Zeitschrift: Schweizer Archiv für Tierheilkunde SAT : die Fachzeitschrift für

Tierärztinnen und Tierärzte = Archives Suisses de Médecine Vétérinaire

ASMV : la revue professionnelle des vétérinaires

Herausgeber: Gesellschaft Schweizer Tierärztinnen und Tierärzte

Band: 70 (1928)

Heft: 5

Artikel: Über die Verbreitung des Bacillus Tetani Nicolaier im Erdboden der

Schweiz unter spezieller Berücksichtigung der Kantone Graubünden,

Waadt und Wallis und der Höhenverbreitung

Autor: Lang, Walter J.

DOI: https://doi.org/10.5169/seals-589349

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

heiten, parasit. Krankheiten und Hygiene der Haustiere. Bd. 28. — 7. Wagener: Experimentelle Untersuchungen über die Tenazität des Virus der Maul- und Klauenseuche in häuslichen und gewerblichen Abwässern und ihre Bedeutung für Hygiene und Veterinärpolizei. Archiv für wissenschaftliche und praktische Tierheilkunde. 56. Bd. Heft 6. — 8. Wilhelmi: Die biologische Selbstreinigung der Flüsse. Weyls Handbuch der Hygiene. Bd. 2. 2. Auflage.

Hygienisch-parasitologisches Institut der Universität Lausanne. Direktor: Prof. Dr. B. Galli-Valerio.

Über die Verbreitung

des Bacillus Tetani Nicolaier im Erdboden der Schweiz unter spezieller Berücksichtigung der Kantone Graubünden, Waadt und Wallis und der Höhenverbreitung

Von Walter J. Lang.

Einleitung.

laufenden Nachrichten aus vergangenen, sowie hunderten besagen, dass in der Häufigkeit der Tetanuskrankheit zwischen verschiedenen Gegenden der Erdoberfläche erhebliche Unterschiede bestehen, die sich in dem relativ seltenen Vorkommen von Tetanus in höheren und einer hie und da selbst bis zum Charakter der Endemizität gesteigerten Frequenz in niederen Breiten äussern. So konstatierte Hirsch (1) wenig Tetanusfälle in den kalten und gemässigten Breiten (auch im Süden Europas), häufige dagegen in der subtropischen Zone (Rio de la Plata-Staaten, Algier, Kapland usw.). Er fand Hauptzentren in Mexiko, Peru, Brasilien, endemisches Auftreten auf San Domingo und Jamaica; in diesen stark tetanuspositiven Gegenden wurde aber festgestellt, dass es dort Distrikte gab, in denen Starrkrampffälle viel häufiger waren als in anderen, so z. B. in den äguatorialen Provinzen.

Als Hauptsitze der östlichen Hemisphäre sind Senegambien, Guinea, Madagaskar zu nennen. In Asien sei beonders auf Indien hingewiesen; Indien zeigt wie auch die Antillen grosse Variationen der Frequenz in den einzelnen Landesteilen. Erwähnenswert ist hier, dass aus Bengalen, einem grossen Sumpfgebiete Indiens, keine Tetanusfälle bekannt sind. Hirsch stellt an diesem Beispiel fest, dass Behauptungen, wonach Sumpf- und Malariaboden einen günstigen Einfluss auf das Vorkommen von Tetanus ausüben, unbegründet sind; in Bombay, wo selten Malaria auftritt, findet man dagegen sehr häufig Tetanusfälle. Favorisiert wird diese Krankheit in der tropischen und subtropischen Zone

durch folgende Faktoren: Der menschliche Organismus ist durch atmosphärische Einflüsse geschwächt, Prädisposition für Erkältung, höhere Empfindlichkeit der Haut; speziell die farbige Bevölkerung ist sehr empfindlich; mangelhafte Bekleidung und die damit verbundene leichtere Verwundbarkeit (z. B. an den Fußsohlen), sind stark begünstigende Umstände. So gibt es Gegenden, wo die Tetanuskrankheit einen grossen Anteil an der Gesamtmortalität hat, z. B. auf der Insel Bourbon 25—50%.

Auch in Europa sehen wir eine verschiedene Verteilung dieser Krankheit; so gibt es Landesstriche in Deutschland, die, obgleich sehr bevölkert, fast keine Tetanusfälle zeigen. Epidemien traten dort in Spitälern mangels genügender Asepsie auf, im Frieden sowohl wie natürlich noch in gesteigertem Masse in Kriegszeiten.

