0,0002$ $0,1608\pm0,0010$ $0,1637\pm0,0005$ $0,1297\pm0,0001$ $0,1338\pm0,0003$	83,0 76,0 78,4 84,4 82,5 81,5	71,5 74,6 75,9 74,5 77,1 75,5	84,4 76,0 79,0 77,6 81,0 76,3	72,9 72,1 73,5 73,4 72,5 74,8	7,27 6,52 6,47 6,69 5,50 6,31	2,14 $2,40$ $2,48$ $2,45$ $2,36$ $2,12$
36 37 38 39 40	12,4 10,5 12,8 12,9 11,9	12,2 $10,0$ $12,2$ $11,1$ $12,2$	12,5 10,5 13,0 12,2 12,2	0,564 0,460 0,561 0,524 0,528	11,8 9,7 11,8 11,0 11,1	0.1636 ± 0.0003 0.1636 ± 0.0017 0.1309 ± 0.0001 0.1578 ± 0.0006 0.1491 ± 0.0004 0.1496 ± 0.0002	75,9 80,3 81,1 86,5 79,6	74,6 76,5 77,4 74,4 81,0	76,5 80,3 82,5 81,8 81,5	74,8 72,1 74,1 74,9 73,8 74,2	5,65 6,27 6,76 7,54	2,12 2,28 2,31 2,52 2,21 1,99
41 42 43 44	11,6 14,3 9,6 12,9	12,0 14,5 10,0 13,3	11,3 14,7 10,1 13,5	$\begin{bmatrix} 0,519\\ 0,626\\ 0,471\\ 0,575 \end{bmatrix}$	10,9 13,1 9,9 12,1	$0,1497\pm0,0001 \ 0,1828\pm0,0004 \ 0,1278\pm0,0002 \ 0,1642\pm0,0006$	77,5 78,3 75,2 78,5	80,2 79,4 78,3 81,0	75,5 80,5 79,1 82,2	72,9 71,7 77,5 73,6	6,51 8,57 4,43 7,92	2,30 2,13 2,89 2,08
Str	rchschnit euung (d riabilitäts	es Einzel	-	-	11,22	$0,\!1525\!\pm\!0,\!0005$	79,33 3,71 4,68	74,71 2,55 3,41	78,67 3,08 3,92	73,59 2,13 2,90	,	
			(8)		9				¥			

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	* 2	0,600 0,554 0,585 11,6 0,559 0,453 0,513 0,515 0,515 10,8 0,515 10,8 0,515 11,3 0,537 11,3 0,538 0,538 11,3 0,563 0,563	0.1700 ± 0.0002 0.1561 ± 0.0002 0.1559 ± 0.0004 0.1559 ± 0.0004 0.1267 ± 0.0010 0.1545 ± 0.0006 0.1463 ± 0.0009 0.1450 ± 0.0009 0.1450 ± 0.0009 0.1553 ± 0.0010 0.1567 ± 0.0002 0.1567 ± 0.0002 0.1608 ± 0.0010	80,0 87,7 7,88 7,7 87,0 87,0 7,88 8,0 9,4 4,4 7,6 7,6 7,6 7,6 8,7 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7	7.1,3 7.3,0 7.3,2 7.4,5 7.4,5 7.4,5 7.4,5 7.5,9	8 2 3 4 4 5 8 6 7 7 8 7 8 8 8 2 9 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,	2,60 2,60 2,60 2,60 2,60 2,60 2,60 2,60	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
$\begin{vmatrix} 0.5348 & 11,22 & 0.1525\pm0.0005 & 79,33 & 74,71 & 78,67 \\ \text{es}) \text{ s:} & 3,71 & 2,55 & 3,08 \\ = 100\text{s/x} \text{:} & 4,68 & 3,41 & 3,92 \end{vmatrix}$	10,2 10,2 10,5 12,2 12,2 14,7 13,5 13,5 13,5		23338 3338 3309 4499 4499 4518 4518 4518 4518 4518 4518 4518 4518	81,5 80,3 80,3 80,3 77,5 77,5 78,3 78,3 78,3	7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	882,5 81,8 81,8 81,5 82,5 75,5 82,2 82,2	140446040466	6,31 6,27 6,27 6,27 6,27 6,57 7,44 7,92 8,57	2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2
	$\begin{array}{c} \\ \\ \\ \end{array}$ es) s $= 100$	11,	$0,1525\pm0,0005$	79,33 3,71 4,68	74,71 2,55 3,41	78,67 3,08 3,92	73,59 2,13 2,90		

Konstanz dieser Quotienten zu erwarten. Bei Fehlerfreiheit allein der O₂-Kapazitätsbestimmung wäre die Fehlerstreuung der Hämoglobinometer durch diejenigen der Quotientenwerte wiedergegeben. Wir benützen diesen Weg, um die Hämoglobinometer hinsichtlich ihrer Fehlerstreuung zu vergleichen. Selbstredend haftet der Bestimmung der O₂-Kapazität nach Van Slyke eine gewisse, im Vergleich zur Blutkolorimetrie jedoch nur geringe Fehlerstreuung an, die wir im folgenden rechnerisch berücksichtigen.

