Zeitschrift: Schweizer Archiv für Tierheilkunde SAT : die Fachzeitschrift für

Tierärztinnen und Tierärzte = Archives Suisses de Médecine Vétérinaire

ASMV : la revue professionnelle des vétérinaires

Herausgeber: Gesellschaft Schweizer Tierärztinnen und Tierärzte

Band: 46 (1904)

Heft: 6

Artikel: Physikalisch-chemische Untersuchungen physiologischer und

pathologischer Kuh-Milch [Schluss]

Autor: Schorf, C.

DOI: https://doi.org/10.5169/seals-589750

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SCHWEIZER-ARCHIV

FÜR

TIERHEILKUNDE.

Redaktion: E. ZSCHOKKE, E. HESS & M. STREBEL.

XLVI. BAND.

6. HEFT.

1904.

Physikalisch-chemische Untersuchungen physiologischer und pathologischer Kuh-Milch.

Von Tierarzt Dr C. Schnorf, Zürich.
(Schluss.)

C. Pathologisch veränderte Milch.

8. Einfluss von Nymphomanie und Ovariotomie auf das Leitvermögen der Milch.

Gewisse krankhafte Veränderungen der Ovarien bedingen beim Rinde zuweilen auffallende Störungen im Allgemeinbefinden, verändertes, aufgeregtes, wildes Benehmen, krankhafte Erscheinungen, die man unter dem Namen Nymphomanie, Stiersucht, kennt. Durch den operativen Eingriff der Kastration werden solche Tiere in der Regel ruhiger, so dass sie sich wenigstens während ihrer letzten Laktationsperiode vorzüglich zur Mast eignen, und dann auf der Schlachtbank einen grösseren Nutzen liefern.

Die ulafait (75) und Arnold (76) haben bei Kastrationsversuchen beobachtet, dass die Milch an Trockensubstanz zunimmt, der Geschmack besser, die Quantität jedoch vermindert wird. Die Milch nymphomanischer Kühe zeigt nach Schaffer (65) (vide Analyse beim Kapitel "Brunst") bei

hohem spezifischen Gewicht und normalem Fettgehalt einen grossen Eiweissgehalt. Lejoux (77) berichtet über den Einfluss der Kastration auf die Milchproduktion der Kühe, dass bei der Beurteilung der vorherige Gesundheitszustand derselben zu berücksichtigen sei. Milch gesunder Kühe werde durch die Operation nicht verändert; war die Kuhrindrig, so steige der Fettgehalt nach der Operation sofort. Die Milch rindriger Kühe enthalte stets mehr Kasein (Eiweiss?) als diejenige normaler.

Die Ergebnisse der elektrischen Leitungsprüfung der Milch nymphomanischer und kastrierter Kühe sind folgende:

Versuch I. Kuh, Spital-Kontr.-Nr. 133, braun.

		mor	gens	abe	ends	
190)4	Prot. Nr.	$\Lambda \cdot 10^4$	Prot. Nr.	$A \cdot 10^{4}$	
28.	I.			587	62.97	Bahn-Transport.
29.	I.	588	54.98	589	56.05	
30.	I.	590	56.04	591	51.34	
31.	I.	592	52.39	593	49.48	Beginn der Karenz.
1.	II.	594	52.13	595	53.12	Operation nachmittags.
2.	II.	596	50.59	597	51.86	
3.	II.	598	54.51	599	54.40	
4.	II.	600	54.07	601	53.52	
5.	II.	602	55.32	603	51.11	
6.	II.	604	51.58			

Versuch 2.

Kuh, Spital-Kontr.-Nr. 134, braun. Hustet viel, Nährzustand mittelmässig.

		mor	gens	abe	nds	
190)4	Prot. Nr.	$A \cdot 10^4$	Prot. Nr.	$A \cdot 10^{4}$	
28.	I.			605	69.84	Bahntransport.
29.	I.	606	55.13	607	55.82	
30.	I.	608	56.95	609	53.31	Hungern gelassen.
31.	I.	610	53.42	611	50.41	
1.	II.	612	51.38	613	56.74	operiert nachmittags.
2.	II.	614	48.93	615	48.65	Fresslust aufgehoben.
3.	II.	616	50.59	617	52:63	
4.	II.	618	54.56	619	53.37	
5.	II.	620	53.57	621	51.22	
6.	II.	622	50.85			

Versuch 3.

Kuh, Spital-Kontr.-Nr. 145, Fleck. 6 Jahre alt, guter Nährzustand.

		mo	rgens	ab	ends	
190	04	Prot. Nr.	$A \cdot 10^4$	Prot. Nr.	$A \cdot 10^4$	
1.	II.		_	623	41.45	
2.	II.	624	40.44	625	42.55	operiert nachmittags.
3.	II.	626	40.38			
4.	II.	627	40.12	628	38.69	
5.	П.	629	40.90	630	39.59	
6.	II.	631	41.48	_		
			$A \cdot 10^4$	1	n	
22.	II. a	. 632	48.85	0.554	1.3435	Steht im Stalle des
23.	II. n	n. 633	47.26	0.555	1.3435	Besitzers.

Versuch 4. Kuh, Spital-Kontr.-Nr. 144, braun, 9 Jahre alt, Nymphomanie.

		morgens			abends	
1904	Prot. Nr.	$A \cdot 10^4$	n	Prot. Nr.	$A \cdot 10^4$	n
23. II.	634	50.02	1.3430	635	49.08	1.3435
24. II.	636	47.07	1.3427	637	53.68*	1.3437*
25. II.	638	48.97	1.3440	639	50.74	1.3441
26. II.	640	48.94	1.3436	641	48.61	1.3437
27. II.	642	51.24	1.3438	643	51.03	-
28. II.	644	51.88	_ 44.8	645	52.46	
29. II.	646	51.44				

^{*} Kastriert am 24. II. nachmittags.

Versuch 5.

Kuh, Spital-Kontr. Nr. 240, rotfleck, 41/2 Jahre alt, abends morgens 1.1041.104Prot. Nr. 1904 Prot. Nr. 27. II. 40.40 43.92 647 648 41.66 * 28. II. 62.37 650 649 29. II. 45.37 45.52 652 651 1. III. 653 45.22 654 41.30

43.34

655

2. III.

^{*} Kastriert 28. II. vormittags.

Versuch 6.
Kuh, Spital-Kontr. Nr. 304, braun.
5 Jahre. Guter Nährzustand.

		morgens			abends	
1904	Prot. Nr.	$A \cdot 10^4$	1	Prot. Nr.	$A \cdot 10^4$	1
14. III.	-	_	_	656†	49.55	0.555
15. III.	657	45.53	0.555	658	43.87	0.560
16. III.	659	43.53	0.550	660*	43.56	0.560*
17. III.	661	44.30	0.552	662	43.44	_
18. III.			_	663	43.99	_
19. III.	664	45.36		<u> </u>	_	

^{*} Operiert am 16. III. nachmittags.

Versuch 7.

Kuh, Spital-Kontr. Nr. 308, gelbfleck, 7 Jahre alt.

Guter Nährzustand.

mor	gens		abe	nds
1904	Prot. Nr.	$A \cdot 10^4$	Prot. Nr.	$A \cdot 10^4$
15. III.	_	_	665	48.17
16. III.	666	45.39	667	45.82†
17. III.	668	47.18	669	48.97*
18. III.	42	44.53	670	44.05
19. III.	671	45.02	672	47.72
20. III.	673	48.64	674	48.57
21. III.	675	47.32	<u> </u>	_
22. III.	49	48.20	66	48.03
23. III.	71	48.26		

^{*} Operiert am 17. nachmittags.

Im grossen und ganzen treten diese Zahlen wenig aus dem Gebiete des Normalen. Bei Versuch 1 und 2 fällt das hohe Leitvermögen der ersten Messungen auf. Beide Tiere sind in mittlerem bis geringem Naturzustand, mit Bronchitis behaftet, einige Stunden mit der Bahn transportiert worden, so dass das erste Gemelk, welches dieser ermüdenden Reise folgte, als abnormal bezeichnet werden muss, und zwar um-

[†] Transport per Bahn von Wädenswil.

[†] Karenz beginnt.

somehr, als in der Folge niedrigere Werte für Λ auftreten. Bei den Versuchen 1, 2, 3, 4 und 7 steigt Λ in dem der Operation zuerst folgenden Gemelke um 1.79—6.61 · 10⁻⁴ an, um schon bei der nächsten Messung zurückzugehen. Bemerkenswert ist ferner das parallel mit der einen Tag vor der Operation verminderten Futterration einhergehende Sinken des Leitvermögens der Milch, was einer weiteren Erklärung nicht bedarf, da sich der teilweise Nahrungsentzug nur auf das Futter, nicht aber auf die Menge des Trinkwassers bezieht.

Bei Versuch 4 zeigt die Morgenmilch vom 24. II. 1904 einen "pathologisch niederen" Brechungsexponenten, 1.3427, das heisst, er steht unter der von Ripper angegebenen Minimalgrenze von 1.3430.

Versuch 3 ergibt den niedersten der von mir gefundenen Werte für $\Lambda=38.69\cdot 10^{-4}$ an. Die chemische Analyse wurde nicht ausgeführt, dagegen zwei weitere Proben erhoben, nachdem das Tier kastriert war und wieder vierzehn Tage im Stalle seines Besitzers stand. Nach Aussage des letzteren ging nach der Operation die Milchmenge zurück; das Leitvermögen stieg indessen auf 47 und $48\cdot 10^{-4}$.

