Zeitschrift: Bulletin der Schweizerischen Akademie der Medizinischen

Wissenschaften = Bulletin de l'Académie suisse des sciences

médicales = Bollettino dell' Accademia svizzera delle scienze mediche

Herausgeber: Schweizerische Akademie der Medizinischen Wissenschaften

Band: 13 (1957)

Heft: 1-4: Symposium über Arteriosklerose = Symposium sur l'artériosclérose

= Symposium on arteriosclerosis

Artikel: The effect of a diet rich in fat, unsatureted fatty acids, phospholipids and

vitamin B on the blood-cholesterol levels

Autor: Meyknecht, E.A.M. / Bloem, T.F. / Handel, E. van

DOI: https://doi.org/10.5169/seals-307328

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Hospital St. Antoniushove, Voorburg (Holland)

The Effect of a Diet Rich in Fat, Unsaturated Fatty Acids, Phospholipids and Vitamin B on the Blood-Cholesterol Levels

by T. F. Bloem, M.D., Physician, E. van Handel, Ph.D., Chemist, and H. Neumann, Ph.D., Biochemist, Amsterdam

communicated by E. A. M. Meyknecht, M.S.A. Wageningen

A study of atherosclerosis suggests that in "Western" populations the incidence of the disease is much higher than in "non-Western" populations. From this observation a relationship between atherosclerosis and food is plausible. Though the literature on the problem of atherosclerosis is both confused and controversal, in one respect the studies on the subject concur, viz. that it is characterized by lipid-deposits, chiefly of cholesterol, and that the blood lipids are generally raised.

As regards the aetiology, two main theories can be distinguished, one of which is based on the hypothesis that a dietary excess and the other that a dietary deficiency is playing a part.

The first theory suggests that an excess of cholesterol in the diet, a high fat content—especially fat of animal origin is suspected—or a high caloric intake causes atherosclerosis. *Groen* (1), Keys (2).

The deficiency theory suggests that preventive factors—especially phospholipids, including some components such as choline, essential fatty acids and the vitamin-B-complex—have been partially or entirely discarded from the food and that the pattern of the fatty acids is playing a significant rôle.

Atherosclerosis could be induced by a disturbed lipid metabolism or a disorder of fat transport: van Handel (3), Sinclair (4), Kinsell et al. (5), Beveridge et al. (6), Bronte-Stewart et al. (7).

Last year one of the authors, van Handel (l.c.), postulated the deficiency theory, followed by Sinclair (l.c.) this year. Kinsell et al. (l.c.) and also Beveridge et al. (l.c.) stated that a large intake of vegetable fat, especially liquid oils, in fact depresses the serum cholesterol.

Bronte-Stewart et al. (l.c.) make the suggestion, based on the results of short term experiments, that certain discrepancies in the dietary-fat

Table 1
Patients not previously treated with low fat diet

		Sexe, age, disease	Days	Cholesterol mg%	Serum-lipid phosphorus mg%
3	20	nephrosis	0	512	14.4
			42	260	9.9
			85	200	9.7
			320	133	8.2
2	53	coronary insufficiency	0	300	12.5
			30	235	10.3
3	60	coronary insufficiency	0	235	10.3
			30	223	8.6
3	57	coronary insufficiency	0	325	11.2
			72	188	9.6
3	46	functional complaints	0	260	10.1
			40	253	9.4
			120	205	8.2
2	28	infectious hepatitis	0	300	11.6
			120	207	8.6
			210	231	9.4
2	55	coronary insufficiency	0	314	12.8
			45	277	10.9
			80	255	10.4
			110	227	10.4
2	58	coronary insufficiency	0	275	11.2
			80	223	9.2
		<i>y</i>	200	215	9.0
3	73	coronary insufficiency	0	235	10.0
			30	235	9.6
3	44	coronary insufficiency	0	160	7.0
			60	152	6.8
			100	160	6.5
2	55	coronary insufficiency	0	350	12.1
			60	300	11.3
3	48	coronary insufficiency	0	193	7.7
			60	195	7.6
			90	195	8.1
			180	211	8.8
3	62	coronary insufficiency	0	210	10.1
			150	232	11.6
5	58	coronary insufficiency	0	240	10.3
		myocardial infarction	60	185	3
		multiple sclerosis	120	250	10.5
			270	224	10.4
2	60	diabetes	0	500	17.2
			65	345	12.5
			150	385	16.7