Erst die Entdeckung des Tetanusbazillus durch Nikolaier (1) im Jahre 1884 ermöglichte den Beginn der Untersuchungen, um Aufklärung über die ungleichartige Verteilung des Starrkrampfes zu finden. Nikolaier konnte mit 12 aus 18 Erdproben aus der Umgebung von Göttingen beim Tiere Tetanus hervorrufen; auch unter 172 Erdproben, die aus Leipzig, Berlin, Wiesbaden bezogen waren, ergaben bei der Verimpfung 81 den charakteristischen Symptomenkomplex. Bossano (1) hat zuerst nach Nikolaiers Methode der Anbringung von Erde unter die Haut der Versuchstiere die von Nikolaier in Deutschland gemachten Beobachtungen in Frankreich wiederholt und bestätigt. Beide wiesen den Tetanusbazillus in Gärten, kultivierter Erde (d. h. Erde mit organischen Substanzen gemischt auf dem dem Wege der Putrefaktion) nach. Bossano hat dann ferner 43 Erdproben aus verschiedenen Erdteilen aus Feldern, Strassen und Gärten untersucht. Als Versuchstiere benützte er abwechselnd Kaninchen, Meerschweinchen, weisse Mäuse; von den 43 Proben waren 27 positiv, d. h. von 96 geimpften Tieren gingen 39 an Tetanus zugrunde, während 16 andere den Folgen der Impfung erlagen. Die Tetanusdiagnostik war in diesen Untersuchungen nur klinischer Natur. Bossano stellt fest, dass trotz negativen Resultaten von Autoren der Tetanusbazillus sicher tellurischen Ursprungs ist, denn nicht jede Erdprobe kann schliesslich tetanigen sein. Da Starrkrampf eine seltene Krankheit ist, lässt sich kaum annehmen, dass dieser Mikroorganismus nur von Mensch und Tier verbreitet wird, befindet er sich doch in jeder kultivierten Erde, so er im Boden geeignete Konditionen zur Vermehrung findet.

251

Nocard und Leclainche (4) fanden, dass der Tetanusbazillus wie malignes Ödem durch die Tiere mittels ihrer Nahrung aufgenommen wird, somit in den Verdauungsapparat derselben gelangt und sich in den Exkrementen die Eigenschaft, Tetanus zu erzeugen, wieder nachweisen lässt; der Mikroorganismus behält also seine Virulenz. Bossano hält diese Hypothese Nocards für sehr plausibel, glaubt jedoch, die Häufigkeit des Tetanusbazillus im Boden so zu beweisen, indem er anführt, dass Mist wie Kulturboden wirkt, d. h. dieser die chemische Konstitution des Bodens ändert und ein für die Entwicklung des Bazillus günstiges Milieu schafft. Er hält den Tetanusbazillus für einen fakultativen Parasiten. Die grosse Häufigkeit des Bazillus in gewissen Ländern ist nach Bossano nicht meteorologischen und klimatischen Einflüssen zuzuschreiben, sondern eher einem Fehlen an hygienischen Massregeln und einem Mangel an Asepsie (bei Kastration der Pferde). Nach Nocard und Leclainche bedingt die ungleiche Verteilung der Tetanussporen auch die aussergewöhnlich grosse Häufigkeit des Tetanus in gewissen Gegenden: So existieren z. B. in Frankreich in der Umgebung von Paris (Saint-Denis, Aubervilliers usw.) starke Tetanuszonen. Coret in Aubervilliers soll jährlich 30—40 Tetanusfälle an Pferden beobachtet haben.

Le Dantec (5) schreibt in einer Arbeit über den tellurischen Ursprung des Pfeilgiftes auf den neuen Hebriden, dass die Pfeile zuerst in Sumpfboden getaucht (die vermutlich nur malignes Ödem und Tetanus enthalten) und dann der Sonne ausgesetzt werden. Die Vergiftung durch diese Pfeile gibt entweder Septikämie (wenn die Sonnentrocknung nicht zu intensiv war), oder auf alle Fälle dann Tetanus, soweit seine Untersuchungen. Da nun auf den neuen Hebriden nie Pferde waren, glaubt Le Dantec einen festen Beweis zu haben gegen die Theorie von Verneuil (6), die besagt, dass der Starrkrampfbazillus seinen Wohnsitz im Verdauungsapparat des Pferdes hat und nur durch dessen Exkremente verbreitet wird.

Die Versuche von Nocard wurden von Sanchez-Toledo und Veillon (7) bestätigt, indem sie Versuchstiere (Mäuse und Ratten) mit Exkrementen von Pferden und Kühen nach Nikolaiers Methode impften; diese Tiere erlagen nach 5—6 Tagen gewöhnlich an Tetanus, vorausgesetzt, dass vorher keine andere Krankheit eintrat. Gleichzeitig hat auch Rietsch (8) im Heustaube Tetanus gefunder. Sormani (9) ist auch ein Anhänger von Verneuil und Verteidiger der "Fäkaltheorie".

Beim Untersuchen von Staub auf Höfen, Strassen, von Gartenerde, gedüngtem Boden konnte er Tetanus nachweisen und sah als Ursache dieser tetanigenen Proben stets das Vermischtsein mit Fäkalien an. Sormani glaubt jedoch, dass Tetanus auch ausserhalb der Organismen günstige Zustände (Düngerhaufen) zur Vermehrung finden kann. Er findet aber eine zeitlich bedingte Abnahme der Virulenz der Tetanuserde anhand von Versuchen mit Meerschweinchen.

Tetanusbazillus dringt leicht in die Magen-Darmgegend ein ohne zerstörenden Einfluss, findet dort sogar geeignetes Terrain zur Vermehrung. Faeces der Tiere werden also wichtige Aufenthaltsorte und tragen zur Vermehrung des Tetanusbazillus bei. Durch Eingabe von tetanigener Erde wurden z. B. Hundefaeces positiv; diese Fäkalien blieben zwei Monate lang positiv. Auch Erde im Aufenthaltsort dieser Versuchstiere wurde dann tetanigen. Sormani stellt sicher fest, dass Tetanus wenig bis selten in Tiefen gefunden wird, als ein Beweis für die Oberflächenverbreitung. Da nun der Tetanusbazillus anaerob ist, schliesst Sormani eine Oberflächenvermehrung aus.

