Zeitschrift: Bulletin der Schweizerischen Akademie der Medizinischen

Wissenschaften = Bulletin de l'Académie suisse des sciences

médicales = Bollettino dell' Accademia svizzera delle scienze mediche

Herausgeber: Schweizerische Akademie der Medizinischen Wissenschaften

Band: 28 (1972)

Artikel: Aufbereitung, Speicherung und Wiedergabe von Daten

Autor: Ehrengruber, H.

DOI: https://doi.org/10.5169/seals-307915

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Aufbereitung, Speicherung und Wiedergabe von Daten

H. EHRENGRUBER

Die Aufbereitung, Speicherung und Wiedergabe von Daten ist ein so umfassendes Thema, dass es auch in einer zweisemestrigen Vorlesung wohl kaum erschöpfend behandelt werden könnte. Ich kann Ihnen in einem viertelstündigen Referat daher nicht einmal eine Übersicht über den ganzen Komplex bieten. Aus diesem Grund möchte ich mich darauf beschränken, als Beispiele unsere EDV-Applikationen am Inselspital zu zeigen, unter Berücksichtigung des gestellten Themas.

Wiedergabe von Daten

Vom Standpunkt des Benützers aus ist die Ausgabe (der «Output») das Wichtigste. Der Output ist das, was er von einem EDV-Prozess erwartet. Um zum Output zu gelangen, muss der Benützer dem Computer notwendigerweise die zur Verarbeitung benötigten Daten (den sogenannten «Input») liefern.

Was bei der Verarbeitung der gelieferten Daten in der «Black Box» vorgeht, interessiert den Benützer eigentlich nicht. Aus diesem Grund werde ich den Verarbeitungsvorgang gewissermassen rückwärts abrollen.

Am Inselspital Bern können wir als passendes Beispiel zum Thema das Chemische Zentrallabor aufführen, das seit Mitte 1967 ein EDV-System in Betrieb hat. Für den Benützer, in diesem Fall den Labor-Leiter, war wesentlich, was er von dem System erwarten konnte. Dies waren a) patientenorientierte Listen wie Krankengeschichten-Einlageblatt (s. Abb. 1) und Abnormenlisten der Resultate; b) Labor-orientierte Listen als Nachschlagkatalog; c) für administrative Aufgaben die Abrechnung; d) Daten für wissenschaftliche Auswertungen.

Die Einlageblätter für die Krankengeschichte werden kumulativ geführt, d. h. mit den neuen Resultaten eines Patienten werden auch die früher erhaltenen mit ausgedruckt. Auf diese Weise ersetzt ein neues Blatt jeweils das bisher vorhandene. Die Abnormenliste enthält nur diejenigen Patienten, bei denen ein abnormes Resultat gefunden wurde. An wissenschaftlichen Auswertungen ist besonders die Erstellung von Histogrammen zu erwähnen, bei denen für einzelne Tests die Häufigkeit bestimmter Werte ermittelt wird.

JEANNE	ш	¥	PflAbt.: 3069		NEUROLOG. KL.	. KL.		
023459	Geb. Datum: 19,10,27		Alter: 41 J	41 JAHRE)
	Norm	11. 4.69	14. 4.69	9 21.	. 4.69	28.	4.69	
	000	000	000	000		000		
	Elektrolyte, S	Elektrolyte, Säure-Basen-Haushalt, mMol/Liter (P, S)	shalt, mMol/Li	ter (P, S	6			
	127=143	54-	142	_ b	0 4	- 4 74 8	•	
Calcium, mg/100 ml	9.4-10.6	4.0-	* 0.0	, eo	*	9 00	*	
Magnesium Chlorid	801-96	104	107	00	0	102		
Anorgan. Phosphor, mg/100 ml	AC+0 8-	22.3		0	25.3	4.10		
Bicarbonat (cB)	4	1		-				
Basen-Excess (cB)								
pCO ₂ (cB), mm Hg								
pH (cB), Einheiten				_				
Osmolalität, mOsm/Liter				-				
	S	Schwermetalle, µg/100 ml (P, S)	100 ml (P, S)					
Eisen-Bindungs-Kapazität				_				

		Metabolite, g/Liter (P, S)	ter (P, S)			
Glucose (vP, vS) Glucose (cB) Protein, g/100 ml Harnstoff, mg/100 ml Harnsture, mg/100 ml	6,69-8,69	8.55	7.20	6.55	1.76	
Creatinin, mg/100 mi Cholesterin, mg/100 mi Bilirubin, mg/100 mi Bilirubin, direkt, mg/100 mi	134+305	303	2 - 2	215	227	
	Enz	Enzyme, µMol min-1 Liter-1 (P, S)	Liter ⁻¹ (P, S)			
GOT GPT Glutamat-Dehydrogenase Cholinesterase Dlbucain-Nummer Caeruloplasmin, mg/Liter Alkalische Phosphatase Creatin-Kinase a-OH-Butyrat-Dehydrogenase tactat-Dehydrogenase a-Amylase G-Amylase G-Amylase G-Amylase G-Amylase (U) Saure Phosphatase (P)						
		Funktions-Proben	roben			
BSP-Elimination, mg/100 ml Phenotrot-Ausscheidung, % Xylose-Ausscheidung, % Creatinin-Clearance, ml/min						

Abb. 1.