		Sexe, age, disease	Days	Cholesterol mg%	Serum-lipid phosphorus mg%
3	59	coronary insufficiency	0 60	290 225	11.2 10.4
3	47	myocardial infarction	$\begin{array}{c} -200 \\ 0 \\ 50 \\ 100 \\ 200 \\ 332 \\ \end{array}$	307 300 230 220 220 232	- 10.1 9.2 9.6 9.1 9.6
3	73	coronary insufficiency	0 60	265 225	10.6 9.0
3	68	myocardial infarction	0 150 210	215 241 165	10.7 9.8 10.7

theory on the aetiology of coronary heart-disease may be explained by variations in the nature of fatty-acid composition.

Two of the authors (8) tried choline therapy on some cases of oedema with success. The results may be explained by the effect of choline on the ratio between phosphatide and phosphatid acid and therefore on the permeability of the cellular wall, which, according to the theory of Bungenberg de Jong (9), contains a tricomplex of phosphatide.

Based on the above-mentioned theories, different diets have been applied.

It is known that the "rice and fruit" diet of Kempner may result in a lowering of the serum cholesterol; Keys (l.c.) reports a similar effect on the serum cholesterol following a low fat diet (20 cal.%) and an increase if he administered more fat; but while he maintains that animal and vegetable fats produce the same effect, the findings of Kinsell (l.c.) and Beveridge (l.c.) were controversial.

Groen (l.c.) reports a lowering of serum cholesterol following a cholesterol-free diet.

It is noted however that the diets of Kempner, Keys and Groen are in effect essentially "deficiency-diets" and may result in mental depression and physical weakness. A considerable part of the fat intake of the "non-Western" population is derived from vegetable fats—fatty seeds such as peanuts, soy beans, sesame seeds, all of which are rich in essential fatty acids and phospholipids, the diets being supplemented with whole wheat and unpolished rice, which provides vitamins of the B-complex and large amounts of trace minerals such as manganese, magnesium and copper. The fat intake of the "Western" population, on

Table 2
Patients previously treated with low fat diet

U	8	Sexe, age, disease	Days	Cholesterol mg%	Serum-lipid phosphorus mg%
3	62	coronary insufficiency	-270	295	_
			0	235	8.8
			55	172	7.2
9	38	adipositas	0	170	7.6
			30	175	8.4
3	51	coronary insufficiency	0	400	15.2
			30	350	11.7
			45	310	11.0
			75	260	10.6
			100	240	10.0
3	54	coronary insufficiency	0	250	11.2
			30	230	9.8
			120	241	14.9
3	66	coronary insufficiency	-300	200	_
			0	220	10.6
			40	197	8.4
			150	193	8.4
			210	197	9.6
3	70	coronary insufficiency	-150	189	-
			0	235	8.7
		9	60	225	10.0
2	68	coronary insufficiency	0	305	11.0
			90	229	10.9
3	58	coronary insufficiency	0	243	10.2
			50	220	11.0
3	45	polycythaemia	0	160	7.2
			30	180	7.0
3	58	myocardial infarction	0	315	13.2
តា		•	60	270	10.3
			150	280	10.5
			240	288	12.3
3	51	myocardial infarction	0	335	14.2
			70	237	11.0
			220	292	12.3
2	57	coronary insufficiency	-180	200	_
			0	270	10.6
			60	210	9.6
			220	225	11.3
3	7	nephrosis	0	390	12.8
			30	295	12.1
			50	260	11.0
			140	288	11.0
			230	303	12.9
			380	283	