Dell' Aqua und Parietti (10) wiesen ebenfalls im Staube von Gärten und Höfen in Pavia Tetanus nach; ähnliche positive Versuche wurden auch von Raum (10a) in Deutschland ausgeführt.

Erst Sanfelice (11) hat mit der Untersuchung von Erden unter möglichstem Ausschluss von Fäkalmaterial begonnen. Er impfte Meerschweinchen mit einer Wasseremulsion seiner Proben, stellte aber in den meisten Fällen malignes Ödem fest, bevor überhaupt Tetanus einwirken konnte. Nur selten wurde Tetanus gefunden, dies wohl aus Mangel einer geeigneten Technik und der grösseren Empfindlichkeit der Meerschweinchen malignem Ödem gegenüber.

Marchesi (12), der Garten- und Wiesenerde untersuchte unter Anwendung der Emulsionierung dieser Erden mit Wasser und Überimpfung auf Meerschweinchen, hat insofern sehr verschiedene Resultate erhalten, dass bei der ersten Serie meist Ödem gefunden wurde, in der zweiten Serie aber mit derselben Erdemulsion nur nach vier Monaten teilweise gute tetanuspositive Resultate. Neben der Methode der Emulsionierung versuchte Marchesi, zwecks besserer Isolierungsmöglichkeit, Erde in Bouillon zu infundieren; diese Infusion setzte er neun Tage in den Brutschrank bei 37° C und schritt dann wie oben zur Impfung. Die Resultate waren aber noch weniger über-

zeugend als die nach der erstgenannten Methode. Sanfelice hat dagegen mit Erdbouillon, den er nach einem Monat durch eine Chamberlandkerze filtrierte, gute Resultate erhalten.

Lortet (13) ist der Nachweis des Tetanusbazillus im Seeschlamm des Genfersees mehrfach gelungen (jedoch nur anhand von Kulturen; als Versuchstiere benützte auch er Meerschweinchen).

Von Lingelsheim (14) schreibt dem Tetanusbazillus eine ausserordentliche allgemeine Verbreitung zu, steht aber der Vermutung, ob es doch Gegenden gibt, in denen der Tetanusbazillus völlig fehlt (z. B. im Kongo), fraglich gegenüber, da aus den wenigen oben erwähnten Experimenten kein definitiver Schluss gezogen werden könne. Von Lingelsheim hält es nach den bisherigen Versuchen aber als sicher, dass innerhalb einer Gegend der Boden nicht gleich infektiös ist, hat doch schon Nikolaier festgestellt, dass die nicht infektiösen Erdproben meist aus Wäldern und wenig verunreinigten Orten stammen. Diese Vermutung wurde auch noch durch Bissérie (15) experimentell bestätigt. Die Tetanussporen werden durch Mensch und Tier aus den infektiösen Gegenden verschleppt.

Dass sie z. B. auch an unseren Kleidungen anhaften, haben die Untersuchungen von Uhlenhut und Händel (16) bewiesen. Auch in Wohnungen, im Staub von Fehlböden, in Spinngeweben (Belfanti und Pescarolo) wurden Tetanussporen gefunden.

Von Lingelsheim stellt auf Grund der Feststellung, dass für die Tetanussporen der Erdboden die Hauptstätte für ihre saprophytische Existenz bildet und der Tetanusbazillus als Krankheitserreger eine viel zu geringe Rolle spielt, um sein Fortbestehen auf diesem Wege zu sichern, die Hypothese auf, "dass die Tetanusbazillen von Haus aus Bewohner der oberflächlichen Erdschichten sind, dass sie hier vielleicht in Symbiose mit andern Organismen leben und dass sie da, wo organische, im Abbau begriffene Materie vorhanden ist, ausreichende Bedingungen für ihre Existenz und Vermehrung finden können. Immerhin glaubt er, diese Hypothese als nicht ganz feststehend ansehen zu müssen, da zu wenig Versuche mit Erden bis jetzt gemacht wurden und diese fast stets mit infektiösem Material. In den wenigen, von Verunreinigungen freien Erden konnte fast nie Tetanusbazillus nachgewiesen werden.

Young (20) untersuchte die geographische Verteilung aller in den Jahren 1901 bis 1909 in England und Wales beobachteten Tetanusfälle und fand grösste Häufigkeit im südlichen Teil der Midlands und schreibt dies dem dort sehr intensiven Betrieb der Landwirtschaft zu.

