Zeitschrift: Schweizer Archiv für Tierheilkunde SAT : die Fachzeitschrift für

Tierärztinnen und Tierärzte = Archives Suisses de Médecine Vétérinaire

ASMV : la revue professionnelle des vétérinaires

Herausgeber: Gesellschaft Schweizer Tierärztinnen und Tierärzte

Band: 92 (1950)

Heft: 7

Rubrik: Berichte

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

recchio sarebbe adatto per tutti gli animali da macello e presenterebbe notevoli vantaggi di fronte ad altri metodi di stordimento. Questi vantaggi sono specialmente: stordimento sicuro e profondo, dissanguamento rapido e completo, scomparsa, senza ritorno, della sensazione, e procedimento molto economico. I metodi di macellazione secondo un determinato rito, come quelli ebreo e mussulmano, possono essere praticati con l'elettrochoc, senza provocare dolore.

Summary

The authors have had Cohen Stuart A.-G. in Hilversum construct an instrument which is used to electrically stun animals for slaughter. The instrument is commercially known under the name "Elther". It functions similar to the apparatus used for shock treatment in human psychoses. It is supposed to be applicable in all slaughter animals and is superior to other stunning methods on account of the certain and deep stun which it produces. The bleeding out is complete and the animal never regains consciousness again. Procedure of this instrument is sure and cheap. Ritual slaughtering methods like in the Jewish or Mohammedan faiths can be carried out in a painless manner.

BERICHTE

Brucella-Infektionen. Der mögliche Zusammenhang mit einem Mangel an Spuren-Elementen in Boden, Pflanzen, Tieren und Menschen. Von F. M. Pottenger Jr., M. D., Ira Allison, M. D. und Wm. A. Albrecht, Ph. D. The Merck Report, Juli 1949, S. 13—14.

Die Forschung über Brucella-Infektionen als mögliche Folge mangelnder Spuren-Elemente wurde durch die Annahme angeregt, das Vorhandensein des Mikroorganismus stelle nur ein Symptom von Mangelerkrankungen, dagegen nicht deren Ursache dar. Auch wurde damals vorausgesetzt, daß Ernährungsmängel — einschließlich solcher verschiedener Spuren-Elemente — die allgemeine Ursache der mannigfaltigen Symptome seien, das Vorhandensein dieser besonderen Mikroben inbegriffen.

Spektrographische Analysen ergaben das Fehlen einiger Spuren-Elemente in bestimmten Geweben von an Bang erkrankten Kühen. Diese gleichen Elemente fanden sich in gesunden Kühen vor. Auch Kühe, die mit Salzen der Spuren-Elemente Mangan, Kobalt, Kupfer und Jod gefüttert wurden, erwiesen sich nach Einstellen unter die anderen gegen die Krankheit immun. Diese Beobachtungen regten zu Versuchen mit der Spuren-Element-Salz-Therapie bei Brucellose an 4 Menschen an. Es zeigten sich dabei fortschreitende Änderungen der Blutteste nach der negativen Seite hin, mit Besserung anderer Symptome, trotz einiger Schwierigkeiten für die Beibehaltung der Dosierung. Diese Ergebnisse ermutigten zu ausgedehnteren Versuchen, die dank der Mithilfe von etwa 1800 Patienten möglich waren, und zwar in einem Gebiet, in dem andere Störungen beim Rindvieh vorkommen, und die Untersuchung des Bodens das Fehlen sowohl der Haupt- wie der Spuren-Elemente, die von der landwirtschaftlichen Produktion benötigt werden, ergab. Die Behandlung bestand in der Verwendung von:

- a) Mangan 2 Gm.,
- b) Kupfer 2 mg.,
- c) Kobalt 2 mg.,
- d) Magnesium 60 mg. und
- e) Zink 15 mg.

in Tablettenform und in einer Dosierung von höchstens 3 pro Tag. Der vorliegende Bericht wurde veranlaßt durch die Beobachtungen an den unter dieser Therapie gestandenen zahlreichen Patienten, gestützt auf ihre früheren, nunmehr zur Erhöhung des Proteingehaltes und zur Ausschaltung von Zucker korrigierten Ernährungsgewohnheiten, die Veränderungen der Blutteste, Änderungen der Hypochlorhydrie bis nahezu normal und veränderte Gesundheitsverfassung als Folge der Einführung von Spuren-Elementen, und zeigte augenscheinlich, daß die Brucellose eine Mangelkrankheit ist.