Die am Fuß der Kol. 7, 8, 9 und 10 angegebene Streuung des Einzelwertes der Quotienten Q wurde berechnet gemäß $s_Q = \sqrt{S(Q_i - \overline{Q})^2/(n-1)}$, wobei S das Summenzeichen, Q_i den Einzelwert, Q_i den am Fuß der Kolonne gebrachten Durchschnitt von Q und n die Anzahl der Einzelwerte bedeuten. Ein Vergleich dieser Streuung mit dem Fehler der O_2 -Kapazitätswerte (Kol. 6) gibt sogleich zu erkennen, daß letzterer bei der Berechnung der Streuung s_{Hb} der Hämoglobinometerresultate (wie sie aus dem Vergleich mit der Blutgasanalyse hervorgeht) zu keinen großen Korrekturen Anlaß geben kann. So beträgt beispielsweise die Streuung S_Q der mit dem Spencer erhaltenen Quotienten 2,55, was bei Bezug auf den Durchschnitt $\overline{Q} = 74,71$ den Variabilitätskoeffizienten $V_Q = 100 s_Q/\overline{Q} = 3,41\%$ ergibt, während für die Streuung s_Q des mittleren Fehlers f der O_2 -Kapazitätsbestimmung gemäß den Angaben der Kol. 6 gesetzt werden kann:

$$s_{O_2} = \sqrt{S \; (f_i \! - \! \overline{f})^2 \! / \! (n \! - \! 1)} = 0,\! 0004$$
 ,

und näherungsweise der Variabilitätskoeffizient

$$V_{O_2} = 100 \, s_{O_2} / \overline{(O_2\text{-Kapazität})} = 0.26\%$$

resultiert.

Die nächste Aufgabe besteht in der Ermittlung der Variabilitätskoeffizienten V_{Hb} (Sahli), V_{Hb} (Spencer), V_{Hb} (Zeiß-Ikon) und V_{Hb} (photoelektrische Methode), gemessen am entsprechenden Variabilitätskoeffizienten V_Q unter Berücksichtigung von V_{O_2} . Die zugehörigen Streuungen s_{Hb} , s_Q und s_{O_2} erfüllen gemäß dem Gauß'schen Fehlerfortpflanzungsgesetz (vgl. z. B. [5]) die Beziehung:

$$s_{Q}^{2}=(s_{Hb}\partial Q/\partial Hb)^{2}+(s_{O_{2}}\partial Q/\partial [O_{2}\text{-Kapazität}])^{2}$$

Durch Differenzieren, einfache Umformung und approximationsweises Einsetzen der Durchschnitte \overline{Q} , \overline{Hb} und $\overline{O_2}$ -Kapazität an Stelle von Q, \overline{Hb} und $\overline{O_2}$ -Kapazität erhält man daraus:

$$rac{\left| rac{\mathrm{S_Q}^2}{\overline{\mathrm{Q}}^2}
ight| = \left| rac{\mathrm{S_{Hb}}^2}{\overline{\mathrm{Hb}}^2}
ight| + \left| rac{\mathrm{S_{O_2}}^2}{\left(\mathrm{O_2 ext{-}Kapazit\"{a}t}
ight)^2}
ight|$$

Die drei Glieder dieser Beziehung stimmen bis auf Zahlenfaktor 10000 mit V_{Q^2} , V_{Hb}^2 und $V_{O_2}^2$ überein, so daß die Berechnung von V_{Hb} sich sehr einfach gestaltet. Für das Spencer-Hämoglobinometer ergibt sich beispielsweise (vgl. die Angaben am Fuß der Tabelle sowie die vorstehende Ermittlung von V_{O_2}):

$$V_{Hb}^2 = V_Q^2 - V_{O_2}^2 = 3.41^2 - 0.26^2 = 11.54$$
 $V_{Hb} = 3.40$

Bei Vernachlässigung von V_{O_2} würde an Stelle von $V_{Hb}=3,40$ der Wert $V_{Hb}=V_Q=3,41$ resultieren, was die Geringfügigkeit der durch die Fehlerstreuung der O_2 -Kapazität bedingten Korrektur belegt und nachträglich die Einführung des Mittelwertes $\overline{O_2$ -Kapazität an Stelle der bis zu 40% differierenden Einzelwerte rechtfertigt.

