Zeitschrift: Schweizer Archiv für Tierheilkunde SAT : die Fachzeitschrift für

Tierärztinnen und Tierärzte = Archives Suisses de Médecine Vétérinaire

ASMV : la revue professionnelle des vétérinaires

Herausgeber: Gesellschaft Schweizer Tierärztinnen und Tierärzte

Band: 80 (1938)

Heft: 6

Rubrik: Referate

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Referate.

Die Züchtung des Maul- und Klauenseuche-Virus.

Vortrag von Herrn Dr. Frenkel.

Am 14. Januar 1938 hielt Herr Dr. Frenkel vom Staatlichen Seruminstitut in Rotterdam auf Einladung der Gesellschaft Zürcherischer Tierärzte im Auditorium maximum der Universität Zürich einen Filmvortrag über die Züchtung filtrierbarer Vira, speziell des Maul- und Klauenseucheerregers. Der Hörsaal war bis auf den letzten Platz besetzt, was sich schon daraus erklären dürfte, daß seit dem Beginn des gegenwärtigen Maul- und Klauenseuchezuges in Europa im Frühling 1937 in Südfrankreich die Frage der Züchtung des Virus und der Herstellung eines wirksamen Impfstoffes erneut Bedeutung erlangt hat. Die Veranstaltung ist am 28. Januar auf Wunsch des Vereins Bernischer Tierärzte in der Aula der Universität Bern wiederholt worden. Der Referent, der über eine große Erfahrung in der Züchtung des Aphtenvirus verfügt und im Internationalen Seuchenamt in Paris bereits zu verschiedenen Malen darüber berichtet hat, führte im wesentlichen folgendes aus:

Seit Jahrzehnten hat man vergebens versucht, das Maul- und Klauenseuchevirus künstlich zu züchten. Meistens lag der Grund des Fehlschlages in der Annahme, daß die Züchtung mit bakteriologischen Methoden gelingen werde. Es kann an dieser Stelle nicht weiter über die betreffenden Versuche berichtet werden; sie zeigen, wie groß der Einfluß schöpferischer Forscher auf das Denken ihrer Schüler sein kann.

Bis vor einigen Jahren war die Züchtung filtrierbarer Vira nur in vivo gelungen. (Der Referent erwähnte verschiedene Beispiele aus der Züchtung filtrierbarer Krankheitserreger in vivo.)

Die Virusforschung und die biologische Forschung überhaupt ist stark bereichert worden durch die Gewebezüchtung, die es ermöglichte, tierisches Gewebe in Vitro zum Wachsen zu bringen. Bald wurden solche Arbeitsmethoden der Züchtung von Virusarten dienstbar gemacht.

Bahnbrechend gingen in dieser Hinsicht Carrel und seine Mitarbeiter vor, denen es gelang, das Pockenvirus in nach der Carrel'schen Methode gezüchtetem Gewebe zur Vermehrung zu bringen.

Hecke war alsdann der erste, der es fertig brachte, das Maulund Klauenseuchevirus zu züchten, indem er die Arbeitsmethode nach Carrel dafür anwandte.

Unabhängig von und fast gleichzeitig mit Hecke gelangten auch Maitland und Cowen Maitland zu positiven Ergebnissen in der Züchtung des Maul- und Klauenseuchevirus in Vitro. Sie wandten dieselbe Methode an, die sie für die Züchtung von Pockenvirus benutzten. Auch sie machten dabei die gleiche Erfahrung wie Carrel, nämlich daß das Maul- und Klauenseuchevirus auf Hühnergewebe nicht angeht. Sie benutzten alsdann Meerschweinchengewebe.

Während das Vakzinevirus auf verschiedenen Gewebearten wächst, ist das Maul- und Klauenseuchevirus zu seiner Vermehrung auf Epithelgewebe angewiesen. Frenkel und van Waveren haben diese Erfahrung bestätigt und gezeigt, daß auf gezüchteten Fibroblasten verschiedener Herkunft die Züchtung des Maul- und Klauenseuchevirus nicht gelingt.

Zunächst versuchte Frenkel das Maul- und Klauenseuchevirus mittels einer Aerationsmethode, die darauf beruht, daß die Mesenchymzellen in einer nach de Haan hergestellten physiologischen Flüssigkeit angesetzt werden, zur Vermehrung zu bringen. Die Kulturen der Fibroblasten, welche auf diese Weise gezüchtet wurden, waren sehr üppig, allein das Virus vermehrte sich darin nicht.