Die ersten Versuche an 4 Patienten wurden am 19. Januar 1945 aufgenommen. Ausgedehntere begannen am 15. Januar 1947 mit der Spuren-Element-Therapie ohne Jod und mit diesen Salzen in Darmhüllen. Diese Kombination ergab keine Unregelmäßigkeiten in der Dosierung. Sie ermöglichte die Zunahme der Anzahl freiwilliger Patienten für die Versuche. Regelmäßig wurden Blutproben gemacht und Agglutinationen zur Kontrolle von mehr als einem Laboratorium ausgeführt, lediglich deshalb, um fortschreitende Besserungen des Blutbildes zu erkennen. Diese Änderungen liefen im allgemeinen parallel mit jenen der sichtbaren Symptome und mit den begeisterten Berichten der Patienten über ihre gesundheitlichen Fortschritte; sie stellten sich in den meisten Fällen zwischen 3 und 6 Monaten ein. Anfänglich zeigten sich derart verschiedene Symptome, daß das Stellen zuverlässiger Diagnosen Schwierigkeiten bereitete. Sie verschwanden jedoch nach Einnahme von Salzen von Spuren-Elementen und sorgfältig dosierter Hochprotein- und Niederzuckerdiät während zwölf und mehr Wochen. Besserung einer großen Anzahl Symptome, einschließlich Schmerzen im Rücken, in den Schultern und Gliedern, Allergie, Arthritis, Appetitlosigkeit, Hyperidrosen, Fieber, Verstopfung, Vergrösserung der Milz, seelische Depressionen, usw., wurde für ungefähr 200 Fälle berichtet. Die verdächtigen und gemeldeten Brucella-Infektionsquellen waren zahlreich. Für die Patienten, die der Spuren-Element-Therapie unterworfen wurden, konnte jedoch in weniger als 3% die Milch als mögliche Infektionsquelle bezeichnet werden. Dies deutet auf die allgemeine Verbreitung der Keime hin. Es wirft sich die Frage auf, ob Bestrebungen zu deren Ausrottung und zum Schutze vor denselben größere Aussichten auf Erfolg bieten, als jene zur Verbesserung der Ernährung und zur Kräftigung des körperlichen Widerstandes.

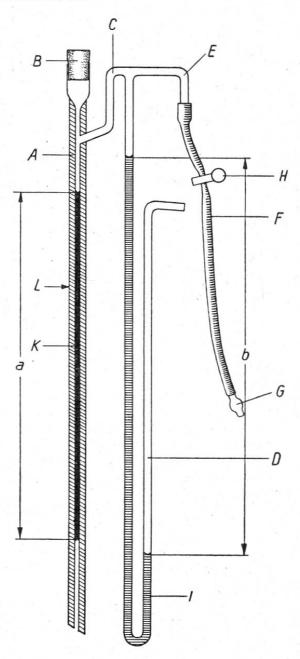
Unter den 1800 mit Spuren-Elementen behandelten Patienten befanden sich auch solche mit anderen Leiden und Symptomen als jene mit Brucellose behafteten; einige der betreffenden Leiden und Symptome ließen sich mit dieser einfachen Ernährungsart beheben; offensichtlich enthielt die ordentliche Nahrung einen Mangel an den Salzen von Mangan, Kobalt, Kupfer, Zink und Magnesium. Sehr wichtig ist die Beobachtung, daß die frühere Ernährungsart fast aller Patienten auf mögliche Mangelhaftigkeit hinwies, lange bevor Symptome von Brucellose oder andere Erscheinungen auftraten, die die Aufmerksamkeit des Arztes erweckten.