Diese Versuche erlauben folgende Schlüsse:

Im Anschluss an andauernden ermüdenden Bahntransport nicht gesunder Tiere zeigt deren Milch einen stark erhöhten Wert für △ bis 69.84 · 10⁻⁴, der weit grösser ist als das maximale Leitvermögen normaler Milch und der mit der Erholung der Tiere wieder zurückgeht.

Die Nymphomanie und die Kastration der Kühe führt nicht zu einer solchen Veränderung des elektrischen Leitvermögens der Milch, die grösser wäre als die Schwankungen, die durch Individualität, Fütterungsart etc. bedingt sind.

9. Milch kranker Kühe.

a) Ausgeheilte Blasenseuche.

Die Milch maul- und klauenseuchekranker Tiere ist mehr oder weniger verändert, je nach Intensität, Lokalisation und Dauer der Krankheit. Die offensichtlich krankhaften Sekrete, wie sie Baum (78) eingehend schildert, sowie die scheinbar unveränderte normale Milch, die aber doch den krankheitserregenden Virus in sich birgt, kommen, dank unserer gesetzlichen, seuchenpolizeilichen Bestimmungen, nicht in den Handel. Veranlassung zur elektrischen Leitungsprüfung der Milch blasenseucheausgeheilter Tiere gab mir eine statistische Arbeit von O. Wyss (79), in welcher er nachzuweisen sucht, dass der Höhepunkt der Kindermorbidität und -mortalität Zürichs im Jahre 1898 im Zusammenhang stehe mit der Ausbreitung der Blasenseuche des Milchviehes der Umgegend. Obwohl diese Tierseuche zeitlich einige Monate früher auftrat und den nach dem Seuchenbulletin nachgewiesenen Höhepunkt erreichte, wird sie doch in erwähnter Statistik als Ursache der hohen Säuglingserkrankungsziffern beschuldigt, da die Milch von genesenen Kühen selbst nach Monaten immer noch verändert zu sein scheine. Die angestellten Untersuchungen sind folgende:

Milch von drei Kühen des Hrn. Hssr., Zürich II.

No. 1 und 2 erkrankten acht Wochen früher an Blasenseuche. Die dritte Kuh, im selben Stalle stehend, war nie krank. Futter: Heu, Rüben.

1. "Chlaus" 2. "Baer" 3. "Laubi" $1904~{\rm Pr.\,No.}~{\it A}\cdot 10^4~{\it n}~{\rm Pr.\,No.}~{\it A}\cdot 10^4~{\it n}~{\rm Pr.\,No.}~{\it A}\cdot 10^4~{\it n}$ 22. II. ab. 676 48.61 1.3435 678 45.48 1.3435 680 53.59 1.3429 23. II. morg. 677 48.57 1.3435 679 45.37 1.3435 681 54.17 1.3430

Diese Versuche weisen für A keine höheren Werte auf als normaliter bei gesunden Tieren gefunden werden. Der

Brechungsexponent bewegt sich bei 1 und 2 innerhalb den Schwankungen desselben bei gesunder Milch, während bei der Kuh 3, die nie krank war, den unteren Grenzwert (1.3430) darstellt bezw. nicht einmal ganz erreicht (1.3429). Nach diesen Befunden ist zu schliessen: Milch von Kühen, die zwei Monate früher an Blasenseuche erkrankten, zeigt nach vollständiger Ausheilung keine Veränderung, die sich durch die Leitungsprüfung oder die Refraktoskopie nachweisen liesse.

b) Allgemeine Erkrankungen.

Infektionen, Bronchitis, Lungentuberkulose. Tuberkulinimpfungen mit und ohne Fieberreaktion.

In der Literatur liegen meines Wissens keine Angaben über Milchanalysen allgemeinkranker Kühe vor, ebensowenig solche, welche den Einfluss der Tuberkulinisierung auf die Milchproduktion berücksichtigen. In folgendem werden die Resultate einiger physikalisch-chemischer Messungen wiedergegeben:

I. Fall, Bronchitis.
Spitalkuh Nr. 134.

Das Tier hustet viel, ist bei mittelmässigem bis geringem Nährzustand.

	mor	gens	ab	ends	
1904	Prot. Nr.	$A \cdot 10^4$	Prot. Nr.	$arDelta \cdot 10^4$	
28. I.	_		605	69.841)	
29. I.	606	55.13	607	55.82	
30. I.	608	56.95	609	53.31	
31. I.	610	53.42	611	50.41	
1. II.	612	51.38	613	56.74^{2}	
2. II.	614	48.93	615	48.13	
3. II.	616	50.59	617	52.63	
4. II.	618	54.56	619	53.37	
5. II.	620	53.57	621	51.22	
6. II.	622	50.85	_	_	
 A STATE OF THE PARTY OF THE PAR					

¹⁾ Bahntransport am 28. I. nachmittags.

²) Ovariotomie nachmittags.

II. Fall, Lungentuberkulose.

Spitalkuh Nr. 133.

Das Tier hustet viel, bei schlechtem Nährzustand. Am Abend des 4. II. 04 wurde die Impfung mit 0.5 cm³ Tuberkulin vorgenommen. Am folgenden Tag reagierte das Tier mit einer typischen Fieberkurve, deren Kulminationspunkt einer Temperaturvermehrung um 3 °C. entsprach.

	mor	gens	abe	ends
1904	Prot. Nr.	$\Delta \cdot 10^4$	Prot. Nr.	$A \cdot 10^4$
28. I.		<u> </u>	587	62.97
39. I.	588	54.98	589	56.05
30. I.	590	56.04	591	51.34
31. I.	592	52.39	593	49.48
1. II.	594	52.13	595	53.12
2. II.	596	50.59	597	51.86
3. II.	598	54.51	599	54.40
4. II.	600	54.07	601	53.52 1)
5. II.	602	55.32	603	51.11
6, II.	604	51.58		_

III. Fall, Tuberkulinprobe negativ.

Kuh "Laubi" von Fr. Sf. in O.

Junge Kuh, in gutem Nährzustand. Ohne klinische Krankheitssymptome. Impfung am Abend des 7. III. 04 ohne Fieberreaktion.

	morg	gens	abe	nds
1904	Prot. Nr.	$A \cdot 10^4$	Prot. Nr.	$A \cdot 10^4$
6. III.	_	_	682	47.76
7. III.	683	49.31	684	48.43 2)
8. III.	685	48.55	686	49.99
9. III.	687	49.74	688	48.43
10. III.	689	49.34	690	49.38
11. III.	691	49.98	692	48.77
12. III.	693	51.43	·	-

^{1) 0.5} cm³ Tuberkulin.

²⁾ Geimpft, abends 7. III. 04.

IV. Fall, Tuberkulinprobe positiv.

Kuh "Bummer" von Fr. Sf. in O. Guter Nährzustand. Ohne klinische Krankheitssymptome. Impfung am Abend des 18. III. 04 mit typischer Fieberkurve am folgenden Tag.

	morg	ens		nds
1904	Prot. Nr.	$A \cdot 10^4$	Prot. Nr.	$A \cdot 10^4$
18. III.	694	53.94	695	52.14 1)
19. III.	696	53.71	697	54.84
20. III.	698	54.14	699	54.88
21. III.	700	53.77	701	53.50
22. III.	702	50.96	<u> </u>	

V. Fall, Tuberkulinprobe negativ.

Kuh "Blum" von Fr. Sf. in O. Guter Nährzustand ohne klinische Krankheitssymptome. Impfung am 25. III. abends. Ohne Fieberreaktion.

	morg	gens	abe	ends
1904	Prot. Nr.	$A \cdot 10^4$	Prot. Nr.	$A \cdot 10^4$
24. III	. – –	_	703	47.10
25. III	704	48.80	705	47.43 1)
26. III	. 706	48.00	707	48.21
27. III	. 708	47.55		_
28. III	. 566	45.53	567	46.30

Diese Versuchsreihen ergeben, dass eutergesunde Kühe, die verändertes Allgemeinbefinden, bezw. anderweitige Erkrankungen zeigen, eine Milch zu liefern imstande sind, die nach dem Ergebnis der Leitungsprüfung nicht verändert ist, so lange die Milchproduktion durch die Allgemeinerkrankung nicht offensichtlich beeinträchtigt wird. Dies trifft in unseren Fällen I und II zu. Sind die Aussenbedingungen (Futter, Pflege etc.), unter denen die Tiere leben, normale, so gibt

¹⁾ Abends geimpft.

die Leitfähigkeit bei nur einmaliger Untersuchung dieser elektrophysikalischen Eigenschaft der Milch kein Mittel an die Hand, einen allgemein alterierten Gesundheitszustand zu erkennen. Anders, wenn das Sekret desselben Tieres täglich während einiger Zeit hindurch geprüft wird, wie wir es bei Fall I und II durchführen konnten. Die Ergebnisse dieser Messungen, in Kurve Nr. 7 eingetragen, lassen sofort die auffallend grossen Schwankungen der A-Werte erkennen, die sich durch geringgradige Veränderungen der äussern Lebensverhältnisse (Ermüdung durch Bahntransport, Futterwechsel etc.) enorm steigern lassen, so dass die Milch dieser kranken Tiere am unregelmässigen Verlauf der Leitfähigkeitskurve erkennbar wird. Diese Tatsache findet eine bemerkenswerte Analogie in der Beobachtung von Parmentier (93), dass die Milch kranker Kühe, insbesondere Tuberkulöser, in kurzen Zwischenräumen ganz grosse Schwankungen des Gefrierpunktes zeigt, z. B. — 0.55° bis -0.85° .