Als die Züchtung mittels der Aerationsmethode nicht gelang, hat Frenkel die Arbeitsmethoden nach Carrel in Anwendung gebracht. Im Gegensatz zu Hecke und Maitland ging er vom Gedanken aus, daß es sich vielleicht lohnen würde, die Züchtung an Gewebeexplantaten von embryonaler Rinderhaut zu versuchen. Epithelgewebe, herstammend vom natürlich empfänglichen Rinde, versprach Erfolg. Dazu ließ sich erwarten, daß ein derartiges auf Rindergewebe gezüchtetes Virus für Rinder eine höhere antigene Wirkung aufweisen würde, als ein auf Meerschweinchengewebe gezüchtetes.

Die ersten Versuche gelangten in Carrel-Flaschen zur Ausführung unter Benutzung von Kälberplasma. Diesem wurde Heparin zugesetzt zum Zwecke der Verhinderung des Erstarrens. Alsdann erfolgte der Zusatz von fein zerschnittenem Hautgewebe, herstammend von Rinderembryonen sowie von Maul- und Klauenseuchevirus und Tyrodenlösung, annähernd in demselben Verhältnis, wie es Maitland angab.

Die Rinderembryonen wurden vom Schlachthof in uneröffnetem Uterus und in noch lebenswarmem Zustande geliefert. Nach Herausnahme unter aseptischen Kautelen wurde der Embryo in einem Schrank aufgehängt, der zur Vermeidung von Staub mit vaseliniertem Aluminium ausgekleidet war. Sodann erfolgte die Trennung der Haut mittels einer Schere durch einen Schnitt in der Medianlinie, worauf die beiden Hauthälften mit dem stumpfen Ende der Schere entfernt wurden. Ein Nachteil dieses Verfahrens liegt darin, daß man mit dem relativ dünnen epithelialen Teil eine große Menge von Bindegeweben miterhält. In letzter Zeit ist die Methode in der Weise abgeändert worden, daß die Haut nur mit einem scharfen Löffel abgekratzt wird. Dies hat noch den Vorteil, daß die Gewebsstücke sich besser mit der Schere zerschneiden lassen. Früher war das Verhältnis Epithel zu Bindegewebe etwa 1:9, wogegen es sich jetzt wie 9:1 gestaltet.

Nach dem Zerschneiden der Gewebsfetzen wird nach der jetzigen Arbeitsweise Kulturvirus hinzugegeben und zwar im Verhältnis 1:1. Das Gemisch gelangt darauf während 2 bis 24 Stunden in den Eisschrank zwecks Adsorbierung des Virus an das Gewebe. Sodann werden die Kulturen angelegt und zwar in Doppelschalen. Dies geschieht durch Zusatz zum Virusgewebe von Pufferlösung, Tyrodelösung und hepariniertem Kälberplasma in geeigneten Mengen. Innerhalb 10 bis 15 Minuten erstarrt das Gemisch zu einer ziemlich dünnen Schicht, worin die Gewebsteilchen regelmäßig verteilt sein sollen. Hierauf werden die Kulturschalen (mitunter sind es auch Kolben von verschiedenem Typus und Größe) in den Brutschrank bei 37° C verbracht und während 2 bis 3 Tagen bebrütet. Unterdessen wird das Wachstum der explantierten Hautstücke mikroskopisch untersucht. Meistens tritt zuerst Bindegewebswachstum auf und nachher dasjenige des Epithels.

Das Wachstum des Gewebes hält in der Regel mit demjenigen des Virus nicht Schritt. Mitunter wird üppiges Gewebswachstum mit wenig Virusvermehrung beobachtet und umgekehrt.

Außer auf Explantaten von fötalem Rindergewebe läßt sich das Aphtenvirus auch auf embryonalem Hautgewebe von Schafen und Schweinen züchten, was Frenkel durch zahlreiche Kulturanlagen festgestellt hat. Übrigens ist es nicht einmal notwendig, die dazu zur Verwendung gelangenden Embryonen in lebenswarmem Zustande zu verarbeiten. Es läßt sich noch üppiges Wachstum des Gewebes und des Aphtenvirus erreichen, wenn die dafür verwendeten Föten 8 Tage und noch länger im Eisschrank aufbewahrt werden. Voraussetzung ist, daß der trächtige Uterus sofort nach der Schlachtung des Muttertieres in uneröffnetem Zustande in einen Eisschrank verbracht wird.

