Zeitschrift: Bulletin der Schweizerischen Akademie der Medizinischen

Wissenschaften = Bulletin de l'Académie suisse des sciences

médicales = Bollettino dell' Accademia svizzera delle scienze mediche

Herausgeber: Schweizerische Akademie der Medizinischen Wissenschaften

Band: 13 (1957)

Heft: 1-4: Symposium über Arteriosklerose = Symposium sur l'artériosclérose

= Symposium on arteriosclerosis

Artikel: Veränderungen der Bluteinwisskörper bei areriosklerotischen

Augenhintergrundveränderungen

Autor: Voigt, K.D. / Klempien, E.J. / Sartori, C.

DOI: https://doi.org/10.5169/seals-307320

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Universitäts-Augenklinik Hamburg – Direktor: Prof. H. Sautter

Veränderungen der Bluteiweißkörper bei arteriosklerotischen Augenhintergrundveränderungen

Von K. D. Voigt, E. J. Klempien und C. Sartori

Wir hatten Gelegenheit, das Serum von 15 Patienten mit arteriosklerotischen Augenhintergrunderkrankungen neben dem von 30 Patienten mit schwerer Allgemeinsklerose zu untersuchen und bestimmten dabei folgende Serumwerte (Tab. 1 und 2).

In Übereinstimmung mit einer Reihe von Voruntersuchern (Gofman und Mitarb., Ahrens, Kunkel und andere) konnten wir feststellen:

- 1. Gesamt-Cholesterin und Cholesterin-Ester sind erhöht, meist unter Beibehaltung einer normalen Relation zwischen Ester und freiem Cholesterin.
- 2. Die *Phosphor-Lipoide* sind erhöht, jedoch meist zurückbleibend hinter der Cholesterin-Erhöhung (Erhöhung des Cholesterin-Phosphorlipoid-Quotienten).
 - 3. Der Gesamt-Fett-Gehalt des Serums ist erhöht.
- 4. Die verminderte Löslichkeit der Serumlipide vor allem des Cholesterins wird deutlich an dem vermehrten Auftreten makromolekularer *Lipoproteide* mit hoher Flotationskonstante.
 - 5. Die neutralen Glycoproteide des Serums sind erhöht.
 - 6. Die sauren Glycoproteide sind nicht oder nur leicht erhöht.
 - 7. Die Werte der α_2 -Bande in der Eiweißfraktionierung sind erhöht.
- 8. Relativer Abfall für die Werte der Albumin/ α_1 -Fraktion und Vermehrung der γ -Fraktion bei den Gesamtglycoproteiden.
- 9. Relativer Abfall für die Werte der Albumin/ a_1 -Fraktion und Vermehrung der γ -Fraktion bei den neutralen Glycoproteiden.
 - 10. Die sauren Glykoproteide zeigten bei der Fraktionierung kein eindeutiges Verhalten.
 - 11. In der Mehrzahl der Fälle fiel eine Hypoproteinämie auf.

Standen bisher die Veränderungen im Bereich der Blutlipide im Vordergrund der Diskussion, so sind doch die Veränderungen im Bereich der Glycoproteide – vor allem der neutralen – und die Erniedrigung des Gesamteiweißes nicht zu übersehen.

Das ganze Geschehen, soweit es methodisch zu erfassen ist, weist weniger auf eine Störung des Fettstoffwechsels als kausales Moment bei der Arteriosklerose hin, als auf eine Veränderung der Löslichkeitsverhältnisse im Serum, deren Ursache im Bereich der Serum-Eiweißkörper liegt und deren Konsequenz eine verminderte Eliminierung jener Stoffe