Die Tuberkulininjektionen, denen unmittelbar oder erst später eine Vermehrung des Leitvermögens der Milch folgt, zeigen bei gesunden Tieren und solchen, die mit Fieber reagieren (Fall II und IV), qualitative Unterschiede. Die letzteren zeigen eine Vergrösserung des Leitvermögens, die zwar die Höhe der A-Mittelwerte einzelner gesunder Individuen nicht übersteigt, jedoch eine Brechung der eigenen Kurve bedingt (vgl. Kurve Nr. 7), während die gesunden Impftiere auf die Tuberkulinisierung hin eine Verschiebung des Leitvermögens ihrer Milch nicht erkennen lassen.

¹⁾ In der ersten Zeit der Untersuchungen schien es, dass tuberkulösekranke Kühe sich direkt durch die hohe Leitfähigkeit der Milch verraten, später fanden wir aber einzelne normale Fälle, die dieselbe Höhe von △ zeigten, dagegen ist der Verlauf der Leitfähigkeitskurve bei der Milch kranker Tiere ein ganz anderer, ein charakteristischer, wie mir die Kurve Nr. 7 objektiv zu beweisen scheint.

c) Milch euterkranker Tiere.

Durch Erkrankung des secernierenden Organes wird naturgemäss auch dessen Produkt, die Milch, eine Veränderung ihrer Beschaffenheit erleiden. Entsprechend der Art und Ausdehnung der Krankheit auf das gesamte Drüsengewebe eines Viertels oder nur auf einzelne Partien, wird aus der entsprechenden Zitze eine Milch erhältlich sein, die schon verändert gebildet wird, oder nur zum kleinern Teil von gesunden Drüsenteilen stammend, sich erst in den grösseren Milchkanälen oder der Zysterne mit dem Sekret kranken Gewebes mischt und in diesem Sinne als veränderte Milch zutage tritt. Es ist dies von prinzipieller Bedeutung für die Auseinanderhaltung der in kranker Milch vorkommenden Gerinnsel, die sowohl als geronnenes Kasein-Albumin, als auch für Fibrinkoagula, und sehr oft, wie die mikroskopische Untersuchung ergibt, als agglutinierte Leukozyten angesprochen werden müssen. Das Kasein ist das Produkt einer spezifischen Funktion der Drüsenzellen und wird bei Erkrankung der letzteren kaum gebildet werden können, vielmehr ist ein direkter Übertritt der Eiweisstoffe des Blutplasma in das Drüsenlumen denkbar. Die Gerinnsel eines vollständig und intensiv kranken Viertels (z. B. bei parenchymatöser Mastitis) bestehen deshalb aus geronnenem Bluteiweiss. Andererseits ist bei der erwähnten Vermischung von krankem Sekret, oder auch nur von Stoffwechselprodukten eingedrungener Mikroorganismen, mit der normalen Milch gesunder Drüsenteile eine partielle bakteriogene (Säure- oder Lab-) Ausfällung des Kaseins möglich, so dass wir mit Fug und Recht die oft als erste Symptome eines beginnenden Euterkatarrhs sich in der Milch zeigenden Flocken als Kaseingerinnsel Über weitere Veränderung der Zusammensetzung pathologischer Milch liegen in der Arbeit von Hess, Schaffer und Bondzynski (80) chemische Analysen vor,

die mit den Ergebnissen unserer physikalisch-chemischen Messungen im Einklang stehen, wie unten dargetan werden soll.

Die chemische Zusammensetzung pathologischer Milch ist nach diesen Autoren folgende:

Eutersekret bei:	Wasser	Trocken- Substanz	Fett	Eiweiss- Körper	filch-	Asc	henbes	
		E 22	-5149	HH	72	Ge	P	0/0
Gesunder Drüse 1)	87.75	12.25	3.4	3.5	4.6	0.75	26 ²)	142)
nicht infektiösem Galt	92.83	7.17	0.82	4.01^{4})	0.53	0.79	7.35	35.76
infektiösem gelbenGalt 3)	89.34	10.66	1.99	6.00	1.84	0.83	-	-
Mastitis parenchymatosa	90.26	9.74	2.16	4.21	1.01	0.97	19.21	27.79

Die Verschiedenheit der einzelnen Milchsorten geht aus diesen Zahlen bestimmt hervor. Pathologische Verhältnisse bei der Milchdrüse bedingen immer eine Verminderung der Trockensubstanz, des Fettes und des Milchzuckers bei gleichzeitig ganz bedeutender Vermehrung der "Eiweisskörper" und der Milchasche, deren prozentualischer Gehalt an Phosphorsäure und Chlor ein ganz verschiedener von demjenigen normaler Milch ist. Während hier die Asche zu $26\,\%$ 0 aus P_2O_5 und nur zu $14\,\%$ 0 aus Cl besteht, verschiebt sich dieses Verhältnis in pathologischen Sekreten ganz gewaltig. $100~\rm gr.$ "Galt"-Milch enthalten $0.79~\rm gr.$ unverbrennbare Mineralstoffe, wovon $35.76\,\%$ 0 auf Cl und nur $7.35\,\%$ 0 auf P_2O_5 fallen.

¹⁾ Nach Fleischmann, Die Milchwirtschaft, 1901 pag. 49.

²⁾ Durchschnittswerte von verschiedenen Autoren nach Klimmer. loc. cit. pag. 49.

³⁾ Hess und Mituntersucher erwähnen, loc. cit. pag. 50: "Die Eiweissstoffe bildeten eine flockige Masse, und es waren nur Spuren derselben in Lösung. Das mikroskopische Bild zeigte nebst Milchkügelchen und unvollständig degenerierter Zellmasse Mikrokokken (Streptokokken) in bedeutender Menge."

⁴⁾ Hess, loc. cit. pag 51: "Die Eiweissubstanzen sind nur zum geringsten Teile in Lösung und bilden hauptsächlich eine flockige Masse".

Aus diesen Zahlen ist leicht ersichtlich, dass an den 4,01 % "Eiweisskörper" Kasein und Albumin nicht in gleichem Verhältnisse partizipieren können, wie bei normaler Milch, sondern dass hier vielmehr das Kasein durch einen phosphorfreien Eiweisskörper (Serumalbumin, Globulin, Fibrin) ersetzt sein muss. 100 gr. Kasein enthalten 0.85 gr. Phosphor (Fleischmann). 1) Ein Teil dieses Phosphors oxydiert sich bei der Verbrennung zu 2.290 Teilen Phosphorpentoxyd P₂O₅ (Phosphorsäure), so dass 1,0 gr. Kasein 0.0195 P₂O₅ liefert. Von den 4,01 gr. Eiweisstoffen wären, normale Verhältnisse vorausgesetzt, 0.5 gr. P.-freies Laktalbumin die restierenden 3.51 gr. Kasein müssten 0.0684 gr. P₂O₅ liefern, während im ganzen nur 0,0578 gr. tatsächlich gefunden wurden, entsprechend 0,79 gr. Gesamtasche von 7.35% P₂O₅Gehalt. Dazu ist noch ungewiss, wie viel von diesen 0,0578 gr. P₂O₅ vom Phosphor der anorganischen Kalkphosphatsalze herrühren. In unserer Berechnung sind diese zugunsten des "Kaseingehaltes" in der pathologischen Milch als fehlend angenommen worden, obwohl sie nach Söldner²) normaliter 75% der Phosphorsäure der Milchasche liefern.

In der folgenden Tabelle sind die physikalisch-chemischen Messungen zusammengestellt. Die Milchproben wurden im veterin. bakteriol. Laboratorium Zürich mikroskopisch untersucht und in verdankenswerter Weise mit den Resultaten mir zur Verfügung gestellt.

Bei der Krankheit "Gelber Galt" bedeutet "u" unheilbare Form, durch lange, nicht von den Leukozyten enklavierte Streptokokken verursacht, und "h" heilbare Form, mit kurzen enklavierten Pilzen.

Vor der Leitungsprüfung wurde jeweils Bodensatz, Rahm und Milchschicht (Serum) gut gemischt und so im Widerstandsgefäss gemessen.

¹⁾ Fleischmann, loc. cit. pag. 32.

²⁾ Söldner, loc. cit. pag. 22.