Die Virusgewebekulturen werden nach der Bebrütung mittels Quarzsand fein zerrieben. Der dadurch erhaltene Gewebsbrei wird zentrifugiert und die obenstehende Flüssigkeit mit Phosphatpufferlösung zu gleichen Teilen versetzt (1/15 mol. Lösung). Vorher muß noch die Wasserstoffionenkonzentration festgestellt werden, was elektrometrisch mittels der Glaselektrodenmethode geschieht. Das mit Pufferlösung verdünnte Virus wird nachfolgend durch Seitzoder Elfordfilter getrieben und schließlich auf Meerschweinchen titriert.

Mit dieser Methode gelingt es leicht, große Mengen von Maulund Klauenseuchevirus zu züchten, was in Hinsicht auf eine eventuelle Herstellung von Vakzinen gegen Maul- und Klauenseuche von großer Bedeutung ist.

Im Anschluß an das Referat führte Frenkel die von ihm geübte Züchtungsmethode in allen Einzelheiten im Film vor.

Sodann berichtete er noch kurz über die Versuche zur aktiven Immunisierung gegen Maul- und Klauenseuche, die in Holland mit der von ihm gezüchteten Viruskultur angestellt wurden. Danach sind in der Praxis eine größere Stückzahl Rinder mit Kulturvirus geimpft worden zum Zwecke der Erlangung von Immunität. Die betreffenden Tiere erkrankten ausnahmslos an Maul- und Klauenseuche. Immerhin soll der Grad der Erkrankung wesentlich geringer gewesen sein als bei natürlicher Ansteckung.

Die Versuche scheinen inzwischen wieder eingestellt worden zu sein. Eine Schutzbehandlungsmethode, bei deren Anwendung ein Blasenexanthem erzeugt wird, genügt den praktischen Anforderungen namentlich seuchenpolizeilich nicht. Derartige Impfverfahren werden kaum je Aussicht auf Erfolg und auf umfangreiche Anwendung haben. Es ist schon in verschiedenen Arbeiten hierauf aufmerksam gemacht worden.

Bei dieser Gelegenheit dürfte ein kurzer Überblick über die bis dahin durchgeführten Versuche zur aktiven Immunisierung gegen Maul- und Klauenseuche interessieren. Prof. Waldmann schreibt in seinen "Arbeiten aus den Staatlichen Forschungsanstalten Insel Riems 1937" darüber wörtlich folgendes:

Zunächst möchte ich kurz über die Ansätze berichten, die bis jetzt über die aktive Immunisierung bei Maul- und Klauenseuche gemacht wurden. Ich übergehe dabei die zahllosen erfolglosen Tastversuche, die nicht nur von Löffler, sondern auch von sehr vielen anderen in dieser Richtung unternommen sind. Dabei erinnere ich an das Seraphtin Löfflers, das eine Mischung von Virus und Hochimmunserum darstellt; an die Versuche Löfflers, mit einer lange in Schweinen passagierten Lymphe aktiv zu immunisieren; an die Versuche Uhlenhuths und vieler anderer, das Virus durch physikalische Methoden abzuschwächen, und an die vielen chemischen Mittel, mit denen eine Abschwächung versucht wurde.

Interessant ist auch der Versuch der Abschwächung des Maul- und Klauenseuchevirus durch Symbiose mit Kuhpockenlymphe.

Allen Versuchen war ein Erfolg nicht beschieden.

Die Übertragung der Maul- und Klauenseuche auf das Meerschweinchen gab uns anfangs die Hoffnung, nunmehr die Vakzine analog der Schutzpockenimpfung des Menschen gefunden zu haben. Leider wurden wir enttäuscht. Wir züchten das Virus nunmehr seit 12 Jahren, den Stamm A seit 15 Jahren täglich auf dem Meerschweinchen weiter, und erfahren dabei immer wieder, daß tatsächlich derart weitgehende, an das Meerschweinchen gewöhnte Stämme zunächst eine ganz geringe Virulenz für das Rind zeigen. Die Rinder erkrankten entweder gar nicht oder nur sehr schwach. Aber schon nach wenigen Passagen auf dem Rinde paßt sich das Virus dem Wirt wieder an und erhält seine normale Virulenz und Ansteckungskraft wieder. Dazu kommt, daß Tiere, die mit Meerschweinchenvirus unter Umgehung der natürlichen Eintrittspforte vorbehandelt werden und nicht erkranken, keine ausreichende Immunität gegen die Spontaninfektion zeigen. Dieser Weg ist also nicht gangbar.