Tabelle 1 Zusammenstellung der durchgeführten Untersuchungen I

	Bemerkungen	 h. Nicht absolut spezifisch, die le Werte schwanken zwischen den verschiedenen Forschergruppen 	Micht absolut spezifisch, die Werte schwanken zwischen den verschiedenen Forschergruppen	я	on Angabe als Phosphorlipoide erfolgt rechnerisch	Es werden nur Eiweiße als Peptide erfaßt	Erfaßt werden die <i>neutralen</i> Glykoproteide	odi- Erfaßt werden die sauren Glykoproteide
	Autor	Liebermann-Burckhardt, modifiziert von Garbade	Liebermann-Burckhardt, modifiziert von Garbade	Laszt und Verzár	Theorell, modifiziert von Klenk	Weichselbaum, modifiziert von Garbade	v. Holt	Elson und Morgan, modi- fiziert von Kabat und Mayer
9 9 9	Prinzip der Bestimmung	Grüner Farbkomplex aus $ m H_2SO_4$ + $ m (CH_3CO)_2O$ + Steran	Nach Digitoninfällung erfolgt die gleiche Reaktion wie beim Cholesterin	Auswägen der lipoidlöslichen Substanzen	Veraschung des Gesamtfettes, blauer Farbkomplex aus Phos- phat + Molybdat + Reduk- tionsmittel	Einlagerung von Cu++ in die Peptidbrücke	Komplexbildung aus Anthron und zur Furan- bzw. Furfurol- bildung befähigten Zuckern	Hydrolyse, Bildung eines Pyrrolsalzes mit Acetylaceton in alkalischer Lag., unter Zusatz von p-Dimethyl-amino-benzaldehyd bildet sich ein roter Farbkomplex
	Bestimmungsart	kolorimetrisch	kolorimetrisch	gravimetrisch	kolorimetrisch	kolorimetrisch	kolorimetrisch	kolorimetrisch
	Stoffgruppe	Cholesterin	Cholesterinester	Gesamtfett	Phosphorlipoide	Gesamteiweiß	Hexosamin- und chondrosaminfreie Glykoproteide	Hexosamin- und chondrosaminhaltige Glykoproteide

Tabelle 2 Zusammenstellung der durchgeführten Untersuchungen II

H.	Bemerkungen	Die Trennung erfolgt mittels einer Kurzzeitelektrophorese bei einem pH von 8,8-9,0 unter Anlegung von 400 Volt. Die An- gabe der einzelnen Fraktionen erfolgt in %	Es lassen sich 5 Banden aufzeigen	Bei Normalpersonen und Arteriosklerotikern lassen sich nur im α_1 - und β -Bereich Banden nachweisen	Nicht sehr spezifisch, da alle zu einer solchen Umsetzung befähigten Stoffe den roten Farbkomplex bilden. Es lassen sich 4 Banden erkennen, wovon Albumin und α_1 eine gemeinsame bilden	In den Eluaten werden die neutralen mit der Anthronmethode, die sauren mit der Glukosaminbestimmung, wie bei den Gesamtbestimmungen beschrieben, erfaßt
0	Autor	v. Holt, Voigt und Gaede; Voigt	Grassmann, Hannig und Knedel: Turba und Enenkel	Swahn	Hotchkiss und McManus, modifiziert von Köiw und Grönwall	Voigt
0	Prinzip der Bestimmung	Trennung der Eiweißfraktionen in Abhängigkeit vom I. P. und vom Molekulargewicht	Blaue Anfärbung der Eiweiß- fraktionen mit dem basischen Farbstoff Amidoschwarz 10 B. Anschließend Elution in n/10 NaOH	Anreicherung des Sudanschwarzes in den die Fette tragenden Fraktionen auf Grund seiner selektiven Löslichkeit in den Lipoiden	Perjodsre-Oxydation und anschließende Anfärbung der aus den a-Glykolstrukturen entstandenen Aldehyde mit Fuchsin-schwefliger Säure (Schiffsches Reagens); roter Farbkomplex	Festlegung der einzelnen Fraktionen durch eine Amidoschwarzfärbung. Abnutschen und Elution der einzelnen Banden; anschließend Bestimmungen der neutralen bzw. sauren Glykoproteide
	Bestimmungsart	Papierelektro- phoretisch	Kolorimetrische Auswertung der eluierten Banden	Kolorimetrische Auswertung der eluierten Banden	Direkte Photometrie der Streifen und Planimetrie	Elution präparativer Streifen und kolorimetrische Auswertung
	Stoffgruppe	Proteine und Proteide	a) Proteine	b) Lipoproteide	c) Glykoproteide (Gesamt-)	d) Neutrale und saure Glykoproteide