											2	62													
Herkunft und Beobachtungen.	Spitalkub, 1/4 erkrankt, 3 gesunde Viertel $A=53.87\cdot 10^{-4}$	2 0/0 Rahm, 70 0/0 rotgelbes Serum, 28 0/0 eitrig. Depot, bluthaltg.	29 0/0 Depot, viel Eiter.	rotbraun. 0 Rahm, 400/0 Serum, 600/0 Depot, Erythrozyten und	1 Viertel krank, 3 gesunde Viertel, $\Lambda = 55.53 \cdot 10^{-4}$.	0 Rahm, 60 0/0 kaffeebraunes Serum, 40 0/0 Depot, viel Leukoz.	70 0/0 weisses Serum, 30 0/0 Depot, viel Leukozyten.	50/0 schwimmende Flocken, 950/0 grauweiss. Serum, viel Leukoz.	35 0/0 gelbes Serum, 65 0/0 sandiges Depot.	wenig Rahm, mit Leukoz. vermengtes Serum, erythrozytenhaltig.	gelbes Serum, 25 0/0 sandiges Depot, viel Leukozyte	20 % Rahm, 79 % weisses Serum, 1 % grütziges Depot, keine Leukozyten. keine Mikroben.	60 0/0 Serum, 40 0/0 eitriges Depot, viel Leukozyten.	75 0/0 grauweisses Serum, 25 0/0 Depot.	wenig Rahm, grauweisses Serum 650/0, eitriges Depot 350/0.	gleichmässig im Serum verteilte schwimmende Flocken.	wenig Rahm, 900/0 rötlich. Serum, 100/0 sandig. Depot, bluthaltig.	80 0/0 Serum, gelb, 20 0/0 eitriges Depot.	12 0/0 Rahm, 88 0/0 weisses Serum. Einige Grützen als Depot.	50 0/0 gelbes Serum, 50 0/0 eitriges Depot, viel Leukozyten.	50/0 gelbes Serum, 950/0lockeres grütz. Depot, stinkender Geruch.	grauweisses Serum, wenig Eiter.	gelbes Serum, 2000 e	85 % weisses Serum, 15 % grützig. Depot, keine Leukozyten, keine Streptokokken.	
KontNr. d. bakter. Unter- suchung	1	486	487	485	1	14	15	17	19	24	27	58	59	35	33	34	37	39	41	40	45	42	442	441	
n	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Ī	1	1	1	1	1	. 1	1	1	I	
P	1	1	1	1	1	1	1	0.810	0.688	0.650	0.675	1	1	1	1	1	1	1	1	1	1	1	1	Ī	
4 · 104	69.65	108.1	100.6	99.75	72.18	104.5	109.1	89.74	87.73	90.57	1.601	72.39	91.81	79.15	81.87	97.51	114.6	125.9	80.04	115.9	90.55	88.81	85.23	118.4	
Krankheit	Eutertuberkulose	u. gelber Galt	h. " "		Katarrh	u. gelber Galt	h. " "	h. " "	u. " "	h. " "	u. " "	Katarrh	u. gelber Galt	u. " "	u. " "	u. " "	h. " "	u. " "	u. " "	u. " "	Kokkeninfektion	u. gelber Galt	Katarrh	n	
Datum	XII. 03	5. XII. 03	5.XII. 03	5. XII. 03	I. 04	I. 04	I. 04	I. 04	I. 04	I. 04	I. 04	I. 04	I. 04	II. 04	II. 04	II. 04	II. 04	II. 04	II. 04	II. 04	II. 04	II. 04	II. 04	П. 04	
۵	7.0	434			14.	13,	13.	13.	13.	25.	28.	28.	30.	5.	5.	5.	.9	9.	6	111.	12.	111.	12.	12.	
Prot. Mr.	709	710	711	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730	731	732	

											263	3													
Herkunft und Beobachtungen.	30 0/0 gelbliches Serum, 70 0/0 eitriger Rahm.	helles, gelbbraunes Serum, mit schleimigen Flocken.	300/0 flockige Rahmschicht, 680/0 gelbes Serum, Strich h. l.	15 0/0 Rahm, 83 0/0 gelbes Serum, 2 0/0 eitriges Depot, bluthaltig,	Gelbes, zähfüssiges Kolostrum mit spärlich Grützen als Depot. Kuh vor 2 Tagen gekalbt.		77 0/0 helles, gelbl. Serum, 33 0/0 eitriges Depot.	65 0/0 rotgelbes Serum, 35 0/0 Depot.	Milchistweiss ohne Depot, hat aber stark rässen, salzig. Geschm.	5 0/0 Rahm, 95 0/0 weiss. Serum, spärlich Flocken, wenig Leukozyten.	100/0Rahm, 880,0gelb. Serum, 20/0flockig. Depot, spärlich Leukoz.	0 Rahm, 50 % gelbes Serum, 50 % eitriges Depot, viel Leukoz.	300/0 Rahm, 700/0 weisses Serum, spärlich Flocken, Kokken.	100/0 Rahm, 850/0 weissliches Serum, 50/0 flockiges Depot.	200% Rahm, 75% rötlichgelbes Serum, 5% sandiges Depot.	180/0 Rahm, 800/0 weisses Serum, 20/0 grütziges Depot.	0 Rahm, 100 0/0 Serum, einige Flocken, nicht gestanden.	10 0/0 Rahm, 90 0/0 weissliches Serum, wenig Grützen.	0 Rahm, 70 % gelbes Serum, 30 % eitrig. Depot, viel Leukozyten.	20 0/0 Serum, 80 0/0 eitriges Depot.	10 0/0 Rahm, 90 0/0 weisses Serum, spärliche Flocken.	30 % rotgelb. Serum, 70 % schwimmende Gerinnsel, bluthaltig, spärlich Grützen. Kokken.	100/0 Rahm, 880/0 gelb. Serum, 20/0 eitr. Depot, viel Leukozyten.	100/0 Rahm, 900/0 weissl. Serum, spärlich Grützen, keine Pilze.	
KontNr. d. bakter. Unter- suchung	47	+	501	505	T	69	80	95	-1	185	183	187	184	182	180	181	196	194	192	195	197	198	199	200	
n	1	1.3375	1.3395	1.3410	1.3417	1.3402	1	1	1	1.3425	1.3411	1.3380	1.3425	1.3428	1.3432	1.3434	1.3422	1.3400	1.3372	1.3420	1.3431	1.3400	1.3381	1.3402	
P	- 1	0.572	0.705	0.750	0.595	0.565	1	0.600	1	1	1	1	1	1	1	-1	1	1	1	1	1	I	1	15	
$A \cdot 10^{4}$	101.3	110.5	109.4	96.19	62.89	85.51	90.74	110.32	68.84	1	1	1	1	1	1	1	1	1	I	d	1	1	1	1	
Krankheit	u, gelber Galt	akute Mastitis	unheilbar (h. 1.	gelber Galt h. r.	pathol. Kolostr.	u. gelber Galt	h. " "	h. " "	Katarrh	Katarrh, kein Galt	h. gelber Galt	n. " "	kein gelber Galt	h. gelber Galt	u. " "	h. " "	kein gelber Galt	u. gelber Galt	u. " "	u. " "	h. " "	kein gelber Galt	" " "	n n	
Datum	12. II. 04	15. II. 04	П	15. II. 04	18. II. 04	24. II. 04	1. III. 04	16. III. 04	30. III. 04	18. V. 04	18. V. 04	19. V. 04	18. V. 04	18. V. 04	16. V.04	16. V. 04	25. V. 04	25. V. 04	24, V. 04	25. V. 04	1		1		
.1V .4014	733			736	737	738	739	740	741	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	

Die Ergebnisse der Leitungsprüfung der dreiunddreissig pathologischen Milchsorten, in Prozente umgerechnet, ergibt folgende interessante Anhaltspunkte:

Leitvermögen	Anzahl der Milchen	pro Hundert
$A \cdot 10^4$		
65.05-70.00	2	6.2
70.05—80.00	5	15.6
80.05-90.00	6	18.8
90.05-100.0	6	18.8
100.5—110.0	7	21.9
110.5-120.0	5	15.6
120.5—130.0	1	3.1
	32	100.0

Aus diesen Zahlen geht hervor, dass das elektrische Leitvermögen bei pathologischer Milch unter allen Umständen vermehrt, in einzelnen Fällen ganz enorm gesteigert ist, bei Nr. 726 sogar um 150%; Δ ist durchschnittlich 33,47 · 10⁻⁴ höher als die maximale (62.00 · 10⁻⁴), oder 45.28 · 10⁻⁴ höher als die mittlere (50.2 · 10⁻⁴) Leitfähigkeit normaler gesunder Milch. In keinem Falle, selbst bei dem niedrigsten gefundenen Werte für pathologisches Eutersekret (Nr. 741) Δ = 68,86 · 10⁻⁴, wäre derselbe nicht offensichtlich verschieden von demjenigen der oberen Grenze der physiologischen Schwankungen. ¹)

Die Bestimmungen des Brechungsexponenten von absolut kranken Milchen, die grösstenteils schon makroskopisch als solche erkennbar sind (vide Bemerkungen bei der bakter. Untersuchung) sind in drei Fällen Kontr.-Nr. 180, 181 und 197 normale Werte gefunden worden. (Bei über ein halbes

¹) Die Milch Prot. Nro. 737 ist dickzähflüssiges, gelbes Kolostrum und weist als einziges Krankheitssymptom wenige sedimentierte Grützen auf. Dass das Leitvermögen dieses pathologischen Sekretes nicht höher als 62,89 · 10—4 ist, bestärkt nur unsere auf Seite 57, Al. 2, gehegte Annahme der behinderten Ionenwanderung in Kolostralmilch. Die Verwendbarkeit der Leitungsprüfung für die Praxis ist deshalb nicht verringert, da Kolostrum vom 2. Tage post part. so wie so nicht in den Handel gelangt.

Dutzend Kontrollmessung mit Prüfung des 0-Punktes.) Es weist demnach die Rippersche Methode in 15% der untersuchten pathologischen Milchen einen zu hohen Brechungsindex auf; die Methode ist also keine absolut sichere; sie muss zum mindesten durch andere ergänzt werden.