		Sexe, age, disease	Days	Cholesterol mg%	Serum-lipid phosphorus mg%
 3	62	coronary insufficiency	0 120	247 199	11.0 11.1
3	68	myocardial infarction	0 90	243 283	11.0 11.0
2	55	coronary insufficiency	0 150	325 307	13.5 15.0
3	54	heart decompensation	$egin{array}{c} 0 \\ 60 \\ 210 \\ \end{array}$	$\begin{array}{ c c c }\hline 240 \\ 220 \\ 224 \\ \end{array}$	10.0 10.0 9.1
ð	35	nephrosis	0 60 120 360	410 364 260	16.6 14.4 11.6
ð	67	coronary insufficiency	$egin{array}{c} 0 \\ 30 \\ 120 \\ \end{array}$	257 190 223	10.5 7.6 9.1
ð	49	myocardial infarction	$\begin{array}{c} 0 \\ 30 \\ 60 \\ 120 \\ 210 \end{array}$	250 240 240 285 251	10.3 10.0 11.6 11.2 11.2
\$	44	coronary insufficiency	-300 0 55	284 260 233	11.6 9.5
9	41	hepatic cirrhosis	0 60	205 200	9.8 9.8
3	50	coronary insufficiency		220 215 215 210	9.5 9.6 8.4
3	36	myocardial infarction		317 250	11.0 10.6
3	60	myocardial infarction	0 60	190 175	8.3 7.2

the other hand, consists largely of animal fat, hydrogenated fat, meat, supplemented with white bread, all of which are poor in essential fatty acids, phospholipids and vitamins B. In order to estimate the value of this "non-Western" type of feeding, a number of patients were put on a diet rich in vegetable fats, essential fatty acids, phospholipids and vitamins B. The effect on the blood cholesterol and the serum-lipid phosphorus was recorded at regular intervals. Since we have no means of measuring the extent of atherosclerosis in our patients, we could do no better than estimate this by subjective investigation.

Material

The study includes 48 persons, 26 had not previously been treated with a low fat diet; 18 had already been treated with the Keys low fat diet, and 4 were normals. Of particular interest is the group of patients (Table 2) who, in spite of prolonged treatment with low fat diets, had maintained high serum cholesterol levels. Patients who, on a low fat diet (less than 20% of total calories) had reacted by a considerable drop in cholesterol, were not included in this study.

The diet

Daily: 50 g soy bean flour, 50 g peanuts, 50 g peas or beans, 3 g soy bean lecithin (to account for the approximate amount lost in the degumning of vegetable oils).

Not allowed. Lard and other animal fats, shortening, white bread and degerminated flour and cereals.

Restricted: Butter and margarine restricted to 25 g daily. The hospitalized patients, about half of the total, used butter, a part of the outdoorpatients margarine.

Allowed

Whole wheat bread, unpolished rice, etc. Liquid soy bean oil as a source of cooking fat. The use of meat, milk, cheese, and eggs was not restricted.

Estimation of blood-lipids

 $2\frac{1}{2}$ ml serum was mixed with alcohol-ether (3:1), brought to the boiling point of ether in a beaker with warm water, cooled, made to 50 ml and filtered.

Table 3 Control

		Sexe, age, disease	Days	Cholesterol mg%	Serum-lipid phosphorus mg%
9	20	functional complaints	0	188 197	9.6
3	56	ulcus duodeni	0 220	240 174	10.3 10.2
♂	37	observation	0 150	160 134	7.2 8.3
9	20	goitre (normal B. M. R.)	0 360	208 207	9.2

In the filtrate we estimated the cholesterol according to *Fidler* and phosphorus lipid according to *van Handel*.

Results and Discussion

Table 1 indicates that with this type of diet a significant decrease of blood-cholesterol was achieved in the majority of cases where the level of lipids was initially high. It could be observed that when the level of the phospholipids, measured as lipid phosphorus, was high it decreased, in practically no case did the ratio cholesterol/phospholipid increase, it was either maintained or fell. Little or no change was observed in patients where blood lipids were essentially normal. A number of patients who had failed to react to low fat diets responded to this type of diet. In no case did the relatively large amounts of oil after the previous low fat intake lead to a rise in serum cholesterol.

Patients who failed to follow the diet were excluded from this report. As in most studies, little information was gained of the fluctuations in high blood-lipids. However, as most patients were followed for a period of more than 6 months, the possibility of a spontaneous fall of blood-lipids can probably be excluded. Our results agree with the findings of Kinsell (l.c.), Beveridge (l.c.), and Bronte-Stewart, who reported a lowering of the blood-cholesterol in diets containing large amounts of fats of vegetable or marine origin. In our experiments, evidently the intake of butter, milk, cheese, and eggs did not raise the serum-cholesterol.