Aus einem anderen Spitalzweig stammen unsere Tagesrapportlisten. Die Tagesrapportlisten dienen den Schwestern dazu, die täglichen Patientenmutationen an die Verwaltung zu melden. Dieses Beispiel ist kennzeichnend dafür, wie der Verwendungszweck die Gestaltung der Datenausgabe mitbestimmt.

Bisher drucken wir in unserem System nur Listen. Man kann sich aber auch ohne weiteres vorstellen, dass die Ausgabe gewisser Daten über einen Bildschirm erfolgt.

Speicherung

Laborsystem. – Die Speicherung der Daten, als Teil des Verarbeitungsprozesses, ist für den Benützer im allgemeinen weniger interessant. Die Datenspeicherung wird aber von der Ausgabe her mitbestimmt. Auf unserem Einlageblatt für die Krankengeschichte sind z. B. die Laborresultate eines Patienten «kumulativ» aufgeführt. Dies bedingt, dass der Computer neben den Laborresultaten des bestimmten Tages auch die von früheren Tagen griffbereit hat. In unserem System wird dies durch Speicherung aller Resultate auf Magnetband ermöglicht.

Wichtig bei der Datenspeicherung ist aber nicht nur, was eingegeben wird, sondern auch, wie oft die Eingabe erfolgt. Das System des Chemischen Zentrallabors beruht auf der täglichen Eingabe. Hier genügt zur Speicherung das Magnetband. Will man aber jederzeit und sofort Auskunft über die Werte eines beliebigen Patienten haben, so sind dafür andere Speichermedien mit Direktzugriff, z. B. Magnetplatten, nötig.

Übergeordnete Systeme. – Nicht nur das chemische Labor liefert im Spital Daten, sondern alle möglichen Stellen, die für den Patienten arbeiten. Allein vom Labor werden pro Patient durchschnittlich 300 Zeichen gespeichert (dabei wäre allerdings eine Verdichtung möglich). Rechnen wir nun, dass jährlich 50 000 Patienten Laboruntersuchungen zu 300 Zeichen haben, so fallen fürs Labor allein 15 Millionen zu speichernde Zeichen an. Dies sind nur die Daten des chemischen Zentrallabors im ganzen Spitalprozess. Im allgemeinen wird daher ein Computersystem, welches verschiedene Funktionen des Krankenhauses einbezieht, nicht alle anfallenden Werte des Laborsystems speichern. Im Prinzip genügt es, wenn das Spitalsystem weiss, ob von einem Patienten Laboruntersuchungen vorliegen oder nicht.

Ein Spitalsystem wird versuchen, auszugsweise die relevanten Daten aus der Krankengeschichte zu speichern. Mit etwa 5000 Zeichen pro Krankengeschichte ist zu rechnen. Setzen wir für die Region Bern den Durchlauf von 100000 Patienten im Jahr an, so würde allein deren Krankengeschichtenspeicherung 5000mal 100 000, also 500 Millionen Zeichen beanspruchen. Auf 20 Jahre hinaus wären das 10 Milliarden Zeichen. Diese Datenmenge stellt auch für die grössten und modernsten Speichermedien ein Problem dar.

Wieder wird sich ein regionales oder überregionales System also damit begnügen müssen, zu wissen, ob in einem bestimmten Spitalsystem Daten über einen bestimmten Patienten vorhanden sind oder nicht. Ich möchte hierzu noch kurz die Hierarchie der Speichersysteme aufzeigen:

- Überregionale Datenbank
- Regionalsystem
- Spitalsystem
- EDV-System des einzelnen Anwendungsbereiches

Das betreffende übergeordnete System kann nur Bruchstücke der untergeordneten Systeme speichern. Bei der Planung muss beachtet werden, dass die einzelnen Stufen kompatibel sind, d. h. dass das übergeordnete System Daten vom untergeordneten abrufen kann. Ein gewisser Zeitverlust ist hierbei nicht zu vermeiden.