ist, die auf eine Bindung an Eiweißkörper angewiesen sind. Dadurch wäre dann beispielsweise die so häufig bei der Arteriosklerose festgestellte Hypercholesterinämie bedingt, die allein noch nicht eine Arteriosklerose verursachen muß, da sie auch bei einer Reihe von Krankheitsbildern und Stoffwechselstörungen gefunden wird, die nicht zu arteriosklerotischen Bildern führen.

Es scheint also, daß alle gefundenen Serumveränderungen lediglich Ausdruck einer übergeordneten Alteration sind.

Die Störung im Bereich der Serumproteide besteht ganz offenbar in einer Beeinträchtigung der Transportfunktion der Serumeiweißkörper. Diese aber ist am einfachsten und zwanglosesten durch eine Störung der Relation der Trägereiweiße zu den prostethischen Gruppen zu erklären.

Für uns war nun interessant zu erfahren, in welchem Grad Veränderungen des Augenhintergrundes, deren arteriosklerotische Natur die histologische Forschung schon lange festgestellt hat, auf eine allgemeine Arteriosklerose hinweisen.

Die Untersuchungsergebnisse unserer 45 Patienten wurden je nach dem Grad des pathologischen Ausfalles der Bestimmungen in 4 Gruppen eingeteilt, wie sie die Tab. 3 zeigt.

Tabelle 3

Die Gruppeneinteilung bei den 45 untersuchten Patienten nach blutchemischen Gesichtspunkten

Gruppe	Kriterien	Zahl	Geschlecht	Alter (Jahre)
I	Alle Serumbefunde pathologisch; geordnet nach dem Gesamtcho- lesterin	25	17 ♀ 8 ♂	2 unt. 40 6 40-60 9 60-70 8 70-80
II	Cholesterinwerte normal, alle übrigen Befunde pathologisch, geordnet nach den Lipoprot.	4	2 ♀ 2 ♂	1 60-70 2 70-80 1 über 80
ш	Lipoproteidfraktionierung normal, alle anderen Befunde pathologisch; geordnet nach den Gesamtcholesterinwerten	12	5 ♀ 7 ♂	1 unt. 40 3 40-60 4 60-70 4 70-80
IV	Alle Serumbefunde normal bzw. an der oberen Grenze der Norm bei klin. manifester Arterio- sklerose. Geordnet nach den Gesamtcholesterinwerten	4	2 ♀ 2 ♂	2 40–60 1 60–70 1 70–80

Dabei fand sich, daß von den 15 Patienten der Augenklinik allein 11 der Gruppe I mit pathologischen, zum Teil hoch pathologischen Veränderungen aller Serumwerte angehörten, während die restlichen 4 der Gruppe III mit zwar normaler Lipoproteid-Fraktionierung, doch pathologischen Veränderungen aller anderen Werte angehörten.

Labelle 4

Mittelwerte	Gesamt- cholesterin	Cholesterin- ester	Phosphor- lipoide	Gesamt- fett	Gesamt- eiweiß	neutrale Glykoproteide	saure Glykoproteide
	mg%	mg%	mg%	%8%	%8	mg%	mg%
Normalwerte	232	137	141	99,0	7,21	127	109
	359	195	202	16,0	68'9	165	117,8
	238	130	154	29,0	29'9	144	108,2
·	308	165	192	0,79	6,93	156	118,4
tiker (Gruppe IV	254	132	148	0,71	6,27	191	112,9
Vergleichswerte:		77					
Essent. Lipoidose	374	196	220	1,08	7,45	147	177,5
Nephritis	730	454	305	1,47	4,64	168	136,4
Hyperheparinämie	(178)	(109)	(06)	99,0	8,00	205	124,2
Hyperlipämie	220	330	415	2,40	8,50	128	138,0