As regards the mental depression and physical weakness, which were shown by patients with low fat diet, it can be mentioned that on the diets tested a considerable improvement took place.

Therefore in those cases where caloric restricted diets are indicated, it seems to be essential to include natural sources of vitamin B, choline, inositol, and trace minerals as provided by soya beans, wheat germs, sesame seed, nuts, etc. If, however, fat restriction is indicated, the source of fat should be carefully selected and it is suggested that the fats should be as rich as possible in those fatty acids which cannot be synthesized by the human body e.g. the essential fatty acids. In this way the diet resembles much more closely the diet of the non-Western peoples where atherosclerosis is rare.

As early as 1937, Brouwer (10) directed attention to the negative correlation between the content of unsaturated fats and the content of short-chain, saturated fatty acids in nearly all natural fats. It is not to be precluded beforehand that in some respects a lack of some unsaturated fatty acids can be compensated by short-chain acids. Especially in coconut-, palm-kernel-oil and milk fat the content of the latter is high,

however, in milk fat the percentage of fat with the lowest chains is highest.

Summary

The effect of a diet, which might be of value in the treatment of atherosclerosis, is shown to reduce high blood cholesterol and phospholipid levels, without excessive restriction in fat (including milk fat) or calories.

The report includes 44 patients and 4 normals. 26 showed a fall of blood-cholesterol; 17 who had normal values at the onset showed no change; 1 failed to react. In no case was there an increase of blood cholesterol values in this relatively high fat diet.

Zusammenfassung

Es wird die Wirkung einer Diät auf die Senkung des hohen Blutcholesterin- und Phospholipidspiegels gezeigt, die, ohne stärkere Einschränkung der Fette (einschließlich der Milchfette) oder der Kalorien, einen Wert in der Arteriosklerosebehandlung haben könnte.

Der Bericht betrifft 44 Patienten und 4 gesunde Personen. 26 zeigten eine Senkung des Blutcholesterins, weitere 17, die beim Beginn der Diät normale Werte hatten, zeigten keine Veränderungen. Ein Fall blieb unverändert. In keinem Fall war aber ein Ansteigen der Blutcholesterinwerte bei dieser relativ fettreichen Diät nachweisbar.

Résumé

Il s'agit d'un régime qui, sans être trop restreint en graisses (y compris les graisses du lait) ou en calories, est capable d'abaisser une cholestérolémie élevée et qui pourrait être utile dans le traitement de l'artériosclérose.

L'étude comprend 44 patients et 4 sujets normaux. Chez 26, on constate une chute de la cholestérolémie; chez 17 sujets, dont les valeurs étaient normales au début du régime, on ne note aucun changement. Un sujet n'a pas montré de réaction. Dans aucun cas, il n'a été constaté une augmentation de la cholestérolémie par ce régime relativement riche en graisses.

1. Groen, J., Tjiong, B. K., Kamminga, Chr., and Willebrands, A. F.: Voeding 13, 556 (1952). – 2. Keys, A.: Voeding 13, 539 (1952). – 3. Van Handel, E.: Amer. J. dig. Dis. 22, 7, p. 206 (1955). – 4. Sinclair, H. M.: Lancet 1956, 381. – 5. Kinsell, L. W., Michaels, G. D., Cochrane, G. C., Portridge, J. W., Jahn, J. P., and Balch, H. E.: Diabetes Abstr. 3, 113 (1954). – 6. Beveridge, J. M. R., Connell, W. P., Mayer, G., Firstbrook, J. B., and de Wolfe, M.: Circulation (N.Y.) 10, 593 (1954). – 7. Bronte-Stewart, B., Antonis, A., Eales, L., and Brock, J. F.: Lancet 1956, 521. – 8. Bloem, T. F., and Neumann, H.: Lancet 1953, p. 827. – 9. Bungenberg de Jong, H. G.: Coll. Sci. (Amsterdam) 1949, vol. II. – 10. Brouwer, E.: Versl. Landb. Onderz. 1937, p. 399.