Eine weitere Enttäuschung, wenn ich so sagen darf, bereitete uns das Meerschweinchen als Versuchstier für Immunisierungsversuche. Es zeigte sich immer wieder, daß das Meerschweinchen relativ leicht zu immunisieren ist. Bei der Übertragung der Versuchsanordnung auf das Rind führte dieses aber lange nicht zu dem Erfolg, den wir beim Meerschweinchen gesehen haben.

Sehr große Versuchsreihen sowohl am Meerschweinchen als auch am Rind wurden mit Kulturvirus ausgeführt. Ich darf auf die Veröffentlichungen verweisen und hier nur mitteilen, daß dieses Kulturvirus, intramuskulär injiziert, zu einem geringen Teil die Tiere leicht erkranken ließ, der größte Teil blieb gesund, war aber gegen die künstliche Infektion mit sogenanntem Stallvirus nicht geschützt.

Wir zweifeln heute daran, daß das Meerschweinchenvirus und das Kulturvirus, mit Gewebe von Meerschweinchenembryonen gezüchtet, für Immunisierungszwecke herangezogen werden kann. Wir suchen die Virulenz unserer Kultur zu steigern durch Züchtung auf Epithelreinkulturen und mit Haut von Rinderembryonen als Kulturgewebe.

Die Ergebnisse aller unserer Immunisierungsversuche zwingen uns zu dem Schluß, daß wir einen Erfolg nur erwarten können, wenn wir von dem höchst konzentrierten, virulenten Material, dem Rindervirus, also dem im akuten Krankheitsverlauf entstehenden Blaseninhalt und Aphtendecken, ausgehen.

Günstige Erfolge, über die die Engländer Bedson, Maitland und Burbury mit einer Formolvakzine bei Meerschweinehen ursprünglich berichten und die Ergebnisse mit Formolvakzine von Carré und Vallée, die vor Jahren berichtet, aber entweder nicht bestätigt oder nicht weiter verfolgt wurden, veranlaßten uns, noch einmal zu einer Wiederholung der Versuche mit Formolvakzine am Meerschweinehen und im breiteren Maße am Großtier.

Bei diesen Versuchen setzten wir der Virusemulsion 0,1 Prozent Formol hinzu und erhitzten nachher auf 25°. Der Verlust der Infektiosität wurde in jedem Falle bei jeder Impfstoffherstellung zuerst an einem und später an drei Rindern kontrolliert. Die Resultate waren über Erwarten gut. Wir haben 18 verschiedene Formolimpfstoffe zu verschiedenen Zeiten hergestellt und damit an ca. 2000 Meerschweinchen und 300 Rindern experimentiert. Die Meerschweinchen ließen sich zu fast 100 Prozent gegen Maul- und Klauenseuche soweit immunisieren, daß es bei der künstlichen Infektion an der Planta lediglich zur Ausbildung der Primäraphte kam, die Generalisation aber ausblieb. Von den hoch empfänglichen Rindern von 2 bis 3 Jahren konnten zwei Drittel soweit immunisiert werden, daß sie einer Kontaktinfektion widerstanden. Die Immunität tritt nach 14 Tagen ein und ist nach 3 bis 4 Wochen noch nicht abgeklungen. Eine entscheidende Schwierigkeit bei den Versuchen ist, daß wir über die Dauer der Erwärmung keine einheitlichen Zeitmaße finden konnten. Selbst die während 96 Stunden erwärmten Impfstoffe haben nicht in allen Fällen zur Abtötung genügt. Die Sicherheit der Abtötung des Impfstoffes ist aber Voraussetzung für seine Anwendung in der Praxis. Eine weitere Schwierigkeit ist die Beschaffung von genügendem Impfmaterial.

Die Versuche ermuntern aber zur Weiterarbeit. Sie haben uns nach langem Hin und Her eine wichtige Erkenntnis gebracht, daß es tatsächlich möglich ist, ohne Erzeugung einer Primäraphte eine Immunität beim Rind zu erhalten.

