Zeitschrift: Bulletin der Schweizerischen Akademie der Medizinischen

Wissenschaften = Bulletin de l'Académie suisse des sciences

médicales = Bollettino dell' Accademia svizzera delle scienze mediche

Herausgeber: Schweizerische Akademie der Medizinischen Wissenschaften

Band: 16 (1960)

Artikel: Métabolisme de l'alcool éthylique marqué et influences de substances

pharmacologiques

Autor: Casier, H.

DOI: https://doi.org/10.5169/seals-307434

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Institut J. F. Heymans de Pharmacodynamie, Gand - Directeur: Prof. C. Heymans

Métabolisme de l'alcool éthylique marqué et influences de substances pharmacologiques

Par H. Casier

Grâce à l'utilisation de l'alcool éthylique marqué 1-C¹⁴ et 2-C¹⁴, nous avons pu étudier le métabolisme de l'alcool éthylique chez la souris. Nous avons injecté de l'alcool radioactif dilué au tiers, à différentes doses (0,1-0,3 cm³) par voie intrapéritonéale, à des groupes de 3 souris. Nous avons dosé le C¹⁴ dans l'anhydride carbonique, dans l'alcool libre et dans l'alcool métabolisé fixé par différents tissus (cœur, foie, reins, muscles, cerveau, poumons, rate) d'après une méthode décrite antérieurement (3) et cela dans l'intervalle de temps compris entre 15 minutes et 15 jours.

De nos résultats nous avons pu conclure que:

- 1. L'alcool est en grande partie (90 à 92%) brûlé dans l'organisme au terme ultime de l'oxydation (CO₂). Ces résultats corroborent les données de la littérature. La combustion débute sans temps de latence, elle est la plus forte, les 5 premières heures après l'injection d'une dose moyenne d'alcool, elle diminue légèrement entre 5 et 7 heures, ensuite graduellement jusqu'à la 16e heure et puis imperceptiblement jusqu'à 15 jours.
- 2. La teneur en alcool libre dans l'organisme atteint un maximum, 30 minutes à 1 heure après l'injection d'une dose moyenne d'alcool. A ce moment, le 75% de la quantité d'alcool se trouve à l'état libre dans l'organisme. La concentration en alcool libre diminue rapidement, les 4 heures suivantes. Après 5 heures, la diminution est ralentie jusqu'à disparition complète de l'alcool libre (7 heures pour une dose moyenne d'alcool). C'est dans le foie et les reins, qui, suivant Barlett et Barnet (1), sont les lieux principaux de la combustion de l'alcool, que la diminution de l'alcool libre est la plus marquée.
- 3. Aussitôt que l'alcool est résorbé par l'organisme, une partie métabolisée est fixée par les tissus. Des travaux entrepris «in vitro» par Barlett et Barnet (1), Dontcheff (5) et Masoro, Abramovitch et Birchard (11) avec de l'alcool radioactif ont pu montrer la capacité de différents tissus de

transformer l'alcool en lipides et en cholestérol. Il est généralement admis que le métabolisme de l'alcool se poursuit suivant les réactions suivantes:

alcool — acétaldéhyde — acide acétique — acétyl-CoA — cholestérol acides gras cycle acide citrique —
$$\rm CO_2 + H_2O$$
.