In neuester Zeit haben Dubowsky und Meyer (17) anschliessend an Untersuchungen über den bacillus botulinus, dessen Verbreitung im Boden bei Überimpfung von Anreicherungskulturen auf Meerschweinchen öfter Tetanus gefunden; demzufolge widmen sie in ihrer Arbeit über den Botulinus dem Starrkrampfbazillus ein spezielles Kapitel. Ihre Versuche wurden mit Material aus allen Weltteilen, speziell aber aus den U. S. A., ausgeführt. Da den Verfassern keine gute Anreicherungsmethode für den Tetanusbazillus bekannt war, wählten sie die des Botulinus. Es erwies sich jedoch die für den Botulinus ausgezeichnete Methode als für den Tetanusbazillus ungenügend, da dessen Toxinbildungsfähigkeit in Gegenwart anderer Äroben und Anäroben stark abnimmt. Immerhin konnten sie feststellen, dass im Osten des Mississippi häufiger Tetanus zu finden war als im Westen. Spezielle Untersuchungen in Kalifornien zeigten bei Bergboden negative Resultate, doch wollen die Autoren betreff Abwesenheit des Tetanus keinen Schluss ziehen, die sie in dieser Gegend auch in Gartenerde und gedüngter Felderde negative Resultate erhielten. Ja, sie schreiben das Scheitern dieser Versuche der ungenügenden Methode zu. Es ist für sie glaubwürdig, dass ursprünglich vom Tetanus freie Zonen durch Handel und Industrie infektiöse werden, wie dies z. B. in Kalifornien mit dem Anthraxbazillus der Fall ist, wo die Sporen aus den Gerbereien mit deren Rückständen von den Flüssen weggespült werden. Gemäss den Resultaten obiger Autoren gelang es ihnen auch in jungfräulichem und unkultivierten Waldboden Tetanus nachzuweisen unter der Bedingung, dass sich an diesen Orten Pflanzenmaterial in Fermentation und Zerfall befand. Dies berechtigt die Autoren zur Annahme, dass auch der Tetanusbazillus in symbiotische Verbindung mit anderen Äroben und Anäroben treten kann, falls Putrefaktion vorhanden ist. Nach Dubowsky und Meyer ist der Tetanusbazillus allgemein verbreitet in kultivierter Gegend wie auch in der entlegensten Berggegend.

Damon und Payabal (21) untersuchten nach ähnlichen Prinzipien wie Dubowsky und Meyer den Boden von Maryland. Auf 62 Proben erhielten sie sechs tetanuspositive (eine + Probe war jungfräulicher Boden, die anderen positiven dagegen stammten aus bebauter Erde). Sie kommen zu dem Schluss,

255

dass in Kalifornien der Tetanusbazillus mindestens doppelt so verbreitet sei wie in Maryland.

In vorliegender Arbeit, die mir von meinem hochverehrten Lehrer, Herrn Prof. Dr. B. Galli-Valerio, zur Ausführung anvertraut wurde, und dem ich für seine liebenswürdige Unterstützung während der Durchführung derselben zu herzlichstem Dank verpflichtet bin, soll nun der Versuch gemacht werden, in einer relativ begrenzten Zone über die Verbreitung des Nicolaierschen Tetanusbazillus im Boden, mit besonderer Berücksichtigung der Höhenverbreitung und dem Vorkommen des Bazillus ausserhalb des strengen Ortsbezirkes, genannt "Wohnzone", nähere Angaben zu erhalten.

Technik.

Die Erdproben wurden mittelst eines vorher geglühten Nickellöffels in bei 140° C sterilisierten Glastuben gesammelt. Im Laboratorium wurden ca. 10 g Erde mit 10 cm³ sterilem Wasser in einem sterilen Mörser zu einem Brei angerieben. Dieser Brei wurde durch sterilen Verbandmull in ein steriles Glasröhrchen filtriert. Mit dieser Erdsuspension wurden mit je 0,4 cm³ je zwei weisse Mäuse vermittels einer Pravazspritze (mittlerer Kanüle) intramuskulär in den Oberschenkel geimpft. [Vor Aufziehen der Emulsion in die Spritze und vor Injektionen stets Umschütteln zwecks gleichmässiger Verteilung.] Die Mäuse wurden dann im Maximum 3 bis 4 Wochen auf eventuelle Tetanussymptome beobachtet. Jede tote Maus wurde einer Autopsie unterworfen, spezielle Präparate vom Blut- und Leberabstrich gemacht. Dann wurden die toten Mäuse während 48 Stunden in den Brutschrank bei 37° C gebracht. Nach Ablauf dieser Zeit wurde mittelst Inzision an der Impfstelle etwas Material auf einen Objektträger entnommen, mit einem Tropfen sterilem, destillierten Wasser verdünnt und dann mit Karbolfuchsin fixiert und examiniert. Die Trommelschlegelform des Tetanusbazillus ist leicht erkenntlich.

Bei den untersuchten Fäkalien wurden, so es sich um trockene Faeces handelte, diese zuerst über der Flamme leicht geglüht, dann mit sterilem Skalpell geöffnet und aus dem Innern Material entnommen, und dieses auf dieselbe Weise wie die Erdproben untersucht. Die frischen Fäkalien wurden direkt in sterilen Glastuben gesammelt und untersucht. Im ganzen wurden 503 Impfungen an 400 Mäusen vorgenommen, d. h. es wurden

also 103 Mäuse nach einer jeweiligen Ruhepause von 1 bis 2 Monaten zum zweiten Male in den noch nicht zur ersten Impfung benützten Schenkel geimpft.