Neuerdings haben die Dänen Schmidt und Mitarbeiter sowie Schmidt-Jensen und Toussieng, viel über eine neue Immunisierungsmethode veröffentlicht. Sie adsorbieren Virus an Aluminiumhydroxyd und spritzen dieses Adsorbat Rindern subkutan ein. Die Tiere erkranken unter den gegebenen Mengenverhältnissen nicht, erwerben aber nach den Veröffentlichungen eine Immunität. Die Autoren arbeiten bewußt mit virulentem Material und sind der Meinung, daß das Virus so fest an das Adsorbat gebunden ist, daß es, dem Körper einverleibt, nur ganz langsam in unterinfektiösen Mengen resorbiert wird und so eine aktive Immunisierung herbeiführt. Unsere Versuche, die zur Zeit laufen, bestätigen zum Teil die dänischen Angaben. Wieweit aber der Impfstoff das erste Erfordernis, seine Ungefährlichkeit für die praktische Anwendung, erfüllt, kann vorläufig noch nicht gesagt werden. Ein dritter Weg hat sich uns neuerdings eröffnet: es ist uns gelungen, ebenso wie beim Gelbfieber und der Pferdesterbe, unseren Virusstamm B im Mäusehirn anzuzüchten und ihn innerhalb 7 Monaten in 125 Gehirnpassagen weiterzuführen. Die Zahl der Passagen schließt eine Verdünnung aus und beweist meines Erachtens einwandfrei, daß sich das Virus im Mäusehirn vermehrt. Von der 60. Passage ab blieb das Virus ausschließlich auf das Gehirn beschränkt. Ob sich aus diesen Feststellungen für die aktive Immunisierung etwas herausholen läßt, wissen wir nicht, aber der Weg wird verfolgt werden.

Die Ergebnisse der Immunisierung mit Formolvakzine sind ausführlich beschrieben in einer Arbeit, die Waldmann, Köbe und Pyl im "Zentralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten", Heft 7/8, vom 31. März 1937, veröffentlicht haben. Sie ist betitelt: "Die aktive Immunisierung des Rindes gegen Maulund Klauenseuche mittels Formolimpfstoff."

Seit Neujahr 1938 hat das Eidgenössische Veterinäramt in Verbindung mit dem Bakteriologischen Laboratorium und Seruminstitut Dr. Gräub in Bern versucht, einige Tiere mittels Kristall-Violett-Vakzine schutzzubehandeln. Das Präparat wurde in gleicher Weise hergestellt, wie es in den "Mitteilungen", Nr. 42 1937, für Kristall-Violett-Vakzine gegen Virusschweinepest beschrieben ist. Der Entzug des dafür verwendeten Blutes erfolgte bei natürlich erkrankten Rindern im Zeitpunkte des höchsten Fieberanstieges. Es gelang bei den wenigen Versuchen in keinem Falle, die Tiere vollständig zu immunisieren. Immerhin wiesen sie gegenüber den Kontrollen einen bestimmten Schutz auf. Die Arbeiten sollen weiter verfolgt werden.

Aus den vorstehenden Angaben dürfte hervorgehen, daß, wenn auch noch keine zuverlässige, den praktischen Anforderungen genügende Methode gefunden ist, die Frage der aktiven Immunisierung gegen Maul- und Klauenseuche sich bedeutend zuversichtlicher beurteilen läßt als ehedem.

Flückiger.

Die epizootische Bedeutung der Ratten, des Wildes, der Vögel und der Insekten für die Verbreitung der Maul- und Klauenseuche. Von Prof. Dr. O. Waldmann und Dr. phil. H. Hirschfelder. Berliner tierärztl. Wochenschrift, Nr. 16, 1938.

Die vorliegende Arbeit befaßt sich mit den neuesten Erkenntnissen auf dem Gebiet der Verschleppungsmöglichkeiten der Maulund Klauenseuche durch wild lebende Tiere. Sie wird eine wertvolle Abklärung in diesen oft diskutierten Problemen bringen und es sollen deshalb hier die Ergebnisse mitgeteilt werden:

Den Ratten, dem Wild, den Vögeln und Insekten kommt bei der Ausbreitung der Maul- und Klauenseuche so gut wie keine Bedeutung zu. Die Ratten können gelegentlich die Rolle eines Zwischenträgers spielen (benachbarte Seuchengehöfte). Die Empfänglichkeit des Wildes für Maulund Klauenseuche ist bis jetzt nur an den gefangen gehaltenen Tieren (in Wildparks) einwandfrei festgestellt worden. Die Vögel können auf kurze Distanz vielleicht die Seuche verschleppen. Insekten, insbesonders Fliegen, kommen als Zwischenwirte für das Maul- und Klauenseuche-Virus nicht in Frage, hingegen können Fliegen jeder Art auf kurze Entfernung (Weide zu Weide) mechanische Zwischenträger abgeben.

