Zeitschrift: Bulletin der Schweizerischen Akademie der Medizinischen

Wissenschaften = Bulletin de l'Académie suisse des sciences

médicales = Bollettino dell' Accademia svizzera delle scienze mediche

Herausgeber: Schweizerische Akademie der Medizinischen Wissenschaften

Band: 10 (1954)

Heft: 6

Artikel: Apparatur für Studien am vollständig isolierten, arbeitenden

Katzenherzen

Autor: Dettli, L.

DOI: https://doi.org/10.5169/seals-307191

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Aus der Pharmakologischen Anstalt der Universität Basel Direktor: Prof. Dr. K. Bucher

Apparatur für Studien am vollständig isolierten, arbeitenden Katzenherzen¹

Von L. Dettli

Es soll eine Apparatur beschrieben werden für Studien am vollständig isolierten, arbeitenden Katzenherzen. Wir erläutern die Anordnung an Hand der Abb. 1 (inkl. Legende).

A. Anforderungen an die Apparatur und allgemeine Konstruktion

- 1. Die venösen Zuflußbedingungen zum rechten und zum linken Vorhof sollen unabhängig voneinander variierbar und meßbar sein. Außerdem sollen diese Bedingungen während eines Versuches zeitlich reproduzierbar sein. Der Suffizienzgrad der rechten und der linken Herzkammer soll getrennt beurteilt werden können (39, 47). Diese Forderungen erfüllen wir durch 2 Vorhoftrichter V, von denen jeder eine Herzhälfte mit Blut versorgt und unabhängig vom andern in seiner Höheneinstellung variiert werden kann. Folgende Größen bestimmen dann den Zufluß zu jeder Herzhälfte: die Zuflußhöhe, der Strömungswiderstand der Vorhofleitung, die Bedingungen im arteriellen Kreislauf und die Schöpfleistung des Ventrikels (47, 57, 24, 64, 41). In Verbindung mit den unten sub 2, 3 und 4 erwähnten Punkten ergibt sich daraus, daß in unserer Apparatur der Suffizienzgrad jedes Ventrikels nach den Grundsätzen beurteilt werden kann, die von Krayer, Anitschkow und Trendelenburg für das ganze Herz entwickelt worden sind (1, 47).
- 2. Die arteriellen Drucke sollen unabhängig voneinander variierbar und meßbar sein. Dies wird dadurch erreicht, daß großer und kleiner Kreislauf durch künstliche Kreisläufe ersetzt werden, wie sie für den großen Kreislauf vom Starlingschen Herz-Lungen-Präparat (HLP) her bekannt sind (61). Damit das Verhalten des Herzens auch bei sehr niedrigen arteriellen Drucken studiert werden kann, wurde dafür gesorgt,

¹ I. Mitteilung zum Arbeitsprogramm *Bucher*; Bull. Schweiz. Akad. med. Wiss. 10, 470 (1954).

daß das Blut in den arteriellen Kreisläufen keine Höhendifferenz überwinden muß.

- 3. Sollen die Zuflußmengen zu den Vorhöfen frei variierbar sein, so ist darin die Forderung eingeschlossen, daß das venöse Angebot an jeden Vorhof von der Förderleistung des Ventrikels der anderen Herzseite unabhängig sei. Dann sind - mit Ausnahme des Coronarkreislaufes - die beiden Herzseiten hämodynamisch voneinander vollständig unabhängig. Wir nennen dies «freies Angebot» an das Herz. Die Folge davon ist, daß sogenannte «Rückwirkungen», wie z. B. Rückstauung von Blut bei Insuffizienz eines Ventrikels, sich nicht mehr auf die andere Herzseite übertragen können (11, 34, 56, 40). Dies ist ein Zustand, der im geschlossenen Kreislauf des intakten Organismus über längere Zeit nicht vorkommt. Diese Forderung nach «freiem Angebot» wird in unserer Apparatur folgendermaßen erfüllt: das gesamte zirkulierende Blut, d. h. das Blut, das vom Herzen gefördert wird, und dasjenige, das über die Überlaufleitungen (2, U) der verschiedenen Niveaugefäße (N, V) fließt, muß das Reservoir R passieren, das unterhalb des Herzens gelegen ist. Von dort wird es über den Oxygenator θ in das Nivcaugefäß N gepumpt, das in konstantem Strom die Vorhoftrichter V speist.
- 4. Der Coronardurchfluß soll ohne Eingriff in die gewählten Arbeitsbedingungen des Herzens meßbar sein. Wir beschreiben die Methode weiter unten (s. S. 476).

Da die Coronargefäße einen dem großen Kreislauf parallel geschalteten Kreislauf darstellen, fordert Katz (41, 42), daß bei der Beurteilung des Aortendruckes als Arbeitsgröße des linken Ventrikels der Coronardurchfluß mitberücksichtigt werde. Dies gilt für uns in vermehrtem Maße. In der Katzschen Versuchsanordnung (38) sind die beiden Herzhälften nämlich hämodynamisch voneinander abhängig, so daß die Förderleistungen der beiden Ventrikel gleich sein müssen. Dies ist in unserer Apparatur nicht der Fall. Wir müssen also auch für die korrekte Bestimmung des Minutenvolumens des linken Ventrikels den Coronardurchfluß messen.

5. Die Apparatur soll in Reihenversuchen eingesetzt werden können. Dies verlangt neben relativ einfacher Handhabung, daß Tiere verwendet werden können, die leicht und billig zu beschaffen sind. Dies trifft derzeit bei uns für Katzen viel mehr zu als für Hunde.

Fast alle Experimente dieser Art sind von anderen Autoren am Hundeherzen ausgeführt worden. Aber auch die Katze erträgt bei entsprechender Operationstechnik Eingriffe am Herzen sehr gut. Da aber das «tote Volumen» einer Durchströmungsapparatur nicht proportional der Tiergröße verkleinert werden kann, ergeben sich in dieser Beziehung erhebliche Schwierigkeiten. Unsere Apparatur kann mit 150 ml Blut betrieben werden, so daß wir mit einer Spenderkatze auskommen.