Der Tierversuch wurde dem Kulturverfahren vorgezogen, da die Resultate mit weissen Mäusen sich als viel sicherer und exakter erwiesen. Die ziemlich konzentrierte Suspension von 1:2, 1:3 führen in positivem Material sicher zur Tetanuserkrankung und zum Tode des Versuchstieres, auch wenn die Tetanussporen in dem betreffenden Material spärlicher vorhanden sind als z. B. in der Gartenerde. Denn die Genauigkeit der Methode hat Wolff-Eisner (18) in seinen Versuchen über die Titrierung der dosis letalis für Mäuse festgestellt, indem er fand, dass sogar noch 0,3 cm³ einer Emulsion 1:100 Mäuse sicher nach 48 bis 72 Stunden tötete. In allen unsern folgenden Versuchen wurde eine Inkubationszeit von 12 bis 72 Stunden beobachtet; Mäuse, die nach dieser Zeit starben, gingen meist an einer andern Infektion wie malignem Ödem, Kokkeninfektion, zugrunde. Die toten Mäuse wurden noch 24 bis 48 Stunden auf Bruttemperatur gehalten, um eine Anreicherung der Tetanusbazillen an der Impfstelle zu erzielen, was auch in den meisten Fällen eintrat.

Allgemeiner Teil.

Wir gehen nun zur Besprechung und Aufzählung unserer Versuche anhand von Tabellen über und haben zu diesem Zwecke den Untersuchungsrayon in drei Hauptgruppen und eine Nebengruppe geteilt:

- 1. Graubünden,
- 2. Waadtland,
- 3. Wallis,
- 4. Berner Oberland.

Im Anhang erwähnen wir noch einige Untersuchungen mit Fäkalmaterial.

1. Graubünden.

Tabelle I.

OrdnNr.	Dat. der Erd- ent- nahme	Genaue Ortsangabe und Höhe ü. M.	Impf- datum	Zahl der ge- impft. Mäuse	Exitus	Teta- nus- resul- tat	Allgemeine Beobachtungen
1	18. 4. 27	Kehrichtdepot hinter K.gebäude 1580 m	5. 5. 27	2	a)nach 20 Std. b) —		Allg. Infektion: Kokken
2	18. 4. 27	b) Stall H. (Pferde) am Eingang 1600 m	5. 5. 27	2	a) nach 30 Std. b)40St.	+++++	char. Tet. Sympt. Erde stark mit Pferdefäzes ver- mischt, allg. In- fektion
3	18. 4. 27	Von Garten- alpineum am Strassenrand 1650 m	6. 5. 27	2	a) nach 24 Std. b)24St.	++-+	Sympt. Tet. pos. Spärl. TetBaz. gefunden
4	18. 4. 27	Auf Fussweg zum Rütiwald 1660 m	6. 5. 27	2	à) — b) —		× "
5	22. 4. 27	Fahrstrasse hinter Sch. 1580 m	12. 5. 27	2	a) — b) —		Trotz Strassen- staub m. Pferde- fäzes negativ
6	22. 4. 27	Bei Kuhstall hinter B., fette Humus- wiese 1650 m	16. 5. 27	2	a) 3Tg. b) 3Tg.	++++	Typ. Rückgrat- krümmung; mi- krosk.: zahlreich. TetFormen
7	22. 4. 27	Von Kuhstall am Eingang f. Vieh 1650 m	16. 5. 27	2	a) nach 23 Std. b) 3Tg.	++++	
8	22. 4. 27	Auf Fahrstrasse b. B. 1600 m	16. 5. 27	3	a) nach 5 Std. b) 48St. c) 23St.	++-+	a) Tod an intern. Blutung b) und c) typ. TetBefunde

In Tabelle I handelt es sich hauptsächlich um Untersuchungen von Erdproben aus stark infizierten, stark begangenen Erden in Davos selbst. In den meisten Fällen, d. h. sicher in der Umgebung von Ställen, erhielten wir positive Resultate. Auffällig ist jedoch, dass gerade Nr. 1 stark verunreinigte, fette Erde, sowie Nr. 5 Strassenstaub mit Pferdelosungen gemischt,

negativ ausfielen, geben doch, wie wir weiter unten sehen werden, in anderen Regionen solche Proben fast bei 100% positive Resultate (vgl. Tab. XIII, Nr. 181 u. ff.). Auch sind in den positiven Fällen in mikroskopischen Präparaten die Tetanusbazillen sehr wenig zahlreich, viele andere Bakterien dagegen leicht erkenntlich.

Tabelle II.

OrdnNr.	Dat.der Erd- ent- nahme	Genaue Ortsangabe und Höhe ü. M.	Impf- datum	Zahl der ge- impft. Mäuse	Exitus	Teta- nus- resul- tat	Allgemeine Beobachtungen
9	18. 4. 27	Auf Waldweg ob R. unter Baum, unbetreten 1680 m	6. 5. 27	2	a) neg. b) "		
10	18. 4. 27	Ob Rütiweg in Kalkfelsen 1680 m	9. 5. 27	2	a) " b) "		÷
11	18. 4. 27	An Bach am Rütiweg, Kalk! 1670 m	9. 5. 27	2	a) " b) "		
12	18. 4. 27	Auf Spazierweg 1690 m	10. 5. 27	2	a) ,, b) ,,		я
13	18. 4. 27	Im Walde unter Baumstrunk 1700 m	13. 5. 27	2	a) ,, b) ,,		
14	18. 4. 27	In Sandhaufen bei Bobrun 1750 m	13. 5. 27	2	a) ,, b) ,,		
15	18. 4. 27	In Erdrutsch bei Bobrun 1750 m	28. 5. 27	2	a) ,, b) ,,		
16	18. 4. 27	Graspolster am Bobrun 1720 m	16. 5. 27		a) ,, b) ,,		
17	22. 4. 27	In Jungwald 1600 m	30. 5. 27		a) ,, b) ,,		
18	22. 4. 27	Fussweg zum Schiatobel 1650 m	30. 5. 27		a) " b) "		2

Tabelle II (Fortsetzung).