Die wichtigste Seuchenquelle ist immer das Rind; in weitem Abstand folgen das Schwein und das Schaf. Die Ausbreitung erfolgt hauptsächlich durch Zwischenträger und durch Kontakt, und da steht der Mensch, als freies Geschöpf, immer noch an erster Stelle. H.

Die aktive Immunisierung des Rindes gegen Maul- und Klauenseuche. Von O. Waldmann und K. Köbe. Berliner tierärztliche Wochenschrift, Nr. 22, 1938.

In keinem Staat ist es bis jetzt gelungen, das Rind für die MKS (Maul- und Klauenseuche) aktiv zu immunisieren. Nun scheint es, daß neue Versuche uns wieder einen Schritt vorwärts gebracht haben. In einer "Vorläufigen Mitteilung" veröffentlichen Waldmann und Köbe (Insel Riems) die Ergebnisse der Versuche betreffend die Herstellung einer Vakzine. Diesen Forschern ist es gelungen, eine Impfvakzine herzustellen, die keine MKS hervorruft, in der wirksamen Dosis geringe lokale und allgemeine Reaktionen bei den geimpften Tieren auslöst und eine ausreichende Immunität erzeugt. Die nähere Herstellungsart wird beschrieben. Als Viruszellen dienen Aphtendecken und Lymphe von der Zunge von Rindern, die infiziert worden waren. Als Adsorbens für das Virus wird Aluminiumhydroxyd verwendet. Die Impfdosis beträgt 20—60 ccm, die am Triel subc. dem Körper einverleibt werden.

Die Ergebnisse wurden im Februar dieses Jahres dem Reichsund Preußischen Ministerium des Innern vorgetragen, das sofort ein Versuchsgebiet in einer verseuchten Gegend angewiesen hat. Es sollen namentlich 3 Fragen abgeklärt werden: 1. Ist der Impfstoff unschädlich (Impf-MKS oder lokale und allgemeine Reaktionen); 2. in welcher Zeit entwickelt sich gegenüber der Anstekkungsgefahr in der Praxis eine aktive Immunität, und 3.: wie lange dauert die Immunität unter normalen Ansteckungsmöglichkeiten?

Die Resultate der Versuche an 40 000 Tieren werden nächstens mitgeteilt. Möge es den Forschern gelingen, eine recht zuverlässige und praktisch brauchbare Impfmethode zu finden! H.

A propos de la vaccination charbonneuse. Sur une nouvelle méthode de vaccination des animaux domestiques contre le charbon par MM. Ramon et Staub. (Bulletin de l'Acad. de Méd. vét. de France, 9 mars 1937.)

Les auteurs ont employé pour leurs expériences un vaccin additionné de gélose et d'alun. Le procédé ne comporte qu'une seule inoculation sous-cutanée qui procure aux animaux (moutons surtout) une immunité solide et durable.

Jaccottet.

La vaccination contre la peste porcine au moyen d'émulsions organiques avirulentes. Par H. Jacotot (Bulletin de l'Académie vét. de France, juillet 1937).

Vieux de vingt ans, ce procédé ne s'est pas répandu; seuls, quelques auteurs japonais ont expérimenté la méthode et lui accordent une certaine valeur.

L'auteur, directeur de l'Institut Pasteur de Nhatrang, Indo-Chine, l'a repris; pour la préparation des émulsions vaccinales, on emploie des porcelets de 4 mois (env. 20 kg.); inoculés de peste, ils sont sacrifiés 8 à 9 jours après par saignée à blanc. La rate, les ganglions, la moelle osseuse sont seuls employés pour la préparation des émulsions.

Une seule injection de vaccin (10 à 30 ccm pour des porcs de 100 à 125 kg.) permet de donner même aux individus de race très sensible une résistance marquée. L'auteur recommande une seconde inoculation 6 mois après et le procédé, pour lui, serait moins onéreux que la séro-infection.