In Ergänzung der Anwendung der Spuren-Element-Therapie bei Brucellose des Menschen wurde die gleiche Behandlung auch während fast eines Jahres bei Brucellose, Abortus, Zuchtbeeinträchtigungen und andere Störungen zeigenden Kühen angewandt. Das Jahr vor der Verfütterung von Spuren-Elementen verzeichnete bei 56 Kühen einen Geburtenanfall von 20. Während des Jahres der Spuren-Element-Therapie warfen 52 Kühe je ein Kalb, 2 Abortusfälle und eine tödliche Verletzung inbegriffen. Diese Kälber waren größer als jene früherer Jahre. Bei der Geburt zeigten sich zudem weniger Störungen. Hilfeleistungen bei der Befruchtung — sowohl bei künstlicher wie bei natürlicher — waren auffallend weniger verlangt worden als im vergangenen Jahr. Die Milchleistung pro Kuh hatte derart zugenommen, daß der Durchschnitt für die Herde zu einer ausgezeichneten Leistung anstieg.

Es wurden auch Bodenbehandlungen mit Spuren-Elementen zwecks Düngen der Weiden vorgenommen. Als die Vieherde auf solchem Boden zu weiden begann, wurde von der vorangegangenen Therapie mit Spuren-Elementen abgesehen; es zeigten sich keine Störungen. Dagegen ließ die verbesserte Milchleistung nach, sobald die Spuren-Elemente wieder mit dem Futter vermischt und zusätzlich mit den im Gras enthaltenen eingenommen wurden. Daraus läßt sich ableiten, daß die Möglichkeit der Überdosierung durch Beimischung von Spuren-Elementsalzen zum Futter dann besteht, wenn der Boden diese Spuren-Elemente durch die Grünfütterung vermittelt.

Auch das Blutbild der Viehherde stand unter Beobachtung. Die zweite Probe (sie war die erste nach Einführung der Therapie) wies darauf hin, daß die Behandlung das Blutbild beeinträchtigt hatte. Spätere Proben zeigten jedoch eine fortschreitende Besserung mit positiven Reaktionen nach den in den Testen verwendeten niedrigeren Verdünnungen hin, mit zunehmender Anzahl negativer und mit Abnahme verdächtiger Tiere.

Die Bodenbehandlungen mit Spuren-Elementen müssen nach sorgfältig ausgearbeitetem Plan zur Hebung der Fruchtbarkeit des Bodens mittels der Mehrheit der Nahrungsgrundstoffe durchgeführt werden, unter Berücksichtigung der Ergebnisse der Bodenuntersuchungen. Während es noch nicht möglich war, den Wert der Bodenbehandlung mit Spuren-Elementen zur Verbesserung der Ernährung und damit zur Vorbeugung gegen Brucella-Infektionen des Menschen zu beweisen, besteht Hoffnung, daß diese Bodentherapie zur Hebung der Tierfütterung den Viehbestand vor diesem Leiden bewahren werde. Wenn dies zutrifft, wird der Wert der Vermittlung dieser Grundstoffe durch den Boden einen Anfang darstellen ihrer wichtigen synthetischen Ausnützung zu organischer Verbindung mit Mikroben und Pflanzen und Verbesserung jener Stoffe, die für den Verdauungsapparat erforderlich sind, wie dies für Kobalt und Kupfer der Fall zu sein scheint. Derartige Ergebnisse beim Vieh bedeuten einen Schritt weiter zur Annahme und zum späteren Beweis, daß zweckmäßige Ernährung Vorbeugung gegen Brucellose und wahrscheinlich ebenso gegen andere Unzuträglichkeiten der Menschen sein kann.


Prof. Dr. Graf in Zürich, der die Gefälligkeit hatte, diese Übersetzung durchzusehen, hat mich auf eine Arbeit aufmerksam gemacht, die im "Recueil de Médecine Vétérinaire" Nr. 5 vom Mai 1945 von A. Charton über "Les infiniment petits chimiques et leurs carences" veröffentlicht wurde. Nach derselben sind durch neuere Forschungen weit mehr Spurenelemente gefunden worden als früher. Charton zählt folgende 6 Metalloide auf: Fluor, Brom, Jod, Bor, Arsen und Silicium. Ferner 19 Metalle, nämlich: Eisen, Zink, Kupfer, Nickel, Kobalt, Mangan, Aluminium, Blei, Zinn, Molybdän, Vanadium und Pitan, sowie Rubidium, Cesium, Lithium, Barium, Strontium, Silber und Chrom.