Erfassung von Daten

Kommen wir zum Schluss auf den Beginn des Verarbeitungsprozesses zu sprechen. Beim Labor-EDV-System stellt sich zunächst die Frage, welche Daten die Meldung eines Laborresultates an den Computer umfassen muss. Vier Angaben sind hier unbedingt nötig, nämlich 1. Identifikation des Patienten. 2. Ort im Spital, wo sich der Patient befindet, und Datum der Resultatgewinnung. 3. Bezeichnung der vorgenommenen Untersuchung (z. B. Kalziumkonzentration im Blut). 4. Ermittelter Befund, also das eigentliche Resultat. – Ganz allgemein muss jede im Spital entstehende Information über einen Patienten derartige Angaben enthalten. Je umfassender das Gesamtcomputersystem am betreffenden Spital ausgebaut ist, um so knapper können die einzelnen Angaben werden, mit Ausnahme des Befundes natürlich.

Auch die Art der Dateneingabe hängt von diesem «computerization level» ab. Bei uns ist bisher nur Lochkarten-Eingabe möglich. Andere Möglichkeiten bieten jedoch Markierungs- oder Belegleser oder die Direkteingabe durch Terminals.

Fehlerquellen

Abschliessend möchte ich beim EDV-Laborsystem noch die Fehlerquellen erwähnen, die auch mit dem Computer nicht ganz auszuschalten sind. Sie unterscheiden sich in:

- Formale Fehler, z. B. unmögliches Geburtsdatum.
- Laborfehler, d. h. Fehlbestimmung.
- Fehlidentifikationen: Verwechslung von Patienten.

Die Eliminationsmöglichkeiten für diese Fehler sind verschiedenartig: Formale Fehler werden vom Computer entdeckt, ausgedruckt, und können am nächsten Tag neu eingegeben werden. Fehlbestimmungen können durch Automation und Qualitätskontrolle weitgehend ausgeschaltet werden. Teilweise werden sie vom Computer entdeckt (er weist z. B. einen Natriumgehalt von mehr als 200 mMol/l zurück). Fehlidentifikationen, also Ver-

wechslungen, sind ausschaltbar, indem der Weg vom Patienten ins Labor möglichst genau kontrolliert wird. In der Praxis sind sie am schwierigsten zu vermeiden. Jedoch besteht eine indirekte Kontrolle durch die Rückfrage des Arztes.

Zusammenfassung

Ein Datenverarbeitungsprozess gliedert sich in Eingabe, Verarbeitung und Ausgabe. Der Benützer, in unserem Fall der Kliniker bzw. der Laborfachmann, ist in erster Linie am Ergebnis, also am Output, interessiert, das ihm ein EDV-Prozess liefert. Ein Beispiel für die Datenausgabe zeigen die Ausgabelisten beim Computer-System des Chemischen Zentrallabors des Inselspitals. Die Untersuchungsresultate des Patienten werden durch den Computer gespeichert und «kumulativ» ausgedruckt.

Die Anzahl der zu speichernden Daten bestimmt zu einem Teil die Grösse des Computer-Systems. Laborsysteme im Spital sollten mit den übrigen EDV-Applikationen des Spitals kompatibel sein. Die Eingabe einer Information über einen Patienten in den Computer muss immer bestimmte Angaben enthalten. Dies wird anhand der Eingabe von Laborresultaten erläutert. Schliesslich werden mögliche Fehlerquellen und ihre Elimination diskutiert.

Résumé

Un processus de computerisation se divise en trois étapes: le «input», l'élaboration, et le «output». Le bénéficiaire, en l'occurrence le clinicien ou le spécialiste de laboratoire, se préoccupe avant tout du résultat, du «output» qu'un ordinateur peut lui donner. Un tel exemple présentent les listes de résultats données par l'ordinateur au laboratoire central chimique de l'Hôpital de l'Isle de Berne. Les résultats d'analyses sont accumulés par l'ordinateur et rendus au complet.

Le nombre des données détermine en grande partie la grandeur de l'ordinateur. Les systèmes employés dans les laboratoires d'un hôpital doivent être compatibles avec les autres applications de l'ordinateur à l'hôpital. Une information sur un malade pour l'ordinateur doit toujours contenir certaines données. Ces données sont décrites en partant de l'exemple des résultats de laboratoire. Pour terminer l'auteur discute des causes d'erreur possibles et de la manière de les éviter.

Summary

An EDT process consists of input, processing, and output of data. The operator, in our case the clinician or laboratory specialist, is primarily interested in the result, or output, which the process provides. An example of such output data is seen in the output lists of the computer system of the chemical central laboratory of the Insel Hospital, Berne. The results of the analyses are stored and expressed cumulatively by the computer.

The amount of data to be stored determines to a certain extent the size of the computer system. Laboratory systems should be compatible with the other EDT applications in the hospital. The input of information about a patient into the computer must always contain certain data. This is demonstrated in the input of laboratory results. Finally, the possible sources of error and their elimination are discussed.

Adresse des Autors: H. Ehrengruber, lic. math., Leiter der Datenverarbeitung, Inselspital, CH-3010 Bern.