Wie das Leitvermögen, so ist auch die Gefrierpunktsdepression bedeutend vermehrt, bei Prot. Nr. 716 beträgt sie sogar 0.810°, bei Prot. Nr. 738 allerdings nur 0.565°. Wenn wir in Betracht ziehen, dass Schwankungen von A, die mehr wie + 0.020 betragen, erst als abnorme angesehen werden können, so steht jedenfalls fest, dass in erwähntem Fall der relativ wenig veränderte Gefrierpunkt von -0.565° sicher nicht geeignet ist, eo ipso die kranke Milch erkennen zu lassen, obwohl diese tatsächlich stark pathologisch verändert war. Hier schon soll bemerkt werden, dass die Milch Nr. 734 bei sehr grossem Leitvermögen von 100,5 · 10⁻⁴ einen relativ niedrigen Wert für $\Delta = 0.572^{\circ}$ zeigt, eine Tatsache, auf die im dritten Teil, Kritik der Methoden, zurückgekommen wird. Gestützt auf diese Ergebnisse erscheint mir jetzt schon weitere Untersuchungen vorbehalten - die elektrische Leitungsprüfung oder Widerstandsmessung als eine praktisch sehr gut verwendbare Methode zum Nachweis krankhafter Eutersekrete, als eine Methode, die eventuell befähigt ist, den Milchhygienikern grossen Nutzen zu bieten, dann wenigstens, wenn sich diese von dem ungerechtfertigten Verlangen emanzipieren können, die vielfach ineinandergreifenden und komplizierten biologischen Vorgänge im tierischen Organismus nach einer einzelnen Universalmethode erkennen und beurteilen zu wollen.

d) Abmagerung, Diabetes.

Im Verlaufe meiner Untersuchungen wurde mir in verdankenswerter Weise vom Vorsteher der Ambulat. veterin. Klinik die Milch einer älteren Kuh, welche infolge Zuckerharnen (Diabetes) beständig abmagerte und später infolge an-

haltendem Kräftezerfall der Schlachtbank überführt werden musste, übermittelt. Das kleine Euter hatte vergrösserte Lymphdrüsen, wies aber daneben keine Erscheinung frischer Erkrankung auf. Der Tuberkulinimpfung am 18. II. 04 abends folgte keine Fieberreaktion. Milchquantum zirka drei Liter. Die klinisch usuelle, optische Prüfung der Milch nach Intensität ihrer weissen Farbe, resp. Lichtreflexion, liess sofort auf eine Verarmung an Fett, bezw. Trockensubstanz schliessen. Die Untersuchung zeitigte folgende Resultate:

Spez. Gew. Fett
$$\begin{cases} \text{Trocken-} \\ \text{substanz} \\ \text{berechnet} \end{cases}$$
 Prot.Nr. $A \cdot 10^4$ A n

Abend 18.II.1904 1.031.5 2.6% (11.31) 742 56.68 0.558 1.3425 Morgen 19.II.1904 1.033.3 1.0 (9.81) 743 58.87 0.554 1.3430

Offenbar ist diese veränderte Zusammensetzung der Milch bedingt durch den Krankheitszustand des Tieres im allgemeinen. Bemerkenswert ist, dass die Refraktoskopie einzig bei der Abendmilch auf abnorme Milch schliessen lässt, während Leitungsprüfung und Kryoskopie gar keine Anhaltspunkte geben. Unsere Methoden sind spezifisch empfindlich für die bis heute nicht oder wenig kontrollierbaren Kristalloide der Milch. Ein Fettmangel ist naturgemäss durch Leitungsprüfung und Refraktoskopie ebensowenig nachweisbar wie durch die Kryoskopie; dafür existieren gut ausgearbeitete gebräuchliche Schnell-Methoden der Molkereitechnik, wie z. B. die Azidbutyrometrie.

Besprechung der drei Methoden in kritischer Beleuchtung ihrer Untersuchungsresultate.

Die Refraktoskopie

hat bekanntlich einen neuen Aufschwung praktischer Anwendung Ripper zu verdanken, ob sie jedoch alle dessen vielseitigen Hoffnungen und weitgehenden Versprechungen zu erfüllen imstande sei, dürfte heute, nachdem sich bereits Ertel und Wittmann l. c., gestützt auf vergleichende Untersuchungen der in Betracht fallenden kranken Kühe und des Brechungsexponenten ihrer Milch, gegen die Zuverlässigkeit der Methode ausgesprochen haben, mehr denn je als unwahrscheinlich gelten; vor allem sind umfangreiche Kontrollserien notwendig. Die Refraktion ist eine additive Atomfunktion (Ostwald). Der Brechungsindex einer Flüssigkeit ist abhängig von deren Natur (Lösung, physikalische Mischung, chemische Komposition), der Konzentration (Dichte), und wird verändert durch die Temperatur. Merkwürdigerweise hat jedoch das Maximum der Wasserdichte bei 40 keinen Einfluss auf die stetige Abnahme von n bei der Veränderung der Temperatur von 1-80 (Mousson [81]); auch nimmt nach Van der Villigen¹) n des Wassers durch Zusatz von Schwefelsäure nur bis zu einer bestimmten Konzentration zu, um darüber hinaus wieder zurückzugehen. Landolt1) berechnet das Brechungsvermögen einer Mischung aus dem Gewicht und der spezifischen Brechung der beiden Bestandteile, und findet das Refraktionsäguivalent — d. i. das Produkt aus spezif. Refraktion und Gewicht - einer Mischung gleich der Summe der Refraktionsäquivalente der beiden Bestandteile.

Die Refraktion zeigt also keineswegs einfache Verhältnisse, und speziell bei einer, aus den verschiedenartigsten Stoffen zusammengesetzten Flüssigkeit wie Milch, dürfte es schwer fallen, auf den Anteil jeder einzelnen Komponente am resultierenden Brechungsexponenten zu schliessen. Die Refraktoskopie ist, wie die Bestimmung des spezifischen Gewichtes und der Trockensubstanz, eine summarische Methode, mit besonderer Empfindlichkeit für die C-Atome, und wird deshalb allein auch kaum mehr leisten, wohl aber diese beiden Methoden sehr gut ergänzen können. In

¹⁾ Zitiert nach Mousson l. c. pag. 309.

folgendem sollen nur einige gefundene Tatsachen festgestellt und beleuchtet werden.

Säuerung und spontane Gerinnung lassen sich an einer Veränderung des Brechungsexponenten nicht erkennen.

Die Milch Prot.-No. 3 hatte am 27. I. 04 ein Leitvermögen von $A = 47,20 \cdot 10^{-4}$. Am 16. II. 04 wurden folgende Werte (Prot.-No. 742) gefunden: $A = 68.49 \cdot 10^{-4} A = 0.890 n = 1.3445$. Wenn auch die beiden letzteren Grössen aus äussern Gründen am 27. I. 04 nicht eruiert werden konnten, so geht doch aus denselben vom 16. II. 04, nach bisher Besprochenem, hervor, dass & stark vermehrt ist, während n keine offensichtliche Veränderung erlitt. Die sauren Molken zweier spontan geronnenen Milchen zeigten: bei der einen (Prot.-No. 743) nach 9 Tagen $\Lambda = 69.83 \cdot 10^{-4}$ △ = 0.700, während das Brechungsvermögen der reinen, klaren Flüssigkeit ohne Erwärmen oder Essigsäurezusatz n = 1.3445 war, und nach Einwirkung von 2 % Säurebeimengung und Siedetemperatur nur auf n = 1.3440 sank. Etwas anders gestalten sich die Refraktionsergebnisse der andern Molke, die bereits mit Zersetzung begonnen und einen unangenehmen Geruch hatte, trübweisse Farbe zeigte und selbst nach Essigsäure- und 10 Minuten Temperatureinwirkung von 80° keinen, die Flüssigkeit aufhellenden Niederschlag gab. Bei dieser 10 Tage alten Milch (Prot.-No. 744) war $A = 72.92 \cdot 10^{-4}$; A = 0.815; n = 1.3450 ohne Säurezusatz und Erwärmen, blieb jedoch nach Einwirkung der genannten Reagentien und anhaltendem Zentrifugieren auf gleicher Höhe.

Ohne Zweifel ist das hohe Brechungsvermögen bedingt durch die bei der Fäulnis entstandenen, löslichen, durch Essigsäure und Kochen nicht fällbaren, stickstoffhaltigen Zersetzungsprodukte des Kaseins und Albumins, die, in der fäulniszersetzten Milch die Anzahl gelöster Atome des Serums vermehrend, bei der Methode nach Ripper als neue Momente in Betracht fallen. Den Eiweisskörpern und dadurch den Kolloiden der (veränderten) Milch kommt ein grosser Anteil am Brechungsexponenten zu, wie aus folgenden Versuchen hervorgeht:

- 1. Das pathologische Sekret einer kranken Euterdrüse (Agalact. catarrh. contag.) besteht aus 60 % eitrigem Depot und 40 % hellgelben, durchsichtigklarem Serum, welches ohne Zusatz von Reagentien einen Brechungsindex n = 1.3420 aufweist, nach Zusatz von Säure und Erwärmen auf 80% fällt ein Niederschlag aus, der eine Flüssigkeit vom Brechungsvermögen n = 1.3328 zurücklässt.
 - 2. Die Kolostrummilch Prot.-No. 500 vom 24. II. morgens zeigt nach Zusatz von 2 0 /o Essigsäure einen Niederschlag schon in der Kälte, nach dem Zentrifugieren weist das Serum einen Brechungskoeffizienten n=1.3435 auf, nach Erwärmen auf 80^{0} fällt ein Gerinnsel aus, das Serum zeigt n=1.3432, und gleichfalls nach Kochen n=1.3425. Ähnliche Zahlen liefert das Kolostrum vom 23. II. abends bei 2 0 /o Essigsäure 80^{0} erwärmt n=1.3434, gekocht 1.3426.

Diese Versuche zeigen vor allem auch, dass vergleichbare Resultate nur bei ganz gleicher Technik der Vorbehandlung der Milch, bei Berücksichtigung aller Einzelheiten, Temperatur, Dauer der Einwirkung etc., erhältlich sind.