B. Variierbare, konstante und meßbare Größen

Die Zuflußhöhen zu den Vorhöfen können unabhängig voneinander von 0 bis 15 cm variiert werden. Da die kurzen, weiten arteriellen Kreis-

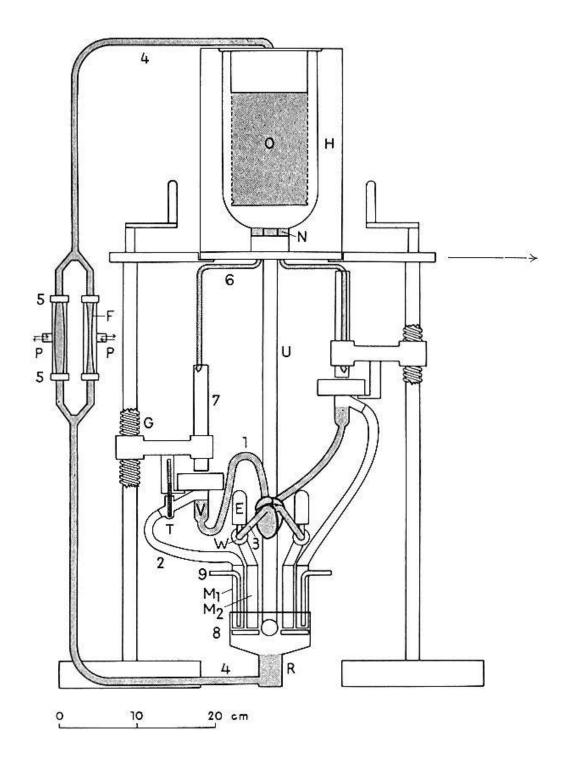


Abb. 1. Halbschematische, im wesentlichen maßgetreue Darstellung der wichtigsten Teile der Apparatur. Alle für das Verständnis des Kreislaufs unwichtigen Teile (Registriervorrichtung, Heizung, elektrische Anlage, Lagerungsvorrichtung für das Herz usw.) sind der besseren Übersichtlichkeit wegen weggelassen. Die Steigleitung 4 und zwei der vier Meßelemente M sind in die Zeichnungsebene geklappt, um sie sichtbar zu machen. Nur die rechte Seite des Kreislaufs ist bezeichnet, links liegen die gleichen Verhältnisse vor. Das Blut kreist wie folgt in der Apparatur: Aus dem Reservoir R wird es durch den Fördermechanismus F (die Pumpen P sind nicht dargestellt) durch die Steigleitung 4 über den Oxygenator O in das Niveaugefäß N gefördert. Dessen

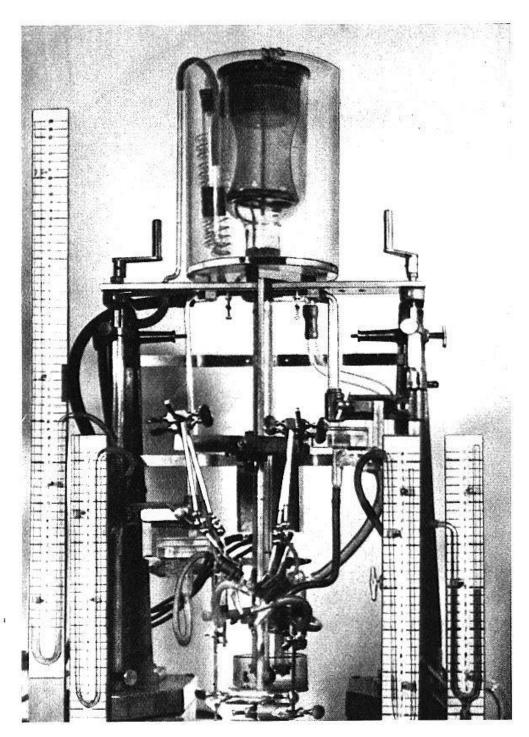


Abb. 2. Die Photographie entspricht im wesentlichen der Darstellung in Abb. 1.

Überlaufrohr U sorgt für konstante Einstellung des Blutniveaus und damit für konstantes Angebot an die Zuleitungen 6 der Vorhoftrichter V. Was durch diese Leitungen nicht aufgenommen wird, gelangt durch U direkt zurück in das Reservoir R. Aus den Vorhoftrichtern V fließt ein Teil des Blutes durch die Vorhofleitungen I dem Herzen zu; der Rest gelangt durch die Überlaufleitungen I in das Reservoir I vom Herzen wird das Blut durch die arteriellen Kreisläufe I ebenfalls in das Reservoir I gefördert. In die Überlaufleitungen der Vorhoftrichter I sind vor ihrer Mündung in das Reservoir I Durchflußmesser (I I) eingeschaltet, ebenso in die arteriellen Leitungen (I I I I I Elastizitätsgefäß, I I Widerstandsregler, I Temperaturmeßstelle, I Heizmantel, I I Gewindestangen, I Ventile, I Schließklappen und I Drucksonden des Meßsystems.

läufe unterhalb des Herzens münden, können die peripheren Widerstände so weit gesenkt werden, daß die Ventrikel praktisch widerstandsfrei fördern könnten. Die Bluttemperatur halten wir auf 37° C (45). Das Blutangebot an die Vorhoftrichter muß aus meßtechnischen Gründen konstant (s. S. 483) und etwas größer sein als die maximale Förderleistung der betreffenden Herzkammer. Die Apparatur ist gebaut für ein maximales Minutenvolumen jedes Ventrikels von 500 ml. Jedem Vorhoftrichter werden 550 ml Blut pro Minute zugeführt. Dann fließt auch bei einem Minutenvolumen des betreffenden Ventrikels von 500 ml ein genügend großer Teil des Blutes durch die Überlaufleitungen 2, und es bildet sich ein eindeutiges Blutniveau im Vorhoftrichter V. Dies erlaubt die genaue Messung der Zuflußhöhe und verhindert das Leerlaufen der Trichter. Das konstante Angebot wird den Vorhoftrichtern aus dem Niveaugefäß N zugeführt. Auch diesem Gefäß muß etwas mehr Blut zufließen, als die beiden Leitungen 6 zu den Vorhoftrichtern aufnehmen, um ein konstantes Blutniveau zu garantieren. Ein Minutenvolumen der Pumpe von 1200 ml erfüllt diesen Zweck. Diese Leistung muß möglichst konstant sein, da bei einer auch nur kurzdauernden Minderleistung die kleinen Niveaugefäße (N, V) sich entleeren würden.

Dort, wo die arteriellen Kreisläufe 3 in das Reservoir R münden, wird ihr Minutenvolumen gemessen (siehe z. B. M 2 in Abb. 1). Für den rechten Kreislauf entspricht der gemessene Wert dem Minutenvolumen des rechten Ventrikels; beim linken Kreislauf muß zu dem so gemessenen Wert noch das coronare Minutenvolumen dazugezählt werden, um das Minutenvolumen des linken Ventrikels zu erhalten. Die Messung des Coronardurchflusses geschieht folgendermaßen: Es seien A' das konstante Minutenvolumen, das dem linken Vorhoftrichter zufließt, B' das Minutenvolumen, das dem linken Vorhof zuströmt, C' die restliche Blutmenge, die den Vorhoftrichter durch die Überlaufleitung 2 verläßt, D' das am Ende des linken Kreislaufes gemessene Minutenvolumen und E' der gesuchte coronare Durchfluß. A, B, C, D, E seien die entsprechenden auf der rechten Seite gemessenen Werte. Dann finden wir das dem linken Ventrikel zusließende Minutenvolumen

$$B' = A' - C'$$
.