C'est l'ensemble du cholestérol et des acides gras que nous dénommons «alcool métabolisé fixé». Nous avons poursuivi des recherches plus approfondies au sujet des substances fixées et avons pu conclure des résultats de nos travaux, que la fixation s'installe immédiatement. 6 à 7% d'une dose moyenne d'alcool sont fixés, les premières minutes après l'injection. L'augmentation des substances fixées est la plus marquée, la première demi-heure, à ce moment, la quantité fixée est plus importante que la quantité brûlée, elle atteint 10-13% de la quantité d'alcool administrée, ce qui correspond à 40-50% de la quantité maximum de substances fixées par l'organisme. Elle augmente ensuite plus lentement pour atteindre, après 3-5 heures, 20-25 % de la quantité totale d'alcool administrée. Elle diminue assez rapidement entre 5 et 15 heures, ensuite plus lentement entre 15 et 40 heures. Ce n'est qu'après 15 jours, que quasi tout l'alcool métabolisé fixé est éliminé de l'organisme et cela après administration d'une dose unique d'alcool. On note encore à ce moment une faible quantité de substances fixées dans le cerveau et les poumons. Si nous examinons la courbe de combustion de l'alcool (C¹⁴O₂), nous remarquons qu'elle augmente proportionnellement à la diminution de la fixation (les acides gras brûlent jusqu'au stade de CO₂). Lorsqu'on administre journellement une faible dose d'alcool et cela durant 8 jours, la quantité d'alcool métabolisée fixée atteint une valeur 4 fois plus grande qu'après administration d'une dose unique d'alcool. L'administration journalière poursuivie entre 8 jours et 15 jours n'entraîne qu'une faible augmentation des substances fixées. La teneur maximale se situe donc entre 8 jours et 15 jours. La fixation par gramme de tissus, 2 heures après l'administration d'alcool, est la plus marquée dans le foie, puis en ordre décroissant dans la rate, les reins, les poumons, le cerveau, l'estomac, les intestins et le cœur. Les muscles, la peau et les os fixent très peu d'alcool.

Nous avons étudié, d'autre part, le métabolisme de l'acétaldéhyde radioactif, première étape du métabolisme intermédiaire de l'alcool.

En comparant le métabolisme de l'acétaldéhyde à celui de l'alcool, nous notons un parallélisme. En effet, 61,88% et 66% respectivement de la quantité totale d'alcool et d'acétaldéhyde métabolisée une demi-

heure après leur administration, sont fixés dans les tissus, 38% et 33% respectivement sont brûlés au stade de C14O2.

Nous avons ensuite comparé le métabolisme de l'acétaldéhyde radioactif (4) à celui de l'acide acétique (acétate) (2), seconde étape du métabolisme intermédiaire de l'alcool. Nous avons pu conclure qu'après administration d'acétate, seulement le 32,7% de la quantité totale d'acétate métabolisée après une demi-heure est fixé par les tissus, mais le 67% se trouve sous forme de C¹⁴O₂. Le métabolisme de l'acétate libre est donc différent de celui de l'alcool et de l'acétaldéhyde.

D'autres expériences, poursuivies pendant ¼, ½, 1, 2 et 5 heures par Valcke avec de l'acétaldéhyde 1-C¹⁴ radioactif et de l'acétate 1-C¹⁴ et 2-C¹⁴, d'une part, et, d'autre part, avec de l'alcool radioactif 2-C¹⁴ et de l'acétate 1-C¹⁴ et 2-C¹⁴ (solutions de même radioactivité) confirment cette assertion. La fixation de l'alcool métabolisé 2-C¹⁴, comparée à celle de l'acétate 2-C¹⁴ est 2,5-3 fois plus importante. Schulman, Zurek et Westerfeld (12) comparant la teneur en cholestérol et en acides gras du foie, des muscles, du cerveau, du plasma et des reins après l'injection d'alcool, d'une part, et d'acétate radioactif, d'autre part, ont également trouvé une quantité plus importante de substances fixées après injection d'alcool.

Suivant ces auteurs, le rapport alcool 1-C¹⁴/acétate 1-C¹⁴ atteint 4,4 pour le cholestérol dans les reins et 3,5 dans le foie. Pour les acides gras, ils notent comme rapport 3,3 dans les reins et 3 dans le foie, 6 heures après l'injection. Valcke trouve 5 heures après l'injection un rapport alcool 2-C¹⁴/acétate 2-C¹⁴ de 3,65 pour les substances fixées dans les reins et 2,55-3 dans le foie. Le rapport alcool 2-C¹⁴/acétate 2-C¹⁴ pour les substances fixées totales est de 18,14/7,17 = 2,529, une demi-heure après l'injection et de 24,32/9,81 = 2,475, 5 heures après l'injection.