Fassen wir die Resultate aller refraktoskopisch untersuchten Milchen zusammen, so ergibt sich, in Übereinstimmung der Beobachtungen von Ertel und Wittmann, dass die Voraussetzungen Rippers nicht überall zutreffen, dass die Brechungsexponenten bei offensichtlich pathologischen Milchen einen hohen, bei ebenso sicher gesunden Tieren einen niedereren Wert aufweisen, als die Publikationen Rippers annehmen lassen, und dass die Methode auch nur als eine Wahrscheinlichkeitsmethode taxiert werden kann mit mehr oder weniger grossem Prozentsatz von richtigen Resultaten, ein absolut sicheres Mittel, bei scheinbar normaler Milch innerlich kranker Tiere die Krankheit zu finden, oder auch nur sicher am pathologischen Sekret Euterkrankheiten nachzuweisen und zu entdecken, ist sie nicht (wie vorauszusehen war).

Die Kryoskopie

will neuerdings, namentlich von Winter I. c., der täglichen Milchkontrolle zugänglich gemacht werden. Eine allgemeine Einbürgerung der Methode in die Praxis dürfte aber schwer halten, da dem Vorteil des geringen Aufwandes an Reagentien der schwerwiegendere Nachteil einer langsamen Ausführbarkeit gegenübersteht. An die Resultate lassen sich einige theoretische Erwägungen knüpfen. Der für die Praxis verwendbare, auch unsern Messungen dienende Gefrierpunktbestimmungsapparat von Beckmann liefert bei Berücksichtigung aller Vorschriften der Technik (vide pag. 17 und 25) Resultate von 0,005° Genauigkeit.

In der Milch gefriert nicht nur das Lösungsmittel, das Wasser, aus, sondern neben den suspendierten unlöslichen Bestandteilen 1) auch zum Teil der gelöste Stoff. F. Bordas und de Raczkowski (83) untersuchten die Einwirkung des Gefrierens der Milch bei — 100 in der Ruhe und fanden von vier verschiedenen Teilen der erstarrten Milch folgende Analyse:

	Extrakt bei 100°	Asche	Fett	Laktose	Kasein
	0/0	0/0	0/0	0/0	0/0
ch vor dem Gefrieren	13.97	0.83	4.80	4.6	3.72
			1.54	2.81	1.72
Oberer Teil	32.21	0.61	21.68	3.52	6.40
			1.58	10.64	12.43
Unterer Teil	41.53	2.78	0.79	18.65	19.31
	Peripherie Oberer Teil Mittlerer Teil	bei 100° 0/0 ch vor dem Gefrieren 13.97 Peripherie 6.53 Oberer Teil 32.21 Mittlerer Teil 26.75	bei 100° O/O ch vor dem Gefrieren 13.97 0.83 Peripherie 6.53 0.46	bei 100° Asche Fett 0/0 0/0 0/0 ch vor dem Gefrieren 13.97 0.83 4.80 Peripherie 6.53 0.46 1.54 Oberer Teil 32.21 0.61 21.68 Mittlerer Teil 26.75 2.10 1.58	bei 100^{0} Asche Fett Laktose $0/0$ $0/0$ $0/0$ $0/0$ ch vor dem Gefrieren 13.97 0.83 4.80 4.6 Peripherie 6.53 0.46 1.54 2.81 Oberer Teil 32.21 0.61 21.68 3.52 Mittlerer Teil 26.75 2.10 1.58 10.64

Es kommt also bei ruhigem Gefrieren, wobei eine Aufrahmung möglich ist, eine ganz bedeutende Entmischung der Milch zustande. Aber zugegeben, dass beim anhaltenden

¹⁾ Dass die nicht gelösten, resp. nur gequollenen Kolloide, der durch Lab ausfällbare Bestandteil der Milch (Eiweiss, Fett, Tricalciumphosphat) osmotisch fast unwirksam sind — wie die Kolloide überhaupt, Ostwald (94), Barus und Schneider (95), Levi (36) — und ⊿ nicht beeinflussen, geht aus Versuchen von Hotz und mir hervor (vide pag. 38)

Rühren der zu untersuchenden Milch im Gefrierpunktbestimmungsapparat eine Verschiedenheit in der Zusammensetzung der einzelnen erstarrten Partikelchen nicht zustande kommen kann, so ist doch sicher, dass der gefrorene Teil nicht aus reinem Lösungsmittel, sondern auch aus gelöstem Stoff besteht, wie aus den Untersuchungen von Kaiser und Schmieder (84) hervorgeht, wonach Eis und flüssiger Teil folgendermassen zusammengesetzt waren:

			Eis	Flüssiger Teil
Kasein			2.57	4.42
Zucker			2.14	5.93
Salze .			0.5	0.97
Fett .			10.10	4.11

Nach Neumann (85) sollen durch das Gefrieren sogar Kasein und Extraktivstoffe zum Teil verändert werden, so dass gefrorene Milch nicht mehr zu käsen sei. Sieg-feld (86) beobachtete, dass die wieder flüssig gewordene Milch eine grosse Menge feinster Flöckchen enthält, die auf ein Ausscheiden eines Kaseinhydrogels zurückgeführt werden.

Diese Erstarrungsverhältnisse der Milch machen wohl eine annähernd genaue Berechnung der wirklich vorhandenen Anzahl gelöster Molen, wie sie Koeppe (42) ausgeführt, illusorisch, wie aus folgender Auseinandersetzung von Nernst (82), pag. 128, hervorgeht:

"Wenn man eine flüssige Lösung zum Gefrieren bringt, so scheidet sich bekanntlich in der Regel das Lösungsmittel in reinem Zustande aus; für diesen Fall gelten die Raoult-van't Hoffschen Formeln. In einigen Fällen beobachtet man aber erheblich kleinere Gefrierpunktserniedrigungen, als sich aus dem Molekulargehalt an gelöster Substanz nach den erwähnten Formeln berechnet; in der Regel erklärt sich dies aus einer Polymerisation (z. B. Bildung von Doppelmolekülen) der gelösten Substanz. Aber es gibt Fälle, in denen eine solche Erklärung höchst unwahrscheinlich oder gar unzulässig ist, und hier hat sich im Sinne der von van't Hoff zuerst geäusserten Vermutung herausgestellt, dass nicht das

reine Lösungsmittel, sondern ein Gemisch von festem Lösungsmittel und gelöster Substanz auskristallisiert.

Dass unter solchen Umständen eine zu kleine Gefrierpunktserniedrigung resultieren muss, ist leicht einzusehen. Nach den Betrachtungen von S. 122 muss der Gefrierpunkt jedes Gemisches bei immer weiter fortgesetztem Ausfrieren sinken, und nur wenn der ausgefrorene Bestandteil die gleiche Zusammensetzung besitzt als der zurückbleibende flüssige, erstarrt die ganze Flüssigkeit bei konstant bleibender Temperatur. Enthält also das ausgefrorene Gemisch mehr an gelöster Substanz als die zurückbleibende Lösung, so wird letztere durch das Ausfrieren verdünnt, d. h. in diesem Falle muss der Gefrierpunkt mit zunehmender Konzentration an gelöster Substanz sogar ansteigen; enthält das ausgefrorene Gemisch weniger an gelöster Substanz als die zurückbleibende Lösung, so muss der Gefrierpunkt mit zunehmender Konzentration zwar sinken, jedoch offenbar weniger rasch, als wenn reines Lösungsmittel ausfriert, d. h. die Gefrierpunktserniedrigungen erscheinen verkleinert."

Bei der Milch enthält nun nach den Analysenzahlen von Kaiser und Schmieder das ausgefrorene Gemisch weniger an gelöster Substanz, als die zurückbleibende Flüssigkeit, es wird also der gefundene Gefrierpunkt eher geringer sein, als der wirklichen Anzahl gelöster Molen entsprechen würde. Es ist anzunehmen, dass der Versuchsfehler, mit dem bei der Milch zu rechnen ist, auch bei andern physiologischen Flüssigkeiten in Betracht kommt, um so eher, als für Blut und Milch desselben Individuums die gleiche Gefrierpunktsdepression gefunden wurde (Koeppe, Winter), jedenfalls wird er einen, vielleicht kleinen, aber konstanten Wert bilden, was aus Analogie mit folgenden von Nernst l. c. pag. 169 angeführten Tatsachen geschlossen werden muss:

"Es hat sich, wie erwähnt, in der Tat herausgestellt, dass einige abnorm kleine Gefrierpunktserniedrigungen durch eine mit Auskristallisieren gelöste Substanz verursacht sind. So friert nach van Bijlert aus Lösungen von Thiophen in Benzol eine feste Lösung aus, deren Gehalt nach Beckmann ziemlich unabhängig von der Konzentration, das 0.42 fache desjenigen der flüssigen Lösung

beträgt, es besteht also für die Verteilung des Thiophens zwischen dem flüssigen und dem festen Lösungsmittel ein ziemlich konstantes Teilungsverhältnis."

Auch bei der Milch spricht nichts gegen die Annahme eines solchen konstanten Teilungsverhältnisses. Unsere kryoskopischen Messungen physiologischer Flüssigkeiten können doch vergleichbare Resultate liefern, weil eben der Versuchsfehler konstant bleibt, da wir voraussetzen dürfen, dass sich beim normalen Eutersekret¹), analog der Thiophenbenzollösung, prozentualisch immer gleichviel gelöste Salze mit dem Lösungsmittel ausscheiden (bei gleicher Kühltemperatur).