Die nachstehende Zusammenstellung der auf die dargelegte Art berechneten Variabilitätskoeffizienten V_{Hb} (und der für den F-Test benötigten V_{Hb}^2) ist angeordnet im Sinne von links nach rechts abnehmender V_{Hb} , d. h. im Sinne zunehmender Güte der Instrumente.

Hämoglobino- meter	Sahli	Zeiß-Ikon	Spencer	$\begin{array}{c} {\rm Photoelektr.} \\ {\rm Methode} \end{array}$
$ m V_{Hb}$:	4,68	$3,\!91$	3,40	2,89
$ m V_{Hb}{}^{2}$:	21,83	15,29	11,54	8,34

Ein auf diesem Wege ermittelter Güteunterschied der Instrumente kann als gesichert gelten, sofern die Verschiedenheit der Variabilitätskoeffizienten V_{Hb} als signifikant erwiesen ist. Wir führen den Signifikanznachweis mittels des F-Testes durch (vgl. z. B. Lindner, l. c.).

Die Anwendung des Testes auf den Unterschied des Sahliund des Zeiß-Ikon-Hämoglobinometers ergibt beispielsweise; $F = V_{Hb}^2$ (Sahli) / V_{Hb}^2 (Zeiß-Ikon) = 21,83/15,29 = 1,43, $n_1 = 35, n_2 = 43, F_{0,05} = 1,70$, was anzeigt, daß der in diesem Fall erhaltene F-Wert 1,43 zufallsweise mit mehr als 5% Wahrscheinlichkeit erwartet werden kann; der Güteunterschied zwischen Zeiß-Ikon und Sahli ist daher nicht signifikant (im Fall $F>F_{0,05}$ wäre er signifikant, schwach gesichert, im Fall $F>F_{0,01}$ signifikant, stark gesichert).

Der F-Test lieferte folgende Bewertung:

Der Sahli-Apparat ist nicht signifikant schlechter als der Zeiß-Ikon (s. o.), ist signifikant, schwach gesichert schlechter als der Spencer (F = 1,89, $n_1 = 35$, $n_2 = 43$) und signifikant, stark gesichert schlechter als die photoelektrische Methode (F = 2,62, $n_1 = 35$, $n_2 = 40$).

Das Zeiß-Ikon-Hämoglobinometer ist nicht signifikant besser als der Sahli (s. o.), ist nicht signifikant schlechter als der Spencer (F = 1,32, $n_1 = 43$, $n_2 = 43$) und signifikant, schwach gesichert schlechter als die photoelektrische Methode (F = 1,83, $n_1 = 43$, $n_2 = 40$).

Das Spencer-Hämoglobinometer ist signifikant, schwach gesichert besser als der Sahli (s. o.), ist nicht signifikant besser als der Zeiß-Ikon (s. o.) und nicht signifikant schlechter als die photoelektrische Methode ($F = 1,38, n_1 = 43, n_2 = 40$).

Die photoelektrische Methode ist signifikant, stark gesichert besser als der Sahli (s. o.), ist signifikant, schwach gesichert besser als der Zeiß-Ikon (s. o.) und nicht signifikant besser als der Spencer (s. o.).

Mit Rücksicht auch auf die auf S. 735 behandelte Korrekturbedürftigkeit der Absolutangaben gelangt man abschließend zum Entscheid, daß der Spencer das leistungsfähigste der drei geprüften Hämoglobinometer ist.

Zusammenfassung

- 1. Die für den klinischen und praktischen Gebrauch dienenden Hämoglobinometer von Sahli, Zeiß-Ikon und Spencer sowie eine für das Laboratorium bestimmte photoelektrische Hämoglobinbestimmungsmethode werden unter Bezug auf die Sauerstoffkapazität des Blutes (nach Van Slyke) geprüft und untereinander verglichen.
- 2. Die statistische Auswertung der Ergebnisse zeigt, daß die Güte der Instrumente in folgender Reihenfolge zunimmt: Sahli, Zeiß-Ikon, Spencer, photoelektrische Methode. Der Güte-unterschied unmittelbar aufeinanderfolgender Instrumente erweist sich indessen als nicht signifikant.