A' ist konstant und gemessen, C' erfassen wir, indem wir das Überlaufblut aus den Vorhoftrichtern vor der Einmündung in das Reservoir R messen. Dann ist das coronare Minutenvolumen

$$E' = (A' - C') - D' = B' - D'$$

Entsprechend gilt auf der rechten Seite

$$E = D - B$$
.

Die Richtigkeit der Messung kann kontrolliert werden durch die Beziehung

$$E = E'$$
.

d. h. der coronare Einstrom links muß gleich groß sein wie der coronare Ausfluß rechts.

Diese Meßmethode entspricht grundsätzlich dem Vorgehen von Bohr (9), der den Coronardurchfluß aus der Differenz der Minutenvolumina in der A. pulmonalis und in der Aorta bestimmte. Wir mußten die Methode deshalb etwas modifizieren, weil in unserer Anordnung die Fördervolumina der beiden Ventrikel voneinander unabhängig sind. Nicht erfaßt wird dabei derjenige Teil des Coronarblutes, der durch Thebesische Gefäße in den linken Ventrikel fließt, Sind coronarer, großer und kleiner Kreislauf funktionell gekoppelt, entleert sich nur ein geringer Bruchteil des totalen Coronardurchflusses in den linken Ventrikel (7, 36, 37, 39, 53). Da wir aber fordern, daß die Arbeitsbedingungen der beiden Herzhälften unabhängig voneinander wählbar sein sollen, sei hier erwähnt, daß verschiedene Autoren unter abnormen Bedingungen recht große Abweichungen von der normalen Verteilung des Coronardurchflusses feststellten (36, 66 u. a.). Ein großer Vorteil unserer Meßmethode besteht darin, daß der Sinus coronarius nicht kanüliert werden muß. Abgesehen davon, daß die Kanülierung einen störenden Eingriff in die Coronardurchblutung darstellt, ist man sich in der Literatur nicht darüber einig, ob die Morawitz-Kanüle (54) überhaupt für die quantitative Beurteilung des Coronardurchflusses geeignet sei (2, 25, 37, 52, 54).

Wir verzichten auch auf die Onkometrie des Herzens (32, 30), nicht so sehr wegen der dieser Methode anhaftenden Mängel (59, 67), sondern weil mit dem Onkometer Volumschwankungen des linken Ventrikels nicht von solchen des rechten unterschieden werden können (39).

C. Konstruktion der Einzelteile

Der Oxygenator: Der Ersatz des Lungenkreislaufes durch einen künstlichen Kreislauf erfordert künstliche Oxygenierung des Hämoglobins. Das schwierigste Problem bei der Konstruktion eines Oxygenators ist die gleichmäßige Verteilung des Blutes über eine große Fläche, ohne daß sich Blasen bilden. Wie schon Staub (63) ausführte, werden diejenigen Oxygenatoren dieser Forderung nicht gerecht, die das Blut durch Abschleudern von einer sich drehenden Scheibe auf eine Fläche verteilen, es sei denn, das Blut aus dem Oxygenator werde in einem sehr großen Reservoir gesammelt, wo die Blasen Zeit haben, sich abzuscheiden. Diese Typen und alle andern (5, 13, 18, 33, 63), die das «tote Volumen» der Apparatur wesentlich vergrößert hätten, konnten nicht verwendet werden

In Staubs Durchströmungsapparatur (63) wird bei einem Totalinhalt von ca. 4 Litern Blut ein Minutenvolumen von 2 Litern über den Oxygenator gepumpt. Von diesem Minutenvolumen werden 500 ml dem Organ angeboten, der Rest in einem Seitenschluß erneut über den Oxygenator gefördert. Wird diese Seitenschlußanordnung gedanklich weitergeführt, so ist einzusehen, daß innerhalb gewisser Grenzen ein Oxygenator

um so wirksamer ist, je größer das Verhältnis «über den Oxygenator gefördertes Minutenvolumen» zu «totales Blutvolumen der Apparatur» ist. Auf Grund dieser Überlegung haben wir einen neuartigen Oxygenator konstruiert: Da aus anderen Gründen (s. S. 476) die Pumpe 1200 ml Blut pro Minute über den Oxygenator pumpen muß und das gesamte Blutvolumen während eines Experimentes nur ca. 150 ml beträgt, passiert die gesamte Blutmenge jede Minute etwa 8mal den Oxygenator. Dieses kleine «tote Volumen» kann nur erreicht werden, wenn die Niveaugefäße (N, V) einen sehr kleinen Blutinhalt haben. Damit wird aber die Wahrscheinlichkeit sehr klein, daß eine im Oxygenator gebildete Blase sich abscheidet, bevor sie dem Herzen zugeleitet wird. Die Forderung, daß im Oxygenator keine Blasen gebildet werden, erhebt sich damit noch dringender. Staub verzichtete auf das Schleuderrad und überzog die Platten seines Oxygenators mit Voilestoff. Dadurch wurde das Blut besser verteilt und die Strömung verlangsamt. Wir sind in dieser Richtung noch einen Schritt weiter gegangen und haben einen Oxygenator

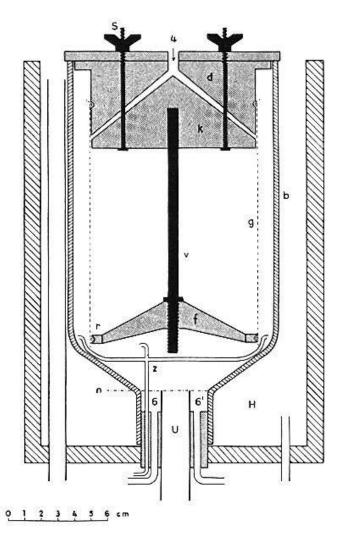


Abb. 3. Der Oxygenator. Beschreibung im Text (s. S. 477 ff. und S. 485).

gebaut, der ohne Platten arbeitet (s. Abb. 3, aus der auch die Abmessungen ersichtlich sind):