Ein neues, einfaches Verfahren zur Bestimmung des spezifischen Gewichtes von kleinen Flüssigkeitsmengen.

Dichtebestimmungen von Körperflüssigkeiten verschiedenster Art (Harn, Liquor cerebrospinalis, Blut, Milch, Magensaft, Exsudat, Transsudat usw.) spielen in der Diagnostik eine wichtige Rolle. Sofern zu diesem Zweck größere Flüssigkeitsmengen (mindestens 10—40 ccm) zur Verfügung stehen, kann das spez. Gewicht rasch und genau mit den zur Verfügung stehenden und allgemein bekannten Apparaten in der Form des Aräometers, Pyknometers oder der Hydrostatischen Waage ermittelt werden. Sehr oft sind die zu untersuchenden Proben mengenmäßig jedoch so gering (z. B. Harnproben kleiner Tiere), daß die Benützung der soeben erwähnten Apparate nicht möglich ist. Dies veranlaßte uns seit längerer Zeit, nach einem dies-

bezüglich geeigneten Apparat Ausschau zu halten. Dabei stießen wir auf den Dichtemesser von Krutzsch.

Das Prinzip des Krutzsch Dichtemessers wurde erstmals im Jahre 1943 (1) und ein anderes Mal 1949 (2) in kurzen Notizen publiziert. Das Instrument ist jedoch infolge der Kriegswirren in unserem Lande ziemlich unbekannt geblieben. Da der Apparat einem wirklichen Bedürfnis entspricht und nach unserer Erfahrung eine wertvolle Ergänzung des klinisch-diagnostischen Rüstzeuges darstellt, möchten wir darüber kurz berichten.

Beschreibung des Apparates

Das Instrument besteht aus einem System kommunizierender Glasröhren, die auf einem Brett fixiert sind (Abb.). A stellt eine unten offene Glaskapillare von 2 mm Lichtweite und 70 cm Länge dar. Zufolge einer Erweiterung am oberen Ende der Kapillare ist das Eingießen von Flüssigkeiten zwecks Durchspülung leicht möglich. Während der Messung wird diese Öffnung mit einem Gummistopfen B verschlossen. Die Kapillare A ist durch ein Zwischenstück C mit dem U-förmigen Glasrohr D (Manometer) verbunden. An dieses ist seinerseits ein Stutzen E angeschlossen. An dem letzteren steckt ein Gummischlauch F mit einem gläsernen Mundstück G. Um den Gummischlauch ist eine Klemme H gelegt. In die U-Röhre D wird als Manometer- bzw. Vergleichsflüssigkeit gefärbtes destilliertes Wasser oder eine andere Flüssigkeit mit genau bekanntem spezifischem Gewicht eingefüllt.

Arbeitsweise

Die in ein kleines Becherglas, Zentrifugen- oder Agglutinationsröhrchen verbrachte Untersuchungsflüssigkeit wird so unter die Kapillare A gehalten, daß deren untere Öffnung in die Flüssigkeit eintaucht.
Durch Saugen am Mundstück G zieht man die Flüssigkeit in die Kappillare A ein. Hat die Flüssigkeitssäule K ungefähr die Höhe einer an
A angebrachten Marke L erreicht, so wird das Becherglas weggezogen,
ohne dabei das Saugen zu unterbrechen, so daß die Flüssigkeit weiter
ansteigt. Noch bevor die Flüssigkeit das Zwischenstück C erreicht,
wird die Schlauchklemme H geschlossen und das Saugen sistiert.

Bei diesem Vorgehen entwickelt sich im oberen Teil des Röhrensystems ACDE ein Unterdruck, welcher dem Gewicht der Flüssigkeitssäule K das Gleichgewicht hält. Zufolge des Unterdruckes verschiebt sich auch die Flüssigkeit I im linken Schenkel des U-Rohres D nach oben, wie dies in der Abb. angedeutet ist. Auf einer Skala (in der Abb. weggelassen) kann die Höhe a des Flüssigkeitsfadens K und die Höhendifferenz b der beiden Menisken der Vergleichsflüssigkeit I abgelesen werden. Je größer das spez. Gewicht der zu untersuchenden Flüssigkeit, desto größer ist natürlich — bei gleicher Länge der Flüssigkeitssäule a — die Höhendifferenz b der Vergleichsflüssigkeit, die der Flüssigkeit a das Gleichgewicht hält.