Schulman, Zurek et Westerfeld (12) concluent que l'acide acétique n'est pas une substance intermédiaire du métabolisme de l'alcool. Nos travaux corroborent cette thèse. L'influence beaucoup plus marquée de l'adrénaline sur la diminution de la fixation après administration d'acétate qu'après administration d'alcool appuie cette donnée (Valcke). D'autre part, Schulman et Westerfeld (13) formulent ce qui suit: après injection d'alcool 1-C¹⁴, on retrouve le C¹⁴ dans le β -hydroxybutyrate et dans l'acétoacétate. La plus grande partie du 1-C¹⁴ se retrouve en C-3. Cette augmentation prédominante de l'isotope en C₃ dans le β -hydroxybutyrate et dans l'acétoacétate formés aux dépens de l'alcool 1-C¹⁴, suggère une condensation de l'acétaldéhyde 1-C¹⁴ avec de l'acétyl-CoA non marqué endogène pour former le β -hydroxybutyrate 3-C¹⁴ (ou un dérivé CoA). Après l'injection d'acétate 1-C¹⁴, on ne retrouve que des quantités

insignifiantes de C^{14} dans le β -hydroxybutyrate, mais on retrouve le C^{14} dans l'acétoacétate. Dès lors, le schéma du métabolisme de l'alcool et de l'acide acétique serait le suivant:

acide acétique

| alcool — acétaldéhyde — acétyl-CoA — cycle acide citrique — cholestérol acide gras

—
$$CO_2 + H_2O$$

L'acétaldéhyde serait un précurseur plus important que l'acide acétique pour la synthèse du cholestérol et des acides gras. L'augmentation 3 fois plus grande de la teneur en acides gras après l'administration d'alcool qu'après l'administration d'acétate, d'une part, et d'autre part, l'accumulation de l'alcool métabolisé fixé (cholestérol + acides gras) après absorption régulière d'alcool éthylique, pourraient justifier en partie les causes de la dégénérescence graisseuse du foie qu'on observe le plus souvent chez les alcooliques vers les 60 ans et dont on ne fait pas mention après administration journalière de produits pharmacologiques dont le métabolisme passe par l'acide acétique. Toutes ces données soutiennent la thèse de Mallow (10): «Long standing fatty livers may ultimately lead to fibrosis and cirrhosis. This effect of alcohol on the liver may be a factor in the development of liver lesions in alcoholism.» Les dépôts de graisses à combustion lente, formées aux dépens de l'alcool, influenceraient donc directement ou indirectement la fonction normale du foie.

Poursuivant nos recherches sur le métabolisme de l'alcool, nous avons étudié l'influence de substances pharmacologiques sur le métabolisme de l'alcool. En premier lieu, nous avons étudié l'influence du dinitro-cyclopentyl-phénol (DPP) (8). Ce dinitro-dérivé s'est avéré être un puissant stimulant du métabolisme et un hyperthermisant très actif. Nous avons constaté que l'augmentation de la combustion de l'alcool, après injection du DPP, n'atteint que 2,15% de la quantité totale d'alcool brûlé par l'organisme après une demi-heure, alors que la diminution moyenne de l'alcool libre des tissus atteint 22,44 %. D'accord avec Widmark (14), la diminution de la teneur en alcool est principalement due à une élimination de l'alcool par les voies respiratoires, liée à une polypnée assez intense et, de ce fait, à une hyperventilation très marquée des voies pulmonaires. L'alcool métabolisé fixé par les tissus subit un léger abaissement la première demi-heure, qui est du même ordre de grandeur que l'augmentation de la combustion (-2,87%). L'influence aussi faible sur la combustion de l'alcool d'une substance capable d'augmenter le métabolisme d'au moins 200% porte à réfléchir quant à la recherche de substances à effet sélectif sur l'activation de la combustion de l'alcool. La combustion de l'alcool n'est pas facilement activée. Les exercices physiques intenses après l'administration d'alcool en sont encore un témoin. L'augmentation dans ces cas n'est que de 8% (7). Les substances Promilex, Triiodothyronine-Activit ont plus que probablement un effet sur l'état psychique comparable à celui de la caféine.