OrdnNr.	Dat.der Erd- ent- nahme	Genaue Ortsangabe und Höhe ü. M.	Impf- datum	Zahl der ge- impft. Mäuse	Exitus	Teta- nus- resul- tat	Allgemeine Beobachtungen
19	22. 4. 27	Gedüngte Alp- wiese ob Dorf, beweidet 1680 m	12. 5. 27	2	a) neg. b) "		
20	22. 4. 27	Nähe v. Nr. 19 lose Erde auf Alpwiese 1680 m	16. 5. 27	2	a) ,, b) ,,		
21	22. 4. 27	Waldwiese, loser Humus 1690 m	24. 5. 27	2	a) ,, b) ,,		

Die in Tabelle II aus der Davoser engsten Umgebung untersuchten Erdproben sind alle negativ, sogar aus gedüngten Wiesen stammende Proben. Die andern Erdproben waren ja wohl arm an organischen Stoffen. Es handelte sich meistenteils um Trockenerde, nur die Nr. 19 bis 21 waren bester, zum Teil gedüngter, Humus.

Tabelle III.

<u> </u>							
OrdnNr.	Dat.der Erd- ent- nahme	Genaue Ortsangabe und Höhe ü. M.	Impf- datum	Zahl der ge- impft. Mäuse	Exitus	Teta- nus- resul- tat	Allgemeine Beobachtungen
22	26. 7. 27	Flüela-Schwarz- horn in Fels 3180 m	17. 10. 27	2	a) neg. b) "		,
23	26. 7. 27	Radünpass, unter Felswand 2900 m	17. 10. 27	2	a) neg. b) "		å
24	26. 7. 27	Flüela-Schwarz- horn direkt auf Gipfel, 3180 m	17. 10. 27	2	a)24St. b) neg.		a) Tod an mal. Ödem und allg. Infektion
25	26. 7. 27	Dryaspolster unter Flüela- Schwarzhorn 3100 m	17. 10. 27	2	a) 15T. b) neg.		a) Tod an Misch- infektion

Tabelle III (Fortsetzung).

	0110 11.1	(For tsetzung).					
OrdnNr.	Dat.der Erd- ent- nahme	Genaue Ortsangabe und Höhe ü. M.	Impf- datum	Zahl der ge- impft. Mäuse	Exitus	Teta- nus- resul- tat	Allgemeine Beobachtungen
26	26. 7. 27	Flüela-Schwarz- horn ob Fels 3000 m	17. 10. 27	2	a) 15T. b) neg.		a) Tod an Misch- infektion
27	26. 7. 27	Unt. Radünpass Wiesenfelder 2600 m	17. 10. 27	2	a) 14T. b) neg.		a) Tod an malign. Ödem
28	26. 7. 27	Radüntäli, beweidete Alpwiese 2400 m	17. 10. 27	2	a) 15T. b) neg.		a) Tod an allgem. Infektion
29	26. 7. 27	Im Wald an der Flüelastrasse 1900 m	17. 10. 27	2	a) 13T. b) 12T.		a) und b) Tod an Mikrokokken- infektion
30	26. 7. 27	Graspolster unt. Flüela-Schwarz- horn, 2900 m	17. 10. 27	2	a) 15T. b) 16T.		a) und b) Misch- infektion
31	15. 8. 27	Radünerkopf 3000 m	22. 10. 27	2	a) neg. b) "		
32	24. 8. 27	Flüela-Weiss- horn SO-Grat, unbetreten 2600 m	24. 10. 27	2	a) " b) "		i.
33	24. 8. 27	FlWeisshorn Ost vom Gipfel 3080 m	24. 10. 27	2	a) 27T. b) neg.		Mischinfektion
34	24. 8. 27	FlWeisshorn Südexposition 2800 m	24. 10. 27	2	a) 27T. b) neg.		Mischinfektion
35	24. 8. 27	FlWeisshorn Nordhang am Jörigletscher 2900 m	24. 10. 27	2	a) 8Tg. b) neg.		Allg. Infekt. mit malignem Ödem

In Tabelle III klassierten wir Proben aus der alpinen Gebirgsgegend des Flüelapasses. Teils wurden Erden aus begangenem Weidegelände untersucht, teils aus abgelegensten Felsgegenden von Dolomiten- und Kalknatur, immer jedoch mit negativem Erfolge.