Das Gerät besteht aus dem Behälter b, dem Deckel d und dem Einsatzkörper, der sich aus dem Kopfstück k, dem Fußstück f und der ${
m Verbindungs}$ strebe v zusammensetzt. Der Behälter ist eine umgekehrte 1000-ml-Flasche aus Pyrexglas. Deckel, Kopfstück und das Fußstück mit dem Ring r sind aus «Araldit-Gießharz B» (Ciba)² gedreht, einem gießbaren, biologisch indifferenten Kunstharz, das spanabhebend bearbeitet werden kann. Das Blut gelangt aus der Steigleitung 4 durch eine zentrale Bohrung in den Deckel d. Die Bohrung erweitert sich nach unten in einen Hohlkegel, in den das Kopfstück k paßt, so daß ein sich nach unten und außen verengernder Schlitz entsteht. Dessen Weite kann durch drei Verbindungsschrauben s, an denen das Kopfstück k am Deckel d aufgehängt ist, variiert werden. Das Fußstück f trägt den Ring r, der außen mit einer Rille versehen ist. Eine gleiche Rille findet sich im Deckel d. Zwischen diesen beiden Rillen kann ein Gewebe g mit Hilfe zweier Klemmringe eingespannt werden. Wir verwenden dazu ein Stück eines nahtlosen Nylonstrumpfes. Die Spannung des Gewebes wird an einem Gewinde der Verbindungsstrebe v reguliert. Das Blut fließt durch den Schlitz zwischen Deckel d und Kopfstück k. Dieser Schlitz wird so eingestellt, daß sich an seiner Zirkumferenz eben ein geschlossener Blutring zwischen Deckel und Kopfstück bildet. Dadurch wird das Blut in regelmäßiger Schicht über das Gewebe g verteilt und fließt über dieses in das Niveaugefäß N im Boden des Oxygenators. Durch die Zufuhrdüsen z wird auf beide Seiten des Oxygenator-Gewebes ein vorgewärmtes, befeuchtetes Gemisch von 95% O₂ + 5% CO₂ im Überschuß eingeleitet. Da der Deckel d den Behälter b praktisch luftdicht abschließt, entweicht der Gasüberschuß nach unten durch das 2 cm weite und 56 cm lange Überlaufrohr U. Durch dieses Rohr fließt auch das Blut, das von den Leitungen 6 und 6' nicht aufgenommen wird, in dünner Schicht in das Hauptreservoir R (s. auch Abb. 1). Dadurch wird dieses Überlaufrohr ebenfalls in das oxygenierende System einbezogen.

Wir mischen vorläufig dem Sauerstoff CO₂ zu, um Hypokapnie des Blutes zu vermeiden (39, 62). Allerdings scheint die Diskussion über die Wirkung von CO₂ auf das Herz noch nicht abgeschlossen (31, 39, 46, 61, 62). Die geringe, für uns ungünstige Verschiebung der Dissoziationskurve des Hämoglobins durch den CO₂-Zusatz nehmen wir in Kauf (4, 5). In leicht modifizierter Form kann der Oxygenator auch zur Messung des Sauerstoffverbrauches («external method») verwendet werden.

² Wir danken der Firma Ciba AG. Basel für das zur Verfügung gestellte «Araldit».

Den Hauptvorteil des Gerätes erblicken wir darin, daß das Blut auf einem relativ weitmaschigen Gewebe verteilt wird, das frei im Sauerstoff ausgespannt ist. Dadurch wird die Blutschicht von zwei Seiten her oxygeniert. Man erreicht so die gleiche Leistung bei dickerer Blutschicht und kleinerer Oberfläche. Die «funktionelle Oberfläche» des Gerätes beträgt nur etwas über 0,1 m² (über die Leistung des Oxygenators s. S. 485).

Die Vorhoftrichter: Aus Abb. 1 und 2 ist die allgemeine Anordnung der beiden Vorhoftrichter ersichtlich; Abb. 4 zeigt den maßgetreuen Längsschnitt durch den linken Trichter.

Die Glasröhre 6 ist starr mit dem Boden des Oxygenatorbehälters verbunden und führt dem Vorhoftrichter das Blut in konstantem Strom aus dem Niveaugefäß N zu. Um die Geschwindigkeit des Blutstrahls zu verringern, wird er gegen die Wand des weiten Glasrohres 7 gerichtet und darauf verteilt. Dieses Glasrohr ist über die Gewindestange G starr

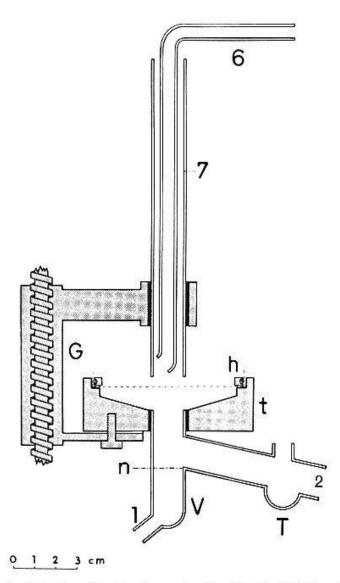


Abb. 4. Vorhoftrichter. Beschreibung im Text (s. S. 480ff. und S. 484).

verbunden mit dem eigentlichen Vorhoftrichter V. Die Leitung 6 taucht also je nach Höheneinstellung des Trichters mehr oder weniger tief in das Glasrohr 7 ein. Der Vorhoftrichter besteht aus dem Niveaugefäß V, auf das der Filterträger t (aus "Araldit") aufgesetzt ist. Dieser trägt den Filterring h, der mit einem filtrierenden Gewebe bespannt wird. Das Blut wird vom Rohr 7 auf das Filtergewebe verteilt, gelangt in das Niveaugefäß V und von dort durch die Vorhofleitung I in das Herz. Die vom Herzen nicht weggeschöpfte Blutmenge fließt über die Überlaufleitung I in das Reservoir I0 und wird dort gemessen. In der Ausbuchtung I1 wird die Bluttemperatur gemessen. Die ganze Vorrichtung kann über das Gewinde I2 leicht in der Höheneinstellung variiert werden. Als Zuflußhöhe bezeichnen wir den senkrechten Abstand des Niveaus I2 vom Vorhof.

Wir haben aus folgenden Gründen die relativ komplizierte Anordnung gebaut: Die Fragestellung verlangt (siehe sub A 3 und S. 476) eine hohe Pumpenleistung mit entsprechenden Strömungsgeschwindigkeiten in den Leitungen, das verwendete Tiermaterial anderseits ein möglichst kleines «totes Volumen». Dies zwang uns, möglichst kleine Niveaugefäße zu konstruieren. Da bei so hohen Strömungsgeschwindigkeiten die Bildung von Blasen nicht völlig vermieden werden kann, besteht die Gefahr von Luft-

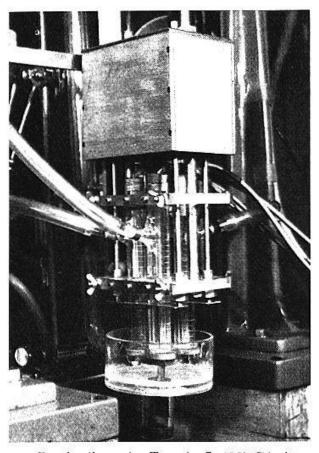


Abb. 5. Das Meßsystem. Beschreibung im Text (s. S. 482). Die dünnen Schläuche rechts oben führen von den Drucksonden zu den Registrierkapseln. Oben (verschalt) der elektromagnetische Verschlußmechanismus für die Schließplatten (unten). Unter dem Meßsystem das Reservoir R (vgl. Abb. 1).

embolien. Besonders Blasen von unter 0,5 mm Durchmesser, die im Blut äußerst stabil sind, gefährden das Herz. Sie sollen durch das Filtergewebe über den Vorhoftrichtern künstlich abgeschieden werden. Wir verwenden dazu ein sogenanntes Beuteltuch (Typ 12xxx der Firma «Schweiz, Seidengaze-Fabrik», Zürich). Es handelt sich um ein Präzisionsgewebe aus sehr feinen Seidenfäden. Die quadratischen Maschen haben im Trockenzustand Durchmesser von 0,05, mit Blut befeuchtet von ca. 0,03 mm. Durch eine Fläche von 25 cm² dieses Gewebes läßt sich leicht ein Minutenvolumen von 800 ml Blut filtrieren, ohne daß sich Blut über dem Filter ansammelt.