Nous avons étudié (4) ensuite l'influence du disulfiram (antabus) sur le métabolisme de l'alcool. Cette substance est fréquemment employée en clinique pour combattre l'alcoolisme. Elle provoque des symptômes désagréables après l'administration d'alcool. Hald, Jacobsen et Larsen (6) ont attribué ces symptômes à une accumulation d'acétaldéhyde non brûlé. Nos recherches nous ont conduit à la conclusion suivante: la teneur en CO₂ est diminuée de 14,48% après 2 heures, de 22,68% après 3 heures, de 48,82 % après 4 heures. Les substances réductrices volatiles (alcool + acétaldéhyde) sont augmentées de 18,38% après 2 heures, de 38,96 % après 3 heures et de 57,85 % après 4 heures. L'alcool métabolisé fixé est diminué de 5,39% après 2 heures, de 7,7% après 3 heures et de 12,29 % après 4 heures. Une méthode sélective au 2-4-dinitrophénylhydrazine, élaborée par nous (4), nous a permis de doser l'acétaldéhyde radioactif en présence d'alcool radioactif. Nous avons noté une augmentation de la teneur en acétaldéhyde beaucoup trop faible pour expliquer les phénomènes cliniques dus au disulfiram + alcool (0,081-0,41 mg% acétyldéhyde). Cette augmentation n'est pas en rapport avec l'abaissement de la combustion de l'alcool (CO₂), ni avec la forte augmentation de substances volatiles que nous avons observée. L'augmentation en acétaldéhyde est 100-400 fois plus faible que l'augmentation des substances réductrices volatiles (alcool).

Nous concluons que la forte augmentation des substances volatiles oxydables par le bichromate acide de potasse serait due au fait que le disulfiram inhibe principalement le premier stade du métabolisme de l'alcool, c'est-à-dire, la transformation d'alcool en acétaldéhyde et provoquerait ainsi une accumulation de l'alcool non brûlé dans l'organisme. Cette accumulation d'une part, et d'autre part, les travaux en cours qui seront poursuivis les mois à venir en collaboration avec Merlevede pourraient jeter une nouvelle lumière sur ce problème. Merlevede a trouvé une formation assez notable de CS₂ dans le sang (28 γ/10 ml) et dans l'air expiré (10 mg CS₂/m³ air expiré) ainsi qu'une faible quantité de diéthylamine dans le sang, 10–12 heures après l'administration perorale de disulfiram (500 mg). Les premiers résultats obtenus indiquent, qu'en présence d'alcool, la quantité de CS₂, stade final du métabolisme du disulfiram, augmente de 50–100%.

Le CS₂ et peut-être la diéthylamine, produits toxiques, pourraient être les substances à qui incomberaient les symptômes observés après l'administration de disulfiram et d'alcool.

Deux autres substances, l'adrénaline et l'insuline, sont à l'étude par Valcke quant à leur influence sur la fixation de l'alcool métabolisé. L'adrénaline (0,5 mg/kg) diminue la fixation de 26,41%, la première demi-heure après l'administration d'alcool; après une heure, la fixation n'est plus que faiblement influencée (6,99%). Contrairement à l'action de l'adrénaline sur la fixation des acétates, la fixation est diminuée de 47,32% pour l'acétate 2-C¹⁴ et de 37,07% pour l'acétate 1-C¹⁴, 1 heure après l'administration.

L'insuline (1 unité/kg) provoque une augmentation de la fixation de 18,83%, 2 heures après l'administration d'alcool.

Résumé

Nous avons employé de l'alcool radioactif 2-C¹⁴, de l'acétaldéhyde 1-C¹⁴ et de l'acétate 1-C¹⁴ et 2-C¹⁴ dans le but de comparer le métabolisme de l'alcool avec le métabolisme des substances intermédiaires du métabolisme de l'alcool. Nous avons injecté ces substances à des groupes de 3 souris par voie intrapéritonéale et avons suivi le métabolisme de l'alcool dilué au tiers et des substances précitées en dosant le C¹⁴ dans l'anhydride carbonique, l'alcool libre et l'alcool métabolisé fixé dans sept tissus. Nous avons noté que:

- 1. l'alcool est brûlé en grande partie (90-92%),
- 2. la résorption de l'alcool est rapide,
- 3. une partie de l'alcool métabolisé soit 20-25% est momentanément fixée par l'organisme sous forme d'acides gras et cholestérol. Ce n'est qu'après 15 jours que tout l'alcool fixé est éliminé de l'organisme.