Tabelle 5 Elektrophoretische Fraktionierungen

				•)			
×		1	Arteriosklerotik	erotiker der Gruppen	и		Vergleic	Vergleichswerte	
	Normalwerte	I	II	Ш	IV	Essent. Lipoid.	Nephritis	Hyperhepa-rinämie	Hyperlip- ämie
Eiweiß in %		27						1	
Albumine	58,2	55,7	54,9	58,4	57,4	47,0	40,2	59,3	55,0
α_1	4,9	5,2	5,2	5,2	2,6-	7,4	7,2	4,6	2,3
$lpha_2^{oldsymbol{ ilde{2}}}$	7,8	9,6	8,6	9,8	8,5	12,4	21,0	9,4	5,0
β	9,01	11,8	9,01	10,7	2,6	14,3	18,5	10,1	12,2
~	18,2	17,7		17,4	18,8	18,9	13,1	16,6	25,6
Lipoproteide in %	, wi		•1			c c			
α,	25,9	18,8	16,4	26,4	27,3	9,61	7,3	30,2	1,0
θ	74,1	81,2	83,6	73,6	72,7	80,4	10,0	8,69	25,5
€ g	100 E	5	100 H			2,	γ 22,7	Chylom.	73,5
Gesamtglykoj	Gesamtglykoproteide (PAS) in %	in %							
Alb. $+ \alpha_1$	37,5	35,8	33,4	34,5	32,1	37,8	37,4	22,9	26,4
α_2	27,8	28,3	23,9	26,0	38,4	27,5	36,1	31,3	24,6
β	24,5	27,8	23,2	27,3	23,3	22,6	20,3	25,0	26,4
7	9,8	8,1	19,6	12,2	6,2	12,1	0,9	20,8	22,6
Neutrale Gly	Neutrale Glykoproteide in %	9,			10 C	\$100 mm (100 mm)			
Alb. $+ a_1$	39,4	37,0	32,5	36,6	36,8	34,3	33,0	37,2	47,7
100	20,6	19,2	19,2	18,2	19,9	19,8	23,4	25,1	22,4
β	15,3	18,8	19,9	18,5	15,8	19,2	23,4	19,3	0,6
7	24,7	25,0	28,4	26,7	27,8	26,7	20,2	18,4	20,7
Saure Glykor	Saure Glykoproteide in %								
Alb. $+ \alpha_1$	40,2	41,4	33,7	45,7	38,1	25,7	34,5	38,0	38,3
α_2	22,1	22,4	23,2	19,7	26,2	25,4	23,7	22,7	25,0
β	20,3	28,2	20,1	18,5	19,1	17,1	23,4	20,4	18,1
~	6,01	10,01	0,62	10,1	10,0	0,10	10,4	10,9	10,0

.

Tabelle 6 Tendenzen der serologischen Veränderungen sofort nach Absetzen einer Therapie mit Heparin bzw. dem Natriumsalz der α -Phenylaethylessigsäure («R 757»)