Das Meßsystem, mit dem wir die Minutenvolumina der arteriellen Kreisläufe und der Überlaufleitungen der Vorhoftrichter messen, besteht aus vier Meßelementen, die ähnlich gebaut sind wie die von Bucher und Hürlimann (11) angegebene Vorrichtung: das Blut strömt in ein senkrecht stehendes Glasrohr von 16 mm Durchmesser (z. B. M 1 in Abb. 1). Dieses wird an seinem unteren Ende periodisch geöffnet und verschlossen. Die während einer Verschlußzeit erreichte Höhe der Blutsäule ist proportional dem Stromvolumen. In das Glasrohr taucht bis an sein unteres Ende eine Drucksonde (z. B. 9 in Abb. 1) in Form eines 3 mm weiten Glasröhrchens. Dieses überträgt den hydrostatischen Druck der Blutsäule auf eine Membran, deren Ausschläge registriert werden. Vier solche Meßrohre sind in kompakter Anordnung über dem Reservoir R angebracht (s. Abb. 5).

Der Verschlußmechanismus, der in Abb. 1 schematisch angedeutet ist 8, wird elektromagnetisch so betätigt, daß abwechslungsweise zwei Meßrohre geöffnet und zwei geschlossen sind. Die Verschluß- bzw. Öffnungszeit beträgt 1 Sekunde. Die Meßvorrichtung entzieht dem Kreislauf dauernd ein bestimmtes Blutvolumen, das dem «toten Volumen» zuzurechnen ist. Um den Verlust unter allen Betriebsbedingungen möglichst klein zu halten, muß der Verschlußmechanismus so geschaltet werden, daß gleichzeitig ein arterielles und ein Überlauf-Meßrohr einer Herzseite geschlossen bzw. geöffnet sind. Dann wird dem Kreislauf immer nur so viel Blut entzogen, wie pro Sekunde einem Vorhoftrichter zuströmt, nämlich ca. 9 ml.

Übrige Bestandteile (Abb. 1): Die Forderung nach möglichst kleinem «totem Volumen» eröffnet für die Konstruktion von Pumpe, Reservoirs und Leistungen schwierige Probleme. Die Blutmenge im Reservoir R konnte auf ca. 30 ml beschränkt werden. Um Deformationen des Flüssigkeitsspiegels beim Ansaugen der Pumpe zu vermeiden, wurde einerseits die Form des Ansaugstutzens der Steigleitung 4 und des Reservoirs R entsprechend gewählt, anderseits der einzelne Pumpenhub klein gehalten und die geforderte Leistung durch hohe Pumpenfrequenz erreicht. Wir verwenden zwei Dale-Schuster-Pumpen (15), die zwei in einer Gabelung der Steigleitung 4 eingeschaltete, dünnwandige Gummischläuche F mit einer Frequenz von 250 pro Minute abwechselnd leicht komprimieren. Der kleine Einzelhub von 2,4 ml erfordert bei dieser Frequenz leichtspielende Ventile 5, die bei geringer Trägheit und kleinem Druckverlust gut dichten. Das von A. Müller als «Typ Kl_r» angegebene Ventil (55)

erfüllt unsere Anforderungen weitaus am besten. Die Ventile sind in unserer Apparatur allerdings nicht aus Metall, sondern aus Kunststoff verfertigt.

Durch den schonenden Fördermechanismus (10), die leichten Ventile und die Bauart des Oxygenators sollen die Blutzellen möglichst wenig lädiert werden. Wir berücksichtigen damit die in der Literatur immer wieder geäußerte Ansicht, wonach durch mechanische Beanspruchung des Blutes vasotoxische Substanzen frei werden (z. B. 65; die ältere Literatur ist bei Zipf [68] angegeben).

Für die Kanülierung des Herzens verwenden wir möglichst weite Glaskanülen mit Seitenstutzen für die Druckmessung. Die arteriellen Drucke werden mit Quecksilber-, die Vorhofdrucke mit Wassermanometern gemessen. Die arteriellen Kreisläufe haben eine Weite von 0,8 cm und bis zum künstlichen Widerstandsregulator W eine Länge von ca. 10 cm. Die Zuleitungen zu den Vorhöfen I haben Durchmesser von 0,6 cm und sind ca. 35 cm lang. Sämtliche Überlaufleitungen haben Durchmesser von mindestens 1,8 cm. In ihnen darf das Blut nur eine Seite des Rohres benetzen, da sich sonst grober Schaum bildet. Sämtliche Leitungen und Reservoirs (außer den Teilen aus Gummi) sind silikoniert. Die Bildung von Schaum wird dadurch stark vermindert; die Durchflüsse werden etwas erhöht. Wir verwenden das Präparat G.E. Dri-Film SC 87 (früher als G.E. 9987 bezeichnet). Über die Technik der Silikonierung siehe Lit. 35.

Das Herz wird nach Herausnahme aus dem Tier in einer feuchten Kammer gelagert, die zur Erwärmung an das allgemeine Heizsystem angeschlossen ist. Das dauernde Berieseln des Herzens mit Kochsalzlösung hat sich bei uns nicht bewährt (ödematöse Veränderungen).

D. Prüfung der Apparatur

Hämolyse war nie in störendem Maße feststellbar. Der höchste gemessene Hb.-Gehalt im Serum bei fünfstündigem Betrieb betrug 4% (nach Sahli). Die Wasserverdunstung ist unbedeutend, so daß die Blutviskosität und damit die relativen Durchflüsse durch die Leitungen konstant bleiben. Die Pumpleistung schwankt bei einem Minutenvolumen von 1200 ml um ca. 40 ml. Diese Genauigkeit reicht aus, um ein Leerlaufen der Niveaugefäße zu verhindern. Der Zufluß zu den Vorhoftrichtern, dessen Konstanz Voraussetzung der genauen Messung des Coronardurchflusses ist, schwankt um 2%3. Das Meßsystem mißt mit

³ Da der Coronardurchfluß durch Differenzbildung aus diesem Durchfluß berechnet wird, muß sich diese Fehlerbreite bei kleinem Coronardurchfluß stärker auswirken als bei großem (s. S. 476).