Der Gefrierpunkt ist bei der normalen Milch relativ konstanter als das Leitvermögen, d. h. die osmotisch wirksame Molekularkonzentration wird konstant erhalten, und zwar noch dadurch, dass Schwankungen schwer diffundierbarer Kristalloide durch Elektrolyte (Salze) ausgeglichen werden.

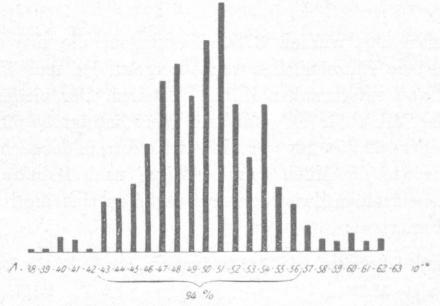
¹⁾ Ob dieses Teilungsverhältnis, und damit der erwähnte Versuchsfehler auch bei sehr starker Verdünnung und bei weitgehender pathologischer Veränderung denselben konstanten Wert darstelle, dürfte fraglich erscheinen. Jordis (siehe pag. 16) fand naturgemäss die Veränderung der Gefrierpunktserniedrigung der Milch durch Wässerung in einer Abnahme, annähernd entsprechend der Menge des Wasserzusatzes.

						△ gefunden	∆ berechnet	△ Differenz
Reine M	Iilch V	ol. 1				0.555^{0}		
Dieselbe	Milch	gewässert	auf	Vol.	2	0.260^{0}	0.2770	0.0170
27	77	77	22	77	4	0.129^{0}	0.1380	0.0090
**	,,	"	**	**	8	0.065^{0}	0.0690	0 0040

"Wenn diese Erniedrigung (des Gefrierpunktes) nur auf der Anwesenheit gelöster Salze beruht, dann muss eine Verdünnung aufs zweivier- bis achtfache Volumen auch eine bezügliche Verminderung um ½, ¼ und ⅓s ergeben, was wirklich auch zutraf" (Jordis). Aus der zweiten Kolonne "⊿ berechnet" geht jedoch zweifellos hervor, dass das Zutreffen nur ein annäherndes war; die Differenzen werden aber noch grösser, zuungunsten der gefundenen Werte, wenn man an die neue Dissoziation weiterer vorher elektrisch inaktiver Moleküle denkt, die infolge starker Verdünnung stattgefunden haben muss, nach den weitern Befunden von Jordis 1. c. "Die Abnahme der Leitfähigkeit der Milch bei Verdünnung auf, ist nicht proportional der Verdünnung, sondern verringert sich infolge von Dissoziation in bestimmtem Masse."

Die \(\alpha\)-Pr\(\text{vifung}\), auf Milch und andere K\(\text{orperfl\"u}\)ssigkeiten bezogen, ist heute noch ein summarisches Verfahren, das zwar nur die Kristalloide angibt, jedoch nicht erlaubt, die absoluten Werte der die Resultate bestimmenden Komponenten zu erkennen. Einerseits aber zeigen sich interessante theoretische Ausblicke, andererseits ist sie empirisch praktisch verwendbar als erg\(\text{andererseits}\) ist sie empirisch praktisch verwendbar als erg\(\text{andererseits}\) den Nierenkrankheiten in der Chirurgie).

Die elektrische Leitungsprüfung.


Von den drei physikalischen Methoden: Refraktoskopie, Kryoskopie und elektrische Leitungsprüfung, ist die letztere entschieden die am raschesten auszuführende und die exakteste. Wenn man bedenkt, dass ausser dem Vorerwärmen auf eine beliebige, aber bestimmte Temperatur, bei unseren Versuchen 25°, die Milch keine Veränderung erleiden muss, also nach der Untersuchung wieder verwertbar ist, dass ferner bei einmal zurechtgestellter Anordnung der Apparate (siehe pag. 28 Untersuchungstechnik) in kürzester Zeit eine Anzahl vorerwärmter Milchproben mit für die Praxis genügend genauen Ergebnissen untersucht werden können, dass dabei die Resultate abhängig sind von einer Reihe entgegengesetzt wirkender Komponenten, die in den verschiedenartigen Milchbestandteilen verkörpert sind, von denen die einen oder andern in krankhafter Milch vorherrschen oder fehlen, und sich dadurch in der Beeinflussung des Leitvermögens geltend machen, so kann man die mögliche Bedeutung dieser Methode als Hilfsmittel zur Erkennung kranker Milch nicht verkennen. Gewiss "ist im Interesse ernster Forschung zu verlangen wie sich Hotz loc. cit. pag. 2 ausdrückt - dass "zuerst die physiologischen Grundlagen zum Gegenstand gründlichen Studiums gemacht werden, bevor man an die Untersuchungen

ihrer pathologischen Abweichungen herangeht"; es sollen deshalb in folgendem unsere diesbezüglichen Versuche erörtert werden.

Ausgeführt wurden 3730 Messungen, die sich auf 655 verschiedene Einzelmilchen von eutergesunden und 35 Milchproben von euterkranken Kühen verteilen. Der niederste bei gesunder Milch für △ gefundene Wert beträgt 38,69 · 10⁻⁴, der höchste 62,99 · 10⁻⁴ (Exklusiv Kolostrum der sechs ersten Tage, sowie die Milch kranker Tiere nach Bahntransport). Auf die einzelnen Zwischenwerte verteilen sich die Resultate folgendermassen:

104 faches Leitvermögen	Zahl der Resultate	Pro 100 aller Resultate
38.00-38.99	1	0.157
39.00-39.99	1	0.157
40.00-40.99	5	0.785
41.00-41.99	4	0.628
42.00-42.99	1	0.157
43.00—43.99	17	2.669
44.00-44.99	18	2.826
45.00-45.99	23	3.551
46.00 - 46.99	37	5.809
47.00-47.99	58	9.006
48.00—48.99	64	10.048
49.00-49.99	53	8.321 94 %
50.00-50.99	72	11.304
51.00-51.99	85	13.345
52.00—52.99	50	7.850
53.00 - 53.99	32	5.024
54.00-54.99	50	7.850
55.00-55.99	22	3.454
56.00-56.99	16	2.512
57.00—57.99	9	1.413
58 00-58.99	4	0.628
59.00-5999	3	0.471
60.00-60.99	6	0.942
61.00-61.99	3	0.471
62.00 - 62.99	4	0.628

Diese Zahlenverhältnisse werden illustriert und übersichtlich gemacht durch untenstehende graphische Darstellung.

Die Höhe der Kolonnen entspricht je der Anzahl Resultate gleicher Grössenordnung.

Aus den 638 oben angeführten, sich zwischen 38 u. $62 \cdot 10^{-4}$ bewegenden Mittelwerten gesunder Milchen (ausschliesslich Kolostrum) berechnet sich ein Gesamtdurchschnitt von $\Lambda = 50,28 \cdot 10^{-4}$ für Wintermilch.

Bei der Milch gesunder Tiere kommen normaliter Abweichungen von diesem Mittelwert bis 12.00 · 10⁻⁴ nach unten oder oben vor. Diese bewegen sich aber, unbekümmert äusserer Bedingungen, wie Individualität der Milchtiere, Alter, Rasse, Fütterungsart, Arbeitsleistung, Laktationsstadium, Gravidität (solange die Milch normal produziert und täglich gemolken wird), Brunst, Nymphomanie, Geburt (mit Ausschluss des Kolostrums der sechs ersten Tage) niemals ausserhalb den angegebenen Grenzen. ¹)

Die Leitfähigkeit steigt bei krankem Euter und veränderter Milch regelmässig in die Höhe, und zwar immer über die Grenze nnormaler Schwankungen hinaus. Wir fenden keine

¹) Es sind deshalb auch die als normal befundenen in Kapitel 4 bis 9, a u. b, bezeichneten Leitvermögen in die Berechnung des Gesamtmittelwertes einbezogen worden.

Ausnahme, selbst bei dem niedersten der gefundenen Werte, Prot. Nr. 741, wo $\Lambda = 68.84 \cdot 10^{-4}$ beträgt, kann kein Zweifel bestehen, trotzdem die Milch hier das Aussehen einer normalen hatte. — Da in pathologischer Milch der osmotische Druck meist gleichzeitig mit der Vermehrung des Leitvermögens steigt, trotzdem weniger undissoziierte osmotisch wirksame Moleküle (Zucker) vorhanden sind (siehe Analyse pag. 79), so müssen diese durch Elektrolyte ersetzt worden sein. Ein derartiger Parallelismus geht tatsächlich auch aus den Tabellen der pathologischen Milch hervor. Die hohe Leitfähigkeit entspricht ganz einer geschädigten Produktion der typischen Milchbestandteile, der eigentlichen Epithelprodukte der Drüse, so namentlich des Milchzuckers und des Kaseins, zwei das Leitvermögen verringernde Substanzen, wovon die erstere, der osmotisch aktive Zucker, durch osmotisch doppelwertige Elektrolyte ersetzt sein muss. 1) Auf diese Weise erklärt sich der Parallelismus, der bei stark veränderter Milch (allerdings nur in ziemlich weiten Grenzen) zwischen dem Refraktionskoëffizienten der Gefrierpunktsdepression und dem Leitvermögen bestehen (vgl. die Kurven Nr. 8 der pathologischen Milch und Nr. 1—4 des Kolostrums).