Jaccottet.

Quelques notes épidémiologiques sur l'infection des chèvres et des brebis par Br. Melitensis. Taylor, Lisbonne, Vidal et Hazemann. — Revue de médecine vétérinaire. Avril 1938.

"Quelques observations bactériologiques tendent à démontrer que la brucellose du type melitensis chez les chèvres et plus particulièrement chez les brebis, est, dans la plupart des cas, une maladie qui se limite d'elle-même et dont la durée d'infection est probablement relativement courte. Des observations épidémiologiques ont été présentées tendant à démontrer que certaines conditions particulières, notamment la transhumance non surveillée, peuvent être un facteur essentiel non seulement dans la propagation de l'infection, mais également au point de vue de sa persistance. Nous avons également énoncé quelques propositions pouvant servir de base pour la lutte contre cette maladie en France, ou tout au moins pour en réduire l'étendue et l'incidence."

Tromsulin in der Rinderpraxis unter besonderer Berücksichtigung der Abortus-Bang-Infektion. Von Erich Hamann. Dissertation. Leipzig, 1938. 55 Seiten.

Die aus der Ambulatorischen Universitäts-Tierklinik in Leipzig hervorgegangene und sich auf viele Versuche stützende Arbeit ist zu folgenden Hauptresultaten gelangt: Tromsulin — eine wasserklare, jodhaltige Flüssigkeit — wurde bei intravenöser Applikation von den Rindern in Dosen von 100—150 ccm ohne jede klinische Reaktion vertragen. Auf den Ablauf des seuchenhaften Verkalbens (Abortus Bang) hatte es keinen Einfluß. Überraschende Wirkung entfaltete es dagegen bei der Goldregenvergiftung (Cytisus laburnum). Ebenso brachte bei Coliruhr der Kälber meistens schon eine einmalige intravenöse Injektion (25—35 ccm) innerhalb einiger Tage Heilung zustande. (Tromsulin ist ein Präparat der Chemischen Fabrik H. Trommsdorff in Aachen.)

Bücherbesprechungen.

Veterinary Pathology and Bacteriology by S. H. Gaiger (Glasgow) and G. O. Davies (Liverpool). 2d Edition, by G. O. Davies, London, 1938, Baillière, Tindall and Cox, 412 S., 198 Figuren. 25 Schilling.

Dieses vieles zusammenfassende Buch enthält folgende Hauptteile: 1. Allgemeine Pathologie (Degenerationen, Nekrose, Atrophie, Hypertrophie, Zirkulationsstörungen, Entzündung, Regeneration, Fieber, Neoplasmen). 2. Infektionskrankheiten, Bakteriologie und Pathologie (geordnet nach Mikroorganismen; durch Kokken, Spirillen, Bakterien, Protozoen, Vira verursachte Krankheiten). 3. Spezielle Pathologie (Organkrankheiten). 4. Anhang (Technik der Sektion, der Bakteriologie, Serologie und des Tierversuches).

Eine Zusammenfassung derart weiter Gebiete kann nur bei größter Kürze, Beschränkung auf das Wesentliche und exakter klarer Darstellung ihren Zweck erfüllen. Man darf wohl sagen, daß das dem Verf. der vorliegenden Auflage, Davies, gelungen ist. Das Buch ist ein gutes Kompendium, das jeder der englischen Sprache einigermaßen mächtige nützlich finden wird. W.F.

Über Konstitution und Erbfehler, sowie deren Feststellung und Bewertung für die amtliche Körung. Prof. Dr. V. Stang, Berlin, 1938, Verlagsbuchhandlung Richard Schoetz. Preis M. 2.60.

Das Verdienst das Körverfahren bei Haustieren in neue Bahnen geleitet zu haben, d. h. nach konstitutionellen Gesichtspunkten kommt hauptsächlich den Tierärzten zu. Stang gibt nun in einer knappgefaßten Schrift gerade dem Tierarzt eine Wegleitung zu solcher Selektionsweise. Dies weist ihm nicht geringe Ausbildungsverpflichtungen zu, muß er doch das Urteil über ein Zuchttier in Abwägung der wirksam gewordenen Umwelteinflüsse fällen und nicht allein nach Maßgabe der tierphaenotypischen Merkmale.