Le métabolisme de l'acétaldéhyde est très semblable à celui de l'alcool; quant au métabolisme de l'acétate (acide acétique), il y a une divergence marquée, la quantité de substances fixées est 2,5-3 fois moindre qu'après injection d'alcool ou d'acétaldéhyde, d'autre part, la combustion est proportionellement plus élevée pour les acétates que pour l'alcool, la première demi-heure après l'injection. D'où l'on peut conclure, d'accord avec Schulman, Zurek et Westerfeld, que l'acide acétique n'est pas une substance intermédiaire du métabolisme de l'alcool. L'injection de l'alcool, poursuivie durant 8 jours, augmente la teneur en acides gras et cholestérol de 4 fois.

L'importance de la formation d'acides gras aux dépens de l'alcool,

d'une part et, d'autre part, l'accumulation de l'alcool métabolisé après administration journalière pourraient aider à justifier les causes de la cirrhose du foie.

L'influence de substances pharmacologiques sur le métabolisme de l'alcool a été étudiée.

Le dinitro-cyclo-pentyl-phénol n'a qu'une faible influence sur la combustion de l'alcool. Le disulfiram (antabus) inhibe en partie la combustion de l'alcool, d'où accumulation d'alcool libre dans l'organisme, d'autre part, l'alcool augmente la production de CS₂ de 50–100 % aux dépens du disulfiram. De petites quantités de diéthylamine sont trouvées dans le sang. Le CS₂ et la diéthylamine pourraient être les substances à qui incomberaient les symptômes observés après l'administration du disulfiram et d'alcool (les recherches doivent être poursuivies).

L'adrénaline diminue la teneur en substances fixées de 6,94% pour l'alcool marqué, 1 heure après l'injection, tandis que pour les acétates marqués cette diminution atteint 47 et 37%.

L'insuline augmente la fixation de 18%, 2 heures après l'injection de l'alcool.

Zusammenfassung

Im Bestreben, den Stoffwechsel des Alkohols mit dem Stoffwechsel seiner intermediären Substanzen zu vergleichen, verwendeten die Autorin und ihre Mitarbeiter radioaktiven Alkohol 2-C¹⁴, Acetaldehyd 1-C¹⁴ und Acetat 1-C¹⁴ und 2-C¹⁴. Sie injizierten diese Substanzen intraperitonäal bei Gruppen von je drei Mäusen und verfolgten den Stoffwechsel des zu ½ verdünnten Alkohols und der vorgenannten Substanzen, indem sie das C¹⁴ im Kohlensäureanhydrid, im freien Alkohol und in den in 7 Geweben fixierten Stoffwechselprodukten des Alkohols bestimmten. Sie haben erkannt, daß

- 1. der Alkohol zum großen Teil verbrannt wird (90-92%),
- 2. die Resorption des Alkohols rasch vor sich geht,
- 3. ein Teil des metabolisierten Alkohols, etwa 20–25 % im Organismus unmittelbar in Form von Fettsäure und Cholesterin gebunden werden. Erst nach 14 Tagen ist der fixierte Alkohol vom Organismus vollständig ausgeschieden worden.

Der Stoffwechsel des Acetaldehyds gleicht dem Alkoholstoffwechsel, während der Stoffwechsel des Acetats (Essigsäure) wesentlich anders verläuft; die Menge der gebundenen Stoffe ist 2,5-3mal geringer als nach der Injektion von Alkohol oder Acetaldehyd; andererseits ist die Verbrennung in der ersten halben Stunde nach der Einspritzung bei Acetaten im Verhältnis stärker als beim Alkohol. Hieraus läßt sich in Einklang mit der

Auffassung Schulmans, Zureks und Westerfelds schließen, daß die Essigsäure keine Zwischensubstanz des Alkoholstoffwechsels ist. Die während 8 Tagen fortgesetzte Injektion von Alkohol steigert den Gehalt an Fettsäure und Cholesterin um das Vierfache. Die Bedeutung der Fettsäurebildung aus Alkohol einerseits und die Anhäufung der Stoffwechselprodukte des Alkohols nach täglicher Verabreichung innerhalb einer Woche andererseits würden die Ursache der Lebercirrhose erklären helfen.