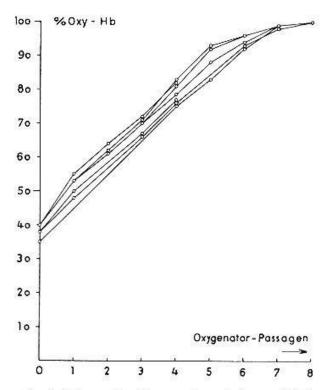


Abb. 6. Bestimmung der Leistung des Oxygenators bei verschiedenen Pumpenleistungen zwischen 500 und 1500 ml/min: 200 ml venöses Katzenblut, entsprechend einem Hb.-Gehalt von 16 g/100 ml (nach Sahli) wurden über den Oxygenator gepumpt. Nach einer oder mehreren Passagen wurde die Zunahme der Sauerstoffsättigung gemessen. Auf der Abszisse ist die Anzahl der Passagen, auf der Ordinate die Sauerstoffsättigung des Hb. aufgetragen. Berechnung der Leistung im Text (s. S. 485)⁴.

einer Genauigkeit von ±5% in einem Bereich zwischen 70 und 700 ml pro Minute. Die Bluttemperatur kann auf 37±0,6° C gehalten werden. Die wichtigste Forderung für das isolierte Herz ist die Vermeidung von Coronarembolien. Die Filtrierung des Blutes über den Vorhoftrichtern erwies sich in dieser Beziehung als entscheidende Maßnahme.

Ohne Filtereinsätze überlebte kein Präparat mehr als 30 Minuten. Die Wirksamkeit der Filter gegenüber Luftblasen haben wir so geprüft, daß wir dem Vorhoftrichter Blut mit künstlich erzeugten feinen Blasen zuführten. An Stelle des Herzens wurde ein umgekehrtes, am Scheitel stark erweitertes U-Rohr an die Vorhofleitung angeschlossen. In diesem fließt das Blut sehr langsam, kleine Blasen steigen in den Scheitel auf und können dort mit der Lupe nachgewiesen werden. Das Rohr muß auf konstanter Temperatur gehalten werden, damit sich nicht aus physikalischen Gründen Bläschen bilden oder auflösen.

Die in der Literatur beschriebenen gelatinösen Massen (17 u. a.) haben auch wir bei Zugabe von Frischblut in die Apparatur gelegentlich beobachtet. Sie erzeugen in kürzester Zeit Herzstillstand, wenn kein Filter eingesetzt ist. Unser Filtergewebe fängt diese Massen offenbar zuverlässig ab. Es wird dann allerdings rasch undurchlässig. Die Filter können jedoch in wenigen Sekunden ohne Abstellen der Blutzufuhr zum Herzen ausgewechselt werden. Die Wirksamkeit der Filter in bezug auf korpuskuläre Emboli haben wir durch Zugabe von (durch Kaninchenserum) agglutiniertem Katzenblut ge-

⁴ Die Sättigungsbestimmungen wurden von Herrn Dr. D. v. Capeller ausgeführt, wofür wir ihm an dieser Stelle unseren besten Dank aussprechen.

prüft. Das Herz überstand den Eingriff, während ohne Filter unter diesen Umständen rasch Herzstillstand eintritt.

Über die Leistungsfähigkeit des Oxygenators gibt Abb. 6 Auskunft. Unter der Annahme, daß 1 g Hb. zu seiner Sättigung 1,34 ml Sauerstoff benötigt (4), kann aus Abb. 6 errechnet werden, daß in einem Sättigungsbereich zwischen ca. 35% und 95% bei jeder Passage über den Oxygenator 2 ml Sauerstoff pro 100 ml Blut aufgenommen werden. Bei Pumpenleistungen zwischen 500 und 1500 ml pro Minute ist dieser Wert praktisch konstant. Bei der von uns benötigten Pumpenleistung von 1200 ml pro Minute könnte das Blut also ca. 24 ml Sauerstoff pro Minute aufnehmen.

Der Oxygenator leistet also unter diesen Bedingungen ungefähr gleich viel wie die von Bayliss u. Mitarb. und von Staub beschriebenen Typen (5, 63). Ist das Organ ein durchströmtes, arbeitendes Katzenherz, wird diese Leistung nicht benötigt. Wir haben den Oxygenator deshalb überdimensioniert, weil er auch für die Durchströmung von Ganztieren (Katzen) mit künstlichem rechtem Kreislauf verwendet werden soll. Auch dann ist die Sättigung des Blutes genügend (90%). In unseren Experimenten schwankte die Sauerstoffsättigung zwischen 96% und 98% (photometrisch gemessen mit dem «Haemoreflector» nach Brinkmann [69]). Dabei stellten auch wir fest, daß die Farbe des Blutes im auffallenden Lichte nicht eine einfache Funktion der Hb.-Sättigung ist (48).

E. Die Operation

Wir benötigen eine Katze im Gewicht von ca. 2,5 kg als Spendertier. Sie erhält 500 E Heparin i.v. pro kg Körpergewicht⁵ und wird in Äthernarkose entblutet. In Übereinstimmung mit anderen Autoren (3, 17, 20 u. a.) haben wir festgestellt, daß ausreichende Filtrierung des Blutes für das isolierte Herz von viel elementarerer Bedeutung ist als für das HLP. Wir filtrieren nach dem Entbluten und vor Gebrauch das Blut mehrmals durch gepreßte Glaswolle und Beuteltuch. Nach Angaben anderer Autoren enthält Blut (auch Heparinblut) vasokonstringierende Substanzen, die im isolierten Herzen Coronarverschluß verursachen, im HLP hingegen ohne Effekt sind (3, 7, 8, 17, 20, 30, 41, 53). Die Autoren durchströmen deshalb vor Verwendung des Blutes mit diesem die Lunge eines Spendertieres oder betreiben vor der vollständigen Isolierung des Herzens das Präparat mindestens 30 Minuten als HLP. Wir haben uns bis jetzt an unserer Apparatur zu keiner dieser Maßnahmen veranlaßt gesehen.

Das Operationstier erhält die gleiche Menge Heparin wie das Spendertier. Wir nehmen die Isolierung des Herzens in Pentothalnarkose vor (40 mg/kg i.m.). Meist stellen wir zuerst ein HLP her. Da die Katze in

⁵ Wir danken der Firma Hoffmann-La Roche AG. Basel für das zur Verfügung gestellte «Liquemin».

mancher Beziehung dem Kaninchen anatomisch ähnlicher ist als dem Hund, folgen wir dabei in der Hauptsache dem Vorgehen, das Staub und Bucher (64) für das Kaninchen angegeben haben. Das HLP wird zunächst in situ belassen. Die Thoraxwand wird nun abgetragen, die linke Lungenwurzel abgebunden und der linke Vorhof durch das Herzohr kanüliert. Nachdem der Zufluß zum linken Vorhof freigegeben worden ist, wird die A. pulmonalis kanüliert und die vorher gelegte Fadenschlinge um die rechte Lungenwurzel zugezogen. Dann werden beide Lungen abgetragen. Alle Kanülen werden an Kanülenhaltern fixiert. Die Lage des Herzens wird für die Entfernung aus dem Thorax nicht verändert, sondern während der fortschreitenden Präparation der Herzhinterwand in kranialer Richtung wird durch eine Hilfsperson das Operationsbrett kontinuierlich gesenkt, bis der Tierkörper unter dem Herzen weggeschoben werden kann. An Stelle des Thorax wird dann die feuchte Kammer montiert. Während wir die Operationszeit bis zum HLP möglichst kurz halten (64), lassen wir bei der folgenden Isolierung des Herzens dem Organ nach jedem größeren Operationsschritt einige Minuten Zeit, sich den veränderten Bedingungen anzupassen (41). Die Leitungen zu den Manometern werden möglichst frühzeitig angeschlossen, um abnorme Druckbedingungen für das Herz erkennen und vermeiden zu können. Eine andere Art des Vorgehens bei der Operation haben Katz u. Mitarb. angegeben (41).