Tabelle IV.

	erre 1	•					
OrdnNr.	Dat.der Erd- ent- nahme	Genaue Ortsangabe und Höhe ü. M.	Impf- datum	Zahl der ge- impft. Mäuse	Exitus	Teta- nus- resul- tat	Allgemeine Beobachtungen
36	2. 8. 27	i.Wald, Aufstieg z. Val Cluoza 1600 m	8. 11. 27	2	a) neg. b) "		
37	2. 8. 27	Wiese am Weg n. Val Cluoza 1750 m	8. 11. 27	2	a)48St. b) neg.		a) Tod an malign. Ödem
38	2. 8. 27	Auf Punkt 2160 a. Weg n. Cluoza	8. 11. 27	2	a) neg. b) "		
39	2. 8. 27	Hinter Block- haus Cluoza, feuchtsumpfige Wiese m. Kuh- mist, 1750 m	8. 11. 27	2	a) 7Tg. b) 7Tg.		Typisch malign. Ödem
40	2. 8. 27	Wie 39, nur trock. Wiese, 1750 m	8. 11. 27	2	a) 7Tg. b) neg.		Befund: malign. Ödem
41	3. 8. 27	Gabelung Val Sassa-Diavel Wiese mit Ge- strüpp u. Salix 2100 m	8. 11. 27	2	a) neg. b) "		,
42	3. 8. 27	Gabelung Sassa- Diavel a. Flusse Diavel, 2100 m	10. 11. 27	2	a) neg. b) "		
43	3. 8. 27	Gabelung Sassa- Diavel a. Flusse Diavel, 2100 m	10. 11. 27	2	a) neg. b) ",		
44	3. 8. 27	Gabelung Sassa- Diavel, Legföh- rengebiet 2160 m	10. 11. 27	2	a) neg. b) "		
45	3. 8. 27	Gabelg. Cluoza- Valetta, Rhodo- dendroneum 1900 m	10. 11. 27	2	a) neg. b) "		, H
46	3. 8. 27	Valetta, Nord- hang, steinig 2000 m	15. 11. 27	2	a) neg. b) "		s

Tabelle IV (Fortsetzung).

1 60	orio iv	(Fortsetzung)	•				
OrdnNr.	Dat.der Erd- ent- nahme	Genaue Ortsangabe und Höhe ü. M.	Impf- datum	Zahl der ge- impft. Mäuse	Exitus	Teta- nus- resul- tat	Allgemeine Beobachtungen
47	4. 8. 27	Val Diavel. Silikatboden 2400 m	15. 11. 27	2	a) neg. b) "		a.
48	4. 8. 27	Val Diavel, Gras- polster, 2450 m	15. 11. 27	2	a) neg. b) ",		а -
49	4. 8. 27	Val Diavel, nasser Boden 2475 m	15. 11. 27	2	a) 16T. b) neg.		a) Allg. Infektion
50	4. 8. 27	Val Diavel, unter Stein Humus, 2500 m	15. 11. 27	. 2	a) 10T. b) 21T.		a) Kokkeninfekt. b) Allg. Infektion
51	4. 8. 27	Val Diavel, Terrasse, Trockenwiese 2550 m	15. 11. 27	2	a) 10T. b) neg.		a) Allg. Infektion Kokken
52	4. 8. 27	Val Diavel, in Fels, 2500 m	15. 11. 27	2	a) neg. b) "		
53	4. 8. 27	Val Diavel, Wiesenpolster auf Terrasse 2600 m	15. 11. 27	2	a) 18T. b) neg.		a) Malign. Ödem
54	8. 8. 27	Chuderas da Terza, 2450 m	15. 11. 27		a) neg. b) "		~
55	8. 8. 27	Piz Terza, unter- halb 2348 m	22. 11. 27		a) neg. b) "		
56	8. 8. 27	Piz Terza 2481 m	22. 11. 27		a) 10T. b) neg.		a) Malign. Ödem
57	5. 8. 27	Alp Murter, Wiese, 2300 m	22. 11. 27	1	a) neg. b) "		
58	5. 8. 27	Murtergrat, alte Alpweide 2600 m	22. 11. 27	- 1	a) neg. b) "		
59	5. 8. 27	Murter n. Fuorn Abstieg, 2400 m	22. 11. 27		a) neg. b) "		

Um Material aus von Haustieren wenig oder nicht begangenen Gegenden zu untersuchen, wurde das Gebiet des schweizerischen Nationalparkes gewählt. Es handelt sich hier auch um ein wenig betretenes Gebiet, sodass Einflüsse von aussen wohl als ausgeschlossen angenommen werden können. Alle Untersuchungen fielen negativ aus (vide Tab. IV).

Tabelle V.

	Delle v	•					
OrdnNr.	Dat.der Erd- ent- nahme	Genaue Ortsangabe und Höhe ü. M.	Impf- datum	Zahl der ge- impft. Mäuse	Exitus	Teta- nus- resul- tat	Allgemeine Beobachtungen
60	1. 8. 27	Im Wald bei Crapaneira gegen Alvaneu 1200 m	17. 10. 27	2	a) neg. b) "		,
61	10. 8. 27	Auf Wiese a. d. Strasse b.Bivio 1700 m	24. 10. 27	2	a) neg. b) "		8
62	10. 8. 27	Im Fels ob Bivio, 1800 m	24. 10. 27	2	a) neg. b) "		
63	10. 8. 27	In Steinen ob Julierpasshöhe 2350 m	24. 10. 27	2	a) — b) 23T.		Mikrosk. Befund zeigt mal. Ödem
64	10. 8. 27	Am Silsersee, r. Ufer, 1800 m	24. 10. 27	2	a) neg. b) "		
65	10. 8. 27	Unter Maloja, wenig begangen (Kühe +) 1800 m	25. 10. 27	2	a) neg. b) "		
66	6. 8. 27	Grossboden b. Bergüner Furka 2900 m	22. 11. 27	2	a) neg. b) "		
67	6. 8. 27	Piz Murtelet 3030 m	22. 11. 27	2	a) neg. b) "		1 H
68	28. 8. 27	Am Eingang des Hauptertäli am Strelapass nach Neuschnee 2300 m	23. 11. 27		a) neg. b) "		

Tabelle V (Fortsetzung).