Der Einfluß pharmakologischer Substanzen auf den Alkoholstoffwechsel ist ebenfalls geprüft worden. Das Dinitro-cyclo-pentyl-phenol hat auf die Verbrennung des Alkohols nur geringen Einfluß. Das Disulfiram (Antabus) hemmt einerseits die Alkoholverbrennung teilweise, wodurch im Organismus eine Anhäufung freien Alkohols entsteht, andererseits vermehrt der Alkohol die Bildung von CS₂ aus Disulfiram um 50–100%. Kleine Mengen von Diäthylamin können im Blut gefunden werden. Das CS₂ und das Diäthylamin sind möglicherweise für die bei gemeinsamer Verabreichung von Disulfiram und Alkohol beobachteten Symptome verantwortlich. Die Untersuchungen müssen aber erst noch weiter verfolgt werden.

Das Adrenalin vermindert bei markiertem Alkohol eine Stunde nach Verabreichung der Spritze den Gehalt an gebundener Substanz um 6,94%, während diese Verminderung bei den markierten Acetaten 47% und 37% erreicht. Das Insulin steigert die Bindung im Gewebe 2 Stunden nach Injektion des Alkohols um 18%.

Riassunto

Abbiamo impiegato alcool radioattivo 2-C¹⁴, aldeide acetica 1-C¹⁴ e acetato 1-C¹⁴ e 2-C¹⁴ allo scopo di confrontare il metabolismo dell'alcool con quello dei suoi prodotti intermedi. Abbiamo iniettato queste sostanze a gruppi di tre topi per via intraperitoneale ed abbiamo studiato il metabolismo dell'alcool diluito ad un terzo e delle suddette sostanze mediante il dosaggio del C¹⁴ nell'anidride carbonica, nell'alcool libero e metabolizzato fissato in sette tessuti. Abbiamo constatato che:

- 1. l'alcool viene in gran parte bruciato (90-92%),
- 2. il riassorbimento dell'alcool è rapido,
- 3. una parte dell'alcool metabolizzato, da 20-25%, viene fissata momentaneamente dall'organismo sotto forma di acidi grassi e colesterolo. Solo dopo 15 giorni tutto l'alcool fissato viene eliminato dall'organismo.

Il metabolismo dell'aldeide acetica è molto simile a quello dell'alcool; quanto al metabolismo dell'acetato (acido acetico) vi è una differenza notevole in quanto il tasso di sostanze fissate è da 2,5 a 3 volte inferiore a quello che si osserva dopo iniezione di alcool o aldeide acetica, mentre la combustione, nella prima mezz'ora che segue all'iniezione, è proporzionalmente maggiore per gli acetati che per l'alcool. Da ciò si può trarre la conclusione, in accordo con Schulman, Zurek e Westerfeld, che l'acido acetico non è un prodotto intermedio del metabolismo dell'alcool. Iniezioni di alcool continuate per 8 giorni aumentano il tasso di acidi grassi e colesterina di 4 volte.

La notevole produzione di acidi grassi a spese dell'alcool da una parte, e l'accumulo di alcool metabolizzato dopo somministrazione giornaliera dall'altra, protrebbero contribuire a spiegare le cause della cirrosi epatica.

Venne studiata l'azione di sostanze farmacologiche sul metabolismo dell'alcool.

Il dinitro-ciclo-pentil-fenolo ha soltanto una debole azione sulla combustione dell'alcool. Il disulfiram (Antabus) inibisce in parte la combustione dell'alcool, d'onde l'accumulazione dell'alcool libero nell'organismo; d'altra parte l'alcool aumenta la produzione di CS₂ da 50–100% a spese del disulfiram. Si trovano nel sangue delle piccole quantità di dietilamina. Il CS₂ e la dietilamina potrebbero essere le sostanze responsabili dei sintomi osservati dopo somministrazione di disulfiram e di alcool (occorre proseguire le ricerche).

L'adrenalina diminuisce il tasso di sostanze fissate del 6,94% per l'alcool marcato un'ora dopo l'iniezione, mentre per gli acetati marcati tale diminuzione raggiunge il 47% ed il 37%. L'insulina aumenta la fissazione nella misura del 18% due ore dopo l'iniezione dell'alcool.