Behan	llung mit «	(R 757»	(3.40+63952+ 8 (8++) 5 (0 5) (886+) 1	Behand	lung mit	Heparin
%-Ante	V	Tendenz post ther.	Stoffgruppe	%-Ante	il an	Tendenz post ther.
20 30 70 10 80 20 70 - 50 20 50 10 80 5	50 20 + - + 30 + 30 40 15 +	(V) ^ ^ Ø Ø ^	Gesamtcholesterin Cholesterinester Gesamteiweiß saure Glykoproteide neutrale Glykoproteide Gesamtfett Phosphorlipoide	$\begin{array}{c cccc} 40 & - \\ 60 & - \\ 70 & 20 \\ 10 & 40 \\ 40 & 20 \\ 20 & 10 \\ 20 & 20 \\ \end{array}$	50 40	+ V + V (V) + V Ø
20 10	70 +	.: Y.s.	Fraktionierungen Eiweiß: Albumin	50 -	50	. r . Ø
30 40 60 30 80 10 30 50	$egin{array}{cccccccccccccccccccccccccccccccccccc$	Ø ^ ^ Ø	$egin{aligned} a_1\ a_2\ eta\ \gamma \end{aligned}$	30 60 50 20 40 10 40 -	10 30 50 60	Ø (\(\) \(\) \(\)
70. – . 30., –	30 + 70 +	\ \ V.	Lipoproteide: a_1 β	60 - 40 -	40 60 £	V _E :
30 20 60 - 40 10 70 20	50 40 50 10	(V) (V)	Glykoproteide nach PAS: Albumin $/a_1$ a_2 β γ	20 - 70 - 70 - 50 20	80 30 30 30 30	+ · · · · · · · · · · · · · · · · · · ·
50 - 70 - 30 - 40 30	50 30 + 70 + 30	Ø .	$egin{aligned} ext{Neutrale} & ext{Glykoproteide:} & ext{Albumin}/a_1 & ext{} $	$\begin{array}{cccc} & - & 10 \\ & 40 & - \\ & 70 & 10 \\ & 30 & 10 \end{array}$		ignf. ∨ ∨ ∧ ∧ ∨
90 - 60 - 30 -	100 sig 10 sig 40	nf. ∨ nf. ∧ ∧ ∨	Saure Glykoproteide: Albumin $/a_1$ a_2 β	20 - 70 10 80 - 30 20	20	+ V ^ ^ + ^ V

Die Tabellen 4 und 5 zeigen die Durchschnittswerte der Gruppen I und III im Vergleich zu den Normalwerten.

Wir möchten aus unseren Ergebnissen den Schluß ziehen, daß das Vorliegen arteriosklerotischer Augenhintergrundveränderungen in Verbindung mit den soeben beschriebenen blutchemischen Veränderungen durchaus die Diagnose eines allgemeinen arteriosklerotischen

Tabelle 7 Tendenzen der serologischen Veränderungen 2–5 Wochen nach Absetzen der Therapie mit Heparin bzw. dem Natriumsalz der α -Phenylaethylessigsäure («R 757»)

Be	ehand	lung r	nit «R	757»		Beh	andlu	ıng m	it He	parin
% ^	-Antei Ø	l an V		Tendenz ost ther.	Stoffgruppe	%-A	nteil Ø	an V		Tendenz post ther.
75 38 38 50 25	12,5 12 - 12 50	12,5 50 62 38 25		∧ (∨) ∨ (∧) ∅	Gesamtcholesterin Cholesterinester Phosphorlipoide Gesamtfett Gesamteiweiß	40 25 50 75 25		60 75 50 - 75	+ + + .	V V Ø ^ V
38 25	$\frac{12}{13}$	50 62		(V) V	neutrale Glykoproteide saure Glykoproteide	15 75	15 12,5	70 12,5	++	Λ Λ
			o•		Fraktionierungen Eiweiß:			ęę ···	2010	
38 38 25 12	25 25 38 28 38	37 37 37 50 62	,	ø ø V V	$\begin{matrix} \mathbf{Albumin} \\ \boldsymbol{\alpha_1} \\ \boldsymbol{\alpha_2} \\ \boldsymbol{\beta} \\ \boldsymbol{\gamma} \end{matrix}$	33 75 30 30 50	34 12,5 20 20	33 5 12,5 50 50 50	+	Ø (V) (V)
62 38	_	38 62		۸ V	Lipoproteide: $\begin{array}{c} a_1 \\ \beta \end{array}$	50 50	_	50 50		Ø Ø
38 75 25 50	- 12,5 - -	62 12,5 75 50	+ *	V ^ V Ø	$\begin{array}{c} \textbf{Glykoproteide} \\ \textbf{nach PAS:} \\ \textbf{Albumin}/\alpha_1 \\ \alpha_2 \\ \beta \\ \gamma \end{array}$	30 50 70 100	_	70 50 30	+ + sign	∨ ø ∧ f. ∧
40 25 50 38	- 12 - -	60 63 50 62		V V Ø V	$egin{aligned} ext{Neutrale} \ ext{Glykoproteide:} \ ext{Albumin}/lpha_{ ext{i}} \ lpha_{ ext{2}} \ eta \ \gamma \end{aligned}$	85 50 30 50	- - 20	15 50 70 30	+	∧ ∅ ∨ (∧)
80 37 37 10	10	10 63 63 90	+ signf.	^ V V V	Saure Glykoproteide: Albumin $/a_1$ a_2 β	50 50 50 50	15 - - -	35 50 50 50		(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Geschehens zuläßt, wobei die Frage offen bleibt, ob es zum Zeitpunkt des Auftretens der Augenhintergrundveränderungen auch schon zu sklerotischen Veränderungen anderer Gefäßgebiete gekommen ist, da diese ja nicht so leicht der Diagnostik zugänglich sind, wie die Augenhintergrundveränderungen.