Die meisten inneren Krankheiten, ohne Mitbeteiligung der Milchdrüse bedingen oft infolge gestörten Stoffwechsels eine Verminderung des Zucker- und Eiweissgehaltes. Die Folge davon wird aller Wahrscheinlichkeit nach die Herabsetzung des Refraktionskoeffizienten bei einem Teil der kranken (tuberkulösen) Tiere sein. Da der osmotische Druck des Blutes bei Lungenkrankheiten kaum schwankt (wohl bei Nephritis), bleibt der ihm entsprechende Wert für Δ meist auch normal, oder ist nur spurweise erhöht. Ein durch Verminderung der Zuckermoleküle bedingter Rückgang des osmotischen Druckes

¹⁾ Zu der veränderten Sekretion der kranken Drüse gesellt sich vielleicht noch ein Gärungs- resp. Abbauprozess, der die grossmolekularen, C-haltigen Milchbestandteile, die von gesunden Drüsenpartien stammen, in atomärmere organische Säuren zerlegt.

wäre also durch eine nur halb so grosse Anzahl Moleküle osmotisch doppelwertiger Elektrolyte ersetzt worden. Auf diese Weise ist verständlich, wie der kranke Organismus bei gesundem Euter die Isotonie von Blut und Milch herstellt. Dadurch würde auch erklärt, 1. wie sich innere Krankheiten durch erhöhten A-Wert der Milch verraten können, sobald sie die Bedingungen des allgemeinen Stoffwechsels und damit der Milchproduktion verschieben, beziehungsweise schädigen und 2. wie die damit parallelgehende Erniedrigung des Refraktionskoeffizienten zu verstehen ist.

Es ist uns aber aufgefallen, dass die Leitungsprüfung hier empfindlicher ist als die Refraktoskopie, und besonders bei Anstrengung innerlich kranker Tiere (tuberkulöser) von einem Melken zum anderen grössere Schwankungen aufweisen kann als bei gesunden Tieren (siehe Kurven Nr. 7 und 5). Durch längeres Verfolgen der Leitfähigkeit kann also die Wahrscheinlichkeitsdiagnose gemacht werden, aber die Diagnose einer innerlichen Krankheit ist nur auf klinischem Wege möglich, umsomehr, als eine andauernde, täglich zweimal vorzunehmende Leitungsprüfung praktisch nicht durchführbar ist.

Die Leitungsprüfung ist die empfindlichste der drei summarischen Methoden; bei grossen Veränderungen gehen alle parallel, sobald eben durch intensivere Schädigung des Euters kein Milcheiweiss und Zucker mehr gebildet wird, und nur dissoziierte Elektrolyte durch das kranke Gewebe diffundieren.

Theoretisch wichtig ist, dass Λ , Λ und n nicht auf die gleichen Milchbestandteile empfindlich sind, beziehungsweise von den verschiedenen ungleich beeinflusst werden,¹) so dass

¹) Unsere Erfahrungen mit den Methoden stehen im Einklang mit den theoretischen Grundlagen derselben:

A ist eine positive Funktion nur von dissoziierten Salzen, eine negative Funktion der übrigen Substanzen (Kasein wirkt um 10-17% vermindernd, weniger Zucker).

A zeigt alle gelösten Kristalloide, Zucker und Salze an, gar nicht Kasein und andere Kolloide.

die drei Methoden einander ganz gut ergänzen können. Ob und wie sehr dies von praktischem Interesse ist, speziell zum Nachweis pathologischer Sekrete in gesunder Mischmilch, bleibt weiteren Untersuchungen vorbehalten; es war uns in der vorliegenden Arbeit in erster Linie um die Prüfung der physiologischen Verhältnisse zu tun.

Schlussfolgerungen.

- 1. Durch das Aufbewahren in Glasflaschen während 48 Stunden bei 15° C erfährt die Milch keine Veränderung des Leitvermögens. Die Löslichkeit des Glases ist somit ohne Einfluss.
- 2. Durch die Labgerinnung der Milch wird das Leitvermögen solange nicht verändert, als der gebildete Käse in der Molke zurückbleibt. Erst nach Entfernen des Käsequarkes steigt ⊿ um 10−17 %. Die Erhöhung ist einzig auf die Entfernung des Nichtelektrolyten als Hindernis für die
 - n ist bei der Untersuchungstechnik von Ripper hauptsächlich auf die Kristalloide gerichtet; da die Methode vor allem auf die C-Atome empfindlich, so wird ihr Resultat normalerweise besonders durch den Zuckergehalt beeinflusst werden, aber natürlich auch durch lösliche Zersetzungsprodukte höherer Eiweissstoffe. (Dies kann ein Grund sein, warum die Refraktion weniger sicher ist bei typischen und hochgradig pathologischen Milchen.)

Die Methoden geben Aufschluss über die Relation zwischen Kristalloiden, Kolloiden und Lösungsmittel in der Milch. Wenige Vorversuche zeigten, dass Zusätze zu Milch die Resultate der drei Methoden folgendermassen beeinflussen:

Betrügerische Zusätze	1	1	n	
Wasser		_	<u> </u>	
Desinfektionsmittel (Konservierungsmittel)	+	+	0 oder schwad	eh +
Isotonische Lösungen	+ oder	- 0	+, 0 oder -	

Wenn weitere, eingehendere Versuche, die namentlich auch auf Mischmilch ausgedehnt werden müssten, unsere Vermutungen bestätigen, so könnten die Methoden auch für die Marktpolizei praktisch wertvoll werden.

Ionenwanderung zurückzuführen, und nicht auf eine Veränderung der Ionenkonzentration, da der Gefrierpunkt von Milch und Molke derselbe ist.

- 3. Eine bemerkenswerte Veränderung des Leitvermögens einer auf 25° gehaltenen Milch tritt in den ersten zwölf Stunden nicht auf. Durch die spontane Säuerung steigt allerdings das Leitvermögen, dessen *Prüfung* ist aber praktisch zum Nachweis des Säuregrades nicht anwendbar, da eine Milch schon bei $A=48.5\cdot 10^{-4}$ gerinnen kann, einem Werte, der auch bei einem ganz frischen Gemelke vorkommt.
- 4. Die Höhe des Leitvermögens der Milch einzelner Viertel desselben Euters ist verschieden und verhält sich umgekehrt der entsprechenden Milchmenge. Der Gefrierpunkt ist annähernd gleich.
- 5. Das Leitvermögen ist bei den gleichen gesunden Tieren zu verschiedenen Melkzeiten ziemlich konstant, verschieden jedoch nach Individuum, ohne aber durch Laktationsdauer, beginnende Gravidität, Fütterungsart gleichmässig beeinflusst zu werden. Der Wert von A schwankt zwischen 38.6 und 62.9 · 10⁻⁴ und beträgt im Mittel 50.28 · 10⁻⁴ (94% zu 43—56 · 10⁻⁴).

Niemals bewegt sich A bei normalen Verhältnissen über diese Grenze hinaus.

- 6. Das Leitvermögen des Kolostrums ist anfänglich normal, steigt schon beim zweiten Gemelk plötzlich in die Höhe und fällt in zirka sechs Tagen zur Norm. Die Gefrierdepression, anfänglich normal, vermehrt sich ebenfalls, um dann wieder zur gewöhnlichen Grösse zurückzukehren, ohne aber mit dem Leitvermögen parallel zu gehen.
- 7. Die Brunst hat keinen wesentlichen Einfluss auf das Leitvermögen der Milch, die Gefrierpunktsdepression ist jedoch vermehrt.
- 8. Durch die Ovariotomie erfährt die Leitungsfähigkeit der Milch keine beträchtliche Veränderung.

- 9. Die Milch von gesunden Eutern allgemein kranker Tiere zeigt zwar normales Leitvermögen, ist jedoch auch beim gleichen Individuum zu verschiedenen Melkzeiten relativ grossen Schwankungen unterworfen. Wenig Erhöhung hat Tuberkulinimpfung mit Fieberreaktion zur Folge. Ohne Einfluss auf A ist die Impfung gesunder Tiere.
- 10. Der Brechungsindex ist bei 15% der untersuchten pathologischen Milchen kein verminderter, sondern ein normaler, so dass diese Methode für sich, ohne Ergänzung durch andere, nicht absolut zuverlässig ist.
- 11. Die Gefrierpunktsdepression ist bei kranker Milch oft vermehrt, bei einigen liegt sie jedoch innerhalb der Norm.
- 12. Alle bis jetzt untersuchte Milch euterkranker Kühe weist immer ein erhöhtes, nie ein normales oder erniedrigtes Leitvermögen auf, so dass diese Methode für sich allein schon zum direkten Nachweis von Milchfehlern genügen kann und einer weiteren Verbreitung wert ist.
- 13. Da die Resultate aller drei Methoden zur Hauptsache Funktionen der bis heute wenig beachteten kristalloiden Milchbestandteile, aber für die verschiedenen Anteile verschieden empfindlich sind, so muss eine Kombination aller drei Methoden sehr leistungsfähig sein inbezug auf Nachweis von Fälschungen. (Es gibt keinen Zusatz, der alle Komponenten im entsprechenden Verhältnis enthielte.)

Sie sind wesentliche Ergänzungen der bis heute verwendeten Marktmethoden, indem sie auch die sanitäre Prüfung teilweise erlauben. Dass sie in theoretischer Hinsicht manchen Ausblick eröffnen, wurde in den einzelnen Kapiteln gezeigt.

Zur Behandlung der Knötchenseuche des Rindes.

Von E. Zschokke-Zürich.

Mag man sich zur Frage des Einflusses der Knötchenseuche auf die Fruchtbarkeit des Rindes so oder anders stellen, darin dürften die meisten Tierärzte einig sein, dass es Stall-