3. Als für die Praxis bestgeeignetes Hämoglobinometer geht aus dem Vergleich das Instrument von Spencer hervor.

Résumé

- 1. Les hémoglobinomètres de Sahli, Zeiß-Ikon et Spencer destinés à l'usage clinique et pratique, ainsi qu'une méthode photoélectrique de détermination de l'hémoglobine pour le laboratoire, sont contrôlés en ce qui concerne la capacité en oxygène du sang (d'après Van Slyke), puis comparés entre eux.
- 2. L'appréciation des résultats obtenus démontre que la qualité des instruments augmente dans l'ordre suivant: Sahli, Zeiß-Ikon, Spencer, méthode photoélectrique. La différence qualitative d'instruments se suivant immédiatement est insignifiante.
- 3. Les comparaisons effectuées permettent de désigner l'hémoglobinomètre de Spencer comme le meilleur instrument destiné à la pratique.

Riassunto

- 1. Gli emoglobinometri di Sahli, Zeiß-Ikon e Spencer, che servono all'uso clinico e pratico, e un metodo foto-elettrico di determinazione dell'emoglobina usato per il laboratorio vengono provati e comparati fra loro in riferimento alla capacità di ossigeno del sangue (secondo Van Slyke).
- 2. Lo sfruttamento statistico dei risultati dimostra che la buona qualità degli strumenti aumenta nel seguente ordine: Sahli, Zeiß-Ikon, Spencer, metodo foto-elettrico. La differenza di qualità fra i diversi strumenti risulta tuttavia insignificante.
- 3. Dal confronto fatto, il migliore emoglobinometro per la pratica è quello di Spencer.

Summary

- 1. The usual hemoglobinometers of Sahli, Zeiss-Ikon and Spencer, and a laboratory photoelectric hemoglobinometer are compared with reference to the O_2 -capacity of blood (after van Slyke).
- 2. The statistical judging of the results allows the following series of increasing quality of the instruments: Sahli, Zeiss-Ikon, Spencer, photoelectric. The differences of immediately neighbouring methods are however not significant.
- 3. The best hemoglobinometer for practical purposes is that of Spencer.

Literatur

[1] H. Spörri, Schweizer Archiv für Tierheilkunde, 93, 531, 1951. — [2] Rostoski, Verh. dtsch. Ges. innere Medizin, 46, 366, 1934. — [3] C. Romijn, Tijdschrift voor Diergeneesk. 71, 688, 1946. — [4] L. Heilmeyer: Blutkrankheiten, Springer Berlin, 1942. — [5] F. Kohlrausch, Lehrbuch der praktischen Physik, Leipzig.

Unserer Laborantin Fräulein C. Büeler (Hämoglobin-Bestimmung, Erythrozytenzählung) sowie den Laboranten H. Grenacher (O₂-Kapazitätsbestimmung, photoelektrische Untersuchungen) und H. P. Stüssi (Erythrozytenzählungen, O₂-Kapazitätsbestimmungen) danken wir für die experimentelle Mitarbeit.

Aus der Beobachtungsstation für Rinder und dem Institut für interne Veterinär-Medizin der Universität Zürich. Aus dem Veterinär-chemischen Laboratorium der Universität Zürich

Untersuchungen über den Kalzium-, Magnesium-, Phosphorstoffwechsel des Rindes

XVIII. Mitteilung

Von A. Krupski †, F. Almasy und H. Ulrich

Die vom verstorbenen Prof. Krupski geleitete Arbeitsgemeinschaft zum Studium des Knochenwachstums beim Rind führte von 1936 bis 1948 bilanzmäßige Prüfungen des Ca-, Mg- und P-Stoffwechsels durch und konnte in mehr als 130 Versuchen den klinischen und physiologisch-chemischen Wert dieser Methodik nachweisen. Im Falle des Rindes kommt dem Bilanzversuch um so höhere Bedeutung zu, als die gebräuchliche klinisch-chemische Prüfung des Rinderblutserums bei gestörtem Knochenwachstum vielfach keine Anhaltspunkte liefert, und auch die komplizierte Serum-Ultrafiltrat-Untersuchung sich als praktisch nutzlos erweist (vgl. z. B. [1, 2, 3, 5]). Nach dem Ableben von Prof. Krupski befinden sich unter unseren Aufzeichnungen noch einige (letzte) Resultate von Bilanzversuchen, die wir nachstehend publizieren, da es sich um aufschlußreiche Untersuchungen handelt.

Von 2 Kälbern (Gemse, Lusti) liegen längere Versuchsreihen vor, welche von den ersten Lebenstagen bis zur vollständigen Entwöhnung von der Milch reichen. Ein weiteres Kalb (Krapf) konnte bis zum Alter von 42 Tagen in 2 Bilanzversuchen geprüft werden; in der Folge ging das Tier unter den Anzeichen einer starken Acidosis ein. Von einer 4jährigen Kuh (Hera), von welcher 21 Bilanzversuche bei früherer Gelegenheit beschrieben wor-