Nach den Lehren der Physik beträgt

$$s_x \cdot a = s \cdot b$$

wobei s_x das spez. Gewicht der zu untersuchenden Flüssigkeit K und s das bekannte spezifische Gewicht der Vergleichsflüssigkeit I bedeutet.

Daraus ergibt sich

$$s_{X} = \frac{s \cdot b}{a} \tag{1}$$

Da die Kapillarkräfte sowohl bei der Untersuchungsflüssigkeit K wie bei der Vergleichsflüssigkeit I in einander entgegengesetzten Richtungen wirken, heben sie sich auf und sind somit ohne Einfluß bei der Messung. Auch der Barometerstand und der Innendurchmesser (Wärmeausdehnung!) der Glasröhre A und D ist irrelevant. Bei der Untersuchung von wässerigen Flüssigkeiten, wie dies in der klinischen

Diagnostik praktisch immer der Fall sein wird, kann auch der Temperatureinfluß vernachlässigt werden, da sich eine Temperaturänderung etwa gleich stark auf die Untersuchungsflüssigkeit wie auf das als Vergleichsflüssigkeit dienende gefärbte Wasser auswirkt. Auch die Temperatur der Untersuchungsflüssigkeit vor der Messung ist bedeutungslos, weil der Flüssigkeitsfaden in der Kapillare während der Messung die Temperatur der Umgebung annimmt.

Eine kleine Abweichung von der unter (1) angegebenen Beziehung bewirkt das Volumen der Menisken an den Enden des Flüssigkeitsfadens K. Unter Berücksichtigung des spezifischen Gewichtes des gefärbten Wassers (1000,4) im U-Rohr D heißt die genaue Berechnungsformel nach Angabe des Konstrukteurs

$$s_{x} = \frac{1000,4 \cdot b}{a + 1,1} \text{ (Gramm/Liter)}$$
 (2)

Diese Formel gibt das spezifische Gewicht der untersuchten Flüssigkeit bei 20° C an. Die Bestimmung des spezifischen Gewichtes wird somit auf zwei Längenmessungen (a, b) reduziert.

Macht man die Flüssigkeitsäule K 50 cm lang, so werden rund 1,6 ccm Flüssigkeit für die Messung benötigt. Die Messungen können jedoch auch mit einer kürzeren Flüssigkeitssäule durchgeführt werden. Allzu kurz darf sie jedoch nicht sein, ansonst die Genauigkeit der Messung leidet. Sofern man den Flüssigkeitsfaden etwa 50 cm lang macht, hat man den Vorteil, für die Berechnung des spezifischen Gewichtes eine vereinfachte Näherungsformel

$$s_x = 999.3 + (b - a)$$
 (3)

benützen zu können, wodurch das zeitraubende Dividieren, welches die Formel (2) fordert, in Wegfall kommt. Die Meßgenauigkeit beträgt etwa 2‰. Über technische Details gibt die dem Apparat beigegebene Gebrauchsanweisung Auskunft (Der Apparat ist durch die Firma Hermetschweiler, Fraumünsterstr. 14, Zürich, erhältlich).

Zusammenfassung

Es wird auf ein neues Meßverfahren des spezifischen Gewichtes (Krutzsch-Dichtemesser) hingewiesen. Dieses Verfahren eignet sich speziell zur einfachen und schnellen Bestimmung des spezifischen Gewichtes kleiner Flüssigkeitsmengen (1—2 ccm). Die Meßgenauigkeit beträgt rund 2‰.

Schrifttum

[1] Krutzsch, J.: Messung des spezifischen Gewichtes geringer Flüssigkeitsmengen. Klin. Wschr. 22, 469, 1943. — [2] Krutzsch, J.: Die Messung des spezifischen Gewichtes von Flüssigkeiten. Mediz. Klinik 44, 1093, 1949.

H. Spörri, Vet.-Physiologisches Institut, Zürich.