1 4 0	0110 1	(Fortsetzung).					
OrdnNr.	Dat.der Erd- ent- nahme	Genaue Ortsangabe und Höhe ü. M.	Impf- datum	Zahl der ge- impft. Mäuse	Exitus	Teta- nus- resul- tat	Allgemeine Beobachtungen
69	28. 8. 27	Unter Stein, Hauptertäli 2350 m	23. 11. 27	2	a) neg. b) "		2 3
70	28. 8. 27	Steinhalde im Hauptertäli 2450 m	23. 11. 27	2	a) neg. b) "		
71	28. 8. 27	Wasserscheide b. Weissfluh 2450 m	23. 11. 27	2	a) neg. b) "	-	
72	28. 8. 27	Höhenweg Parsenn-Strela, am Weg b.Todt- alp, 2200 m	23. 11. 27	2	a) neg. b) "		,
73	30. 8. 27	Am Eingang eines Murmel- tierloches im Stulsertal gegen Ducan- pass, 2200 m	23. 11. 27	2	a) neg. b) "	-	o o
74	30. 8. 27	Geg. Ducanpass (Stulser Seite) Fettwiese unter Fels, 2300 m	23. 11. 27	2	a) neg. b) "		a e
75	30. 8. 27	Ducanpass (aufgeworfene Erde), 2500 m	23. 11. 27	2	a) neg. b) "		
76	30. 8. 27	Vanezfurka Sertigseite 2500 m	23. 11. 27	2	a) neg. b) "		

Tabelle V umfasst Proben aus verschiedenen Gegenden des Kantons Graubünden, wobei es sich grösstenteils um nichtisolierte Gegenden handelt. Auch an Humus reiche Erdproben fielen negativ aus.

Zusammenfassend sei über die Resultate der Erdproben aus dem Kanton Graubünden hier bemerkt, dass Tetanus nur im Ort Davos gefunden wurde, wohin er möglicherweise aus anderen Gegenden eingeschleppt wurde. Die Tatsache ferner, dass in Graubünden Tetanus bei Mensch und Tier zu Seltenheiten gehört (nach Angaben von Gabathuler für Davos und Umgebung, der Statistik der Viehversicherungsgesellschaft Samaden und nach Ruppanner, Kreisarzt für Engadin), lässt annehmen, dass wir es hier mit einer tetanusfeindlichen Zone zu tun haben, wofür auch der Prozentsatz von 6,5% positiver Fälle auf die Gesamtzahl von 76 Erdproben spricht (vgl. Tabellen XVII, XVIII und XIX). (Forts. folgt)

Referate.

Arbeiten aus dem veterinär-anatomischen Institut der Universität Zürich im Berichtsjahre 1927.

Zusammengestellt und referiert von J. Andres, Zürich

Unterrichtsfragen der Veterinäranatomie. Von Eb. Ackerknecht. (Antrittsvorlesung in der Aula der Universität Zürich am 20. Februar I926.) Schweiz. Archiv für Tierheilkunde. 69 H. 9/10, Seite 461—474, 1927. Es wird auf das Original in dieser Zeitschrift verwiesen.

Der Plazentarkreislauf. Von J. Andres. Schweiz. Archiv f. Tierheilk., S. 383, 1927. 7 Seiten, 1 Abb.
Es wird auf das Original in dieser Zeitschrift verwiesen.

Die Arterien der Keimdrüsen bei männlichen und weiblichen Versuchssäugetieren. Von J. Andres. (Anatomische Untersuchungen an injizierten Aufhellungspräparaten bei Lepus cuniculus, Cavia cobaya, Mus rattus und Mus musculus.) Mit 6 zweifarbigen Textabbildungen. Vet.-med. Habilitationsschrift Zürich 1927, und Zeitschrift f. d. ges. Anatomie I., Bd. 84, S. 445—475. 1927.

Zur Darstellung der Blutgefässe (zum Teil auch anderer ähnlicher Hohlorgane) sind in der Literatur vier Grundverfahren angegeben. Es sind dies in chronologischer Reihenfolge: 1. Injektion und Präparation mit Messer usw. 2. Injektion und Korrosion. 3. Injektion mit Röntgenaufnahmen. 4. Injektion und Aufhellung. Von Tuffli wurden erstmals im hiesigen Institut die Hodenblutgefässe an injizierten und nach Spalteholz aufgehellten Hundeund Katerhoden studiert. Nach der von obigem Autor genau beschriebenen und nur sehr wenig abgeänderten Methode untersuchte Verfasser die Hoden- und Eierstocksgefässe von vier Nagerarten (7 Kaninchen, 8 Meerschweinchen, 4 Ratten und 6 weissen Mäusen).

In der Art der arteriellen Vaskularisation des Hodens und Nebenhodens der vier Nagerarten werden folgende gemeinsamen Punkte bemerkt: 1. Das Hauptgefäss für den Hoden und Neben-