Nach jedem Versuch wird die Apparatur mit Kochsalzlösung durchströmt, dann zerlegt und mit einem Netzmittel gereinigt. Sterilisation vor Gebrauch (20, 58) hat sich als unnötig erwiesen. Der Oxygenator erfordert keine spezielle Reinigung. Die rigorosen Reinigungsverfahren, die bei Plattenoxygenatoren Voraussetzung der Benetzbarkeit sind (5 u. a.), sind unnötig. Der Kontakt des Blutes mit Metallteilen, die wegen toxischen Wirkungen gelegentlich speziell präpariert werden mußten (6), wurde in unserer Anordnung vollständig vermieden.

F. Die Apparaturen in der Literatur

Keine der uns bekannten, in der Literatur beschriebenen Apparaturen, in denen das vollständig isolierte Herz Arbeit leistet, konnte für unseren Zweck Verwendung finden (vgl. A 1–5 und Lit. 11, 12, 34, 60). In der unseres Wissens ältesten Apparatur dieser Art von De Burgh Daly und Thorpe (16, 17) fördert der linke Ventrikel aus eigener Kraft das Blut über den Oxygenator, so daß der Aortendruck nicht unter ein zur Überwindung dieser Höhendifferenz notwendiges Minimum gesenkt werden kann. Die Evanssche Apparatur wurde für Stoffwechselstudien am isolierten Herzen gebaut. Auch die Evanssche Schule erstrebte – aus an-

deren Gründen als wir - ein möglichst kleines «totes Volumen». In der letzten beschriebenen Modifikation dieser Apparatur (1939) gelang es den Autoren, die für das Hundeherz konstruierte Anordnung mit nur 200 ml Blut zu betreiben (8, 14, 19-23, 26, 29). In allen Modifikationen der Evansschen Apparatur werden die Vorhöfe durch ein gemeinsames venöses Reservoir mit Blut versorgt; die Verteilung zwischen linkem und rechtem Vorhof wird durch Hahnen reguliert. Dabei ist zwar das Blutangebot an das Herz «frei», jedoch kann der Coronardurchfluß nur bei abgestelltem Zufluß zum rechten Herzen gemessen werden. Der rechte Ventrikel fördert dann nur das Coronarblut, und das Minutenvolumen der A. pulmonalis entspricht dem Coronardurchfluß. Diese Methode der Messung des coronaren Minutenvolumens ist unvereinbar mit den Anforderungen, die wir an unsere Apparatur stellen (vgl. A 4 und Lit. 28). Dasselbe gilt für die Anordnung von Visscher u. Mitarb. (6, 53) und für diejenige von Lorber u. Mitarb. (27, 49, 50, 51). Letztere Autoren haben die Visschersche Apparatur so modifiziert, daß sie nur noch ein «totes Volumen» von 50 ml aufweist. Es ist dies übrigens unseres Wissens die einzige Anordnung, an der mit isolierten Katzenherzen gearbeitet wurde. Katz u. Mitarb. (36-39, 41-44) bearbeiteten am isolierten Hundeherzen Probleme der Herzdynamik und der Coronardurchblutung. In einer Vorstufe wird der sogenannte «double isolated heart circuit» hergestellt, der in seinen Grundzügen der Evansschen Anordnung ähnlich ist. In einem zweiten Schritt wird nun aber die linke arterielle Strombahn direkt dem rechten Vorhof zugeführt, so daß ein geschlossener Kreislauf entsteht (sogenannter «single circuit»). Eine prinzipiell ähnliche, etwas einfachere Anordnung verwendeten auch Bergwall und Rühl (7). Das Angebot an die Vorhöfe wird bewußt in Abhängigkeit von der Förderleistung der gegenüberliegenden Ventrikel gehalten, da die Autoren die Herzdynamik unter Bedingungen, wie sie in vivo bestehen, studieren wollten (Katz [39]). Dann müssen die Fördervolumina beider Ventrikel gleich groß sein. In solchen Präparaten kann nur die Leistung der beiden Ventrikel weitgehend voneinander unabhängig gehalten werden, während in Bezug auf die übrigen Arbeitsgrößen des Herzens die beiden Herzhälften funktionell gekoppelt sind. Die Autoren kommen denn auch zum Schluß, daß zwischen Suffizienzgrad (Leistungsfähigkeit) des linken und des rechten Ventrikels unterschieden werden müsse. In unserer Anordnung hingegen ist das venöse Angebot unabhängig von der Förderleistung der Ventrikel. Diese Bedingung ist zwar «unphysiologisch», ist aber Voraussetzung dafür, daß sämtliche Arbeitsgrößen der linken und der rechten Herzhälfte hämodynamisch weitgehend unabhängig voneinander variiert werden können.

Zusammenfassung

Es wird eine Apparatur beschrieben für Studien am vollständig isolierten, Arbeit leistenden Katzenherzen. Die Zuflußbedingungen zu den beiden Vorhöfen können unabhängig voneinander variiert werden. Das venöse Angebot an beide Herzhälften ist unabhängig von der Förderleistung der Ventrikel, so daß – abgesehen vom Coronarkreislauf – linke und rechte Herzhälfte hämodynamisch voneinander unabhängig sind. Für die Arterialisierung des Blutes wurde ein neuartiger Oxygenator konstruiert. Das Vorgehen bei der Isolierung des Herzens wird dargestellt. Die Apparaturen für Studien am isolierten, arbeitenden Säugetierherzen in der Literatur werden kurz beschrieben.

Die Arbeit wurde auf Anregung und unter Leitung von Herrn Prof. K. Bucher ausgeführt.

Résumé

Description d'un appareillage permettant l'étude du cœur de chat complètement isolé, et fournissant un certain travail. Les conditions d'afflux aux oreillettes peuvent être modifiées indépendamment l'une de l'autre. L'apport de sang veineux aux deux moitiés du cœur n'est pas lié à sa faculté de propulsion sanguine, ce qui permet de considérer la moitié droite comme indépendante au point de vue hémodynamique – sans y inclure le circuit des coronaires, bien entendu. Pour réaliser l'artérialisation du sang, un nouvel appareil oxygénateur a été construit. Puis, l'auteur décrit la manière d'isoler le cœur du chat. Pour terminer, il signale les différents appareils utilisés pour l'étude du cœur isolé et fournissant du travail des mammifères, appareils qui sont décrits dans la littérature.