Wir wollten es nicht versäumen, an dieser Stelle auf die Möglichkeiten zur Diagnose arteriosklerotischer Geschehen durch die Verbindung der ophthalmoskopischen Untersuchung mit anderen klinischen und vor allem blutchemischen Verfahren hinzuweisen. Vor allem glauben wir auch, daß die Beobachtung der arteriosklerotischen Augenhintergrundveränderungen einen gewissen Maßstab für den Wert antisklerotischer Maßnahmen geben kann.

Abschließend möchte ich Ihnen mit den Tab. 6 und 7 einen vorläufigen Überblick über unsere therapeutischen Ergebnisse – soweit sie Veränderungen der Serumwerte betreffen – mit dem Na-Salz der Phenyl-Aethyl-Essigsäure und Heparin geben.

In Anbetracht der geringen Zahl der behandelten und beobachteten Fälle haben wir uns darauf beschränkt, lediglich die Tendenzen der serologischen Veränderungen unter der Behandlung in Relation zu den Ausgangswerten anzugeben.

Zusammenfassung

Bei den verschiedenen Erscheinungsformen der Arteriosklerose des menschlichen Augenhintergrundes wurden folgende Serumwerte bestimmt: Gesamtcholesterin, Cholesterinester, Phosphorlipoide, Gesamtfett, Gesamteiweiß, neutrale und saure Glykoproteide.

Die elektrophoretische Fraktionierung erfolgte bei Eiweiß, Lipoproteiden und den Glykoproteiden.

Dabei zeigte sich, daß die Blutveränderungen, die hierbei gefunden wurden, denen bei schweren arteriosklerotischen Erkrankungen (wie z. B. peripheren arteriosklerotischen Durchblutungsstörungen usw.) entsprechen.

Abschließend wird kurz auf die Möglichkeiten eingegangen, diese Veränderungen medikamentös zu beeinflussen.

Résumé

Nous avons déterminé les valeurs sériques suivantes chez des sujets présentant diverses lésions sclérotiques du fond de l'œil: cholestérol total, ester du cholestérol, phospholipides, graisses totales, protides totaux, glycoprotéides neutres et acides. Le fractionnement électrophorétique a été réalisé pour les protéines, les lipoprotéides et les glycoprotéides.

Il s'est avéré que les modifications du sang trouvées de cette manière, correspondent à celles que l'on détermine dans les cas d'artériosclérose grave (comme par exemple dans les troubles vasculaires artériosclérotiques périphériques).

Pour terminer, les rapporteurs envisagent les possibilités d'influencer ces modifications au moyen de médicaments.

Summary

In different forms of arteriosclerosis of the fundus of the eye in humans, the following serum values were determined: total cholesterol, cholesterol ester, phospholipoids, total fat, total protein, neutral and acid glycoproteids.

The electrophoretic fractionation was made by protein, lipoproteid and glycoproteid.

It was seen that the blood changes corresponded to those found in severe cases of arteriosclerotic diseases (such as peripheral arteriosclerotic circulatory disorders, etc.). – In conclusion, the possibility is briefly reviewed of the medicamentous influencing of these changes.