Summary

We have used radio-active alcohol 2-C¹⁴, acetaldehyde 1-C¹⁴ and acetate 1-C¹⁴ and 2-C¹⁴ for the purpose of comparing the metabolism of alcohol with the metabolism of substances intermediary in the metabolism of alcohol. We injected these substances into groups of three mice intraperitoneally and have followed the metabolism of alcohol diluted to a third and of substances precipitated, by adding C¹⁴ to carbonic anhydride, free alcohol and alcohol metabolically fixed in seven tissues.

We have found that:

- 1. the alcohol is burnt away to a great part (90-92%),
- 2. the absorption of alcohol is rapid,
- 3. part of the metabolised alcohol, about 20-25%, is instantaneously fixed by the organism in the form of fatty acid and cholesterol. It is only after 15 days that all the fixed alcohol is eliminated from the organism.

The metabolism of acetaldehyde is very similar to that of alcohol, while in the metabolism of acetate (acetic acid) there is a marked divergence, the quantity of the fixed substances being 2.5–3 times less than after the injection of alcohol or acetaldehyde. On the other hand, the combustion is proportionally higher for the acetates than for alcohol in the first half hour after the injection. From this one can conclude, in accordance with Schulman, Zurek and Westerfeld, that acetic acid is not an intermediary substance in the metabolism of alcohol. The injection of alcohol continued for 8 days increases the content of fatty acids and cholesterol fourfold.

The importance of the formation of fatty acids, at the expense partly of the alcohol and partly of the accumulation of alcohol metabolised after the daily administration, can help to explain the causes of cirrhosis of the liver.

The influence of pharmacological substances on the metabolism of alcohol has also been studied. Dinitro-cyclo-penthyl-phenol has only a weak action on the combustion of alcohol. Disulfiram (antabus) partly inhibits the combustion of alcohol, from which the accumulation of free alcohol in the organism, on the other hand the alcohol augments the production of CS₂ by 50–100% at the expense of the disulfiram. Small quantities of diethylamine were found in the blood. CS₂ and diethylamine could be the substances which cause the symptoms seen after the administration of disulfiram and alcohol (research is required on this point).

Adrenaline diminishes the content of substances which are fixed by 6.94% for marked alcohol one hour after injection, while for marked acetates the diminution was 47 and 37%.

Insulin augments the fixation by 18% 2 hours after the injection of alcohol.

1. Barlett, G. R., et Barnet, H. N.: Quart. J. Stud. Alcohol 10, 381 (1949). – 2. Beeckmans, M. L., Casier, H., et Hévésy, G.: Arch. int. Pharmacodyn. 86, 33 (1951). – 3. Casier, H.: Arch. int. Pharmacodyn. 100, 175 (1954). – 4. Casier, H., et Polet, H.: Proc. 1st Unesco Intern. Conf., Pergamon Press 1958, S. 481; Arch. int. Pharmacodyn. 113, 439 (1958). –5. Dontcheff, L.: C. R. Acad. Sci. (Paris) 231, 177 (1950). – 6. Hald, J., Jacobsen, E., et Larsen, V.: Acta pharmacol. (Kbh.) 4, 285 (1948). – 7. Hebbelinck, M.: Arch. int. Pharmacodyn. 119, 495 (1959). – 8. Heymans, C., et Casier, H.: Arch. int. Pharmacodyn. 50, 20 (1935). – 9. Hine, C. H., Anderson, H. H., Macklin, E. A., Burbridge, T. N., Simon, A., et Bowman, K. M.: J. Pharmacol. exp. Ther. 98, 13 (1950). – 10. Mallow, S.: Proc. Soc. exp. Biol. (N.Y.) 88, 246 (1955). – 11. Masoro, E. J., Abramovitch, H., et Brichard, J. R.: Amer. J. Physiol. 173, 37 (1953). – 12. Schulman, M. P., Zurek, R., et Westerfeld, W. W.: Alcoholism. Amer. Ass. Adv. Sci. Washington D.C. 1957, Nr. 47, S. 29. – 13. Schulman, M. P., et Westerfeld, W. W.: Fed. Proc. 16, 244 (1957). – 14. Widmark, E. M. P.: Biochem. Z. 276, 268 (1935).