Riassunto

Viene descritto un apparecchio per studi sull'attività del cuore di gatto completamente isolato. L'afflusso all'orecchietta destra e sinistra può essere variato separatamente. L'afflusso venoso al cuore destro e sinistro è indipendente dall'attività dei ventricoli, per cui, fatta eccezione per le coronarie, cuore destro e sinistro sono, dal punto di vista emodinamico, completamente indipendenti l'uno dall'altro. Per l'arterializzazione del sangue fu costruito un apparecchio speciale. Viene pure indicata la tecnica per isolare il cuore. Breve descrizione degli apparecchi finora impiegati per lo studio dell'attività dei cuori isolati di mammiferi.

Summary

An apparatus is described for study of the completely isolated working cat's heart. The conditions of flow into the two ventricles can be varied independently. The venous supply to the two sides of the heart is independent of the performance of the ventricle, so that, except for the coronary circulation, the left and right halves of the heart are hæmodynamically independent of one another. For the arterialisation of the blood, a new oxygenator has been made. The procedure for isolating the heart is described, and the literature on apparatus for the study of isolated working mammalian hearts is briefly reviewed.

1. Anitschkow, S. W., Trendelenburg, P.: Dtsch. med. Wschr. 54, 1672 (1928). - Anrep, G. V., Blalock, A., und Hammouda, M.: J. Physiol. (Lond.) 67, 87 (1929). 3. Anrep, G. V., und Häusler, H.: J. Physiol. (Lond.) 65, 357 (1928). - 4. Barcroft, J.: Die Atmungsfunktion des Blutes (Übers.). Berlin 1927. – 5. Bayliss, L. E., Fee, A. R., und Ogden, E.: J. Physiol. (Lond.) 66, 443 (1928). - 6. Beland, I. L., Moe, G. K., und Visscher, M. B.: Proc. Soc. exp. Biol. (N.Y.) 39, 145 (1938). - 7. Bergwall, A., und Rühl, A.: Arch. exp. Path. Pharmak. 171, 457 (1933). - 8. Bogue, J. Y., und Gregory, R. A.: Quart. J. exp. Physiol. 29, 105 (1939). - 9. Bohr, C., und Henriques, V.: Skand. Arch. Physiol. 5, 232 (1895). - 10. Bornstein, A., und Gremels, H.: Pflügers Arch. 220, 466 (1928). - 11. Bucher, K., und Hürlimann, A.: I. Mitt. Helv. physiol. pharmacol. Acta 8, 317 (1950). - 12. Bucher, K., und Schär, M.: Experientia 8, 434 (1952). -13. Burn, J. H., und Dale, H. H.: J. Physiol. (Lond.) 61, 185 (1926). - 14. Braun-Menendez, E., Chute, A. L., und Gregory, R. A.: Quart. J. exp. Physiol. 29, 91 (1939). - 15. Dale, H. H., und Schuster, E. J. H.: J. Physiol. (Lond.) 64, 356 (1928). - 16. Daly De Burgh, I. B.: J. Physiol. (Lond.) 63, 81 (1927). - 17. Daly De Burgh, I. B., und Thorpe, W. V.: J. Physiol. (Lond.). 79, 199 (1933). - 18. Drinker, K., und Lund, C.: Amer. J. Physiol. 62, 1 (1922). - 19. Evans, C. L., Bogue, J. Y., und Gregory, R. A.: Quart. J. exp. Physiol. 29, 83 (1939). - 20. Evans, C. L., Grande, F., Hsu, F. Y.: Quart. J. exp. Physiol. 24, 283 (1935). - 21. Evans, C. L., Grande, F., und Hsu, F. Y.: Quart. J. exp. Physiol. 24, 347 (1935). - 22. Evans, C. L., Grande, F., Hsu, F. Y., Lee, D. H. K., und Mulder, A. G.: Quart. J. exp. Physiol. 24, 365 (1935). - 23. Evans, C. L., und Gregory, R. A.: Quart. J. exp. Physiol. 27, 27 (1938). - 24. Evans, C. L., und Ogawa, S.: J. Physiol. (Lond.) 49, IX (1915). - 25. Evans, C. L., und Starling, E. H.: J. Physiol. (Lond.) 46, 413 (1913). - 26. Evans, C. L.: Rec. Adv. Physiol. p. 156 (1939). - 27. Evans, G. T., und Lorber, V.: Proc. Soc. exp. Biol. (N.Y.) 54, 1 (1943). -28. Gregg, D. E., Pritschard, W. H., Shipley, R. E., und Wearn, J. T.: Amer. J. Physiol. 139, 726 (1943). - 29. Gregory, R. A., Bogue, J. Y., und Chang, I.: Quart. J. exp. Physiol. 27, 319 (1938). - 30. Hemingway, A., und Fee, A. R.: J. Physiol. (Lond.) 63, 299 (1927). - 31. Henderson, Y.: Adventures in Respiration. Baltimore 1938. - 32. Henderson, Y.: Amer. J. Physiol. 16, 325 (1906). - 33. Hooker, D. R.: Amer. J. Physiol. 38, 200 (1915). - 34. Hürlimann, A., und Bucher, K.: II. Mitt. Verh. dtsch. Ges. Kreisl.-Forsch. - 178 (1951). - 35. Jaques, L. B., Fidlar, E., Feldsted, E. T., und MacDonald, A. G.: Fed. Proc. 5, 52 (1946). - 36. Katz, L. N., Jochim, K., und Bohning, A.: Amer. J. Physiol. 122, 236 (1938). - 37. Katz, L. N., Jochim, K., und Weinstein, W.: Amer. J. Physiol. 122, 252 (1938). - 38. Katz, L. N., und Mendlowitz, M.: J. Physiol. (Lond.) 92, 2 P (1938). - 39. Katz, L. N., und Mendlowitz, M.: Amer. J. Physiol. 122, 262 (1938). -40. Katz, L. N., und Wiggers, C. J.: Amer. J. Physiol. 82, 91 (1927). -41. Katz, L. N., Wise, W., und Jochim, K.: Amer. J. Physiol. 143, 463 (1945). - 42. Katz, L. N., Wise, W., und Jochim, K.: Amer. J. Physiol. 143, 479 (1945). - 43. Katz, L. N., Wise, W., und Jochim, K.; Amer. J. Physiol. 143, 495 (1945). - 44. Katz, L. N., Wise, W., und Jochim, K.: Amer. J. Physiol. 143, 507 (1945). - 45. Knowlton, F. P., and Starling, E. H.: J. Physiol. (Lond.) 44, 206 (1912). - 46. Kozawa, S.: J. Physiol. (Lond.) 49, 233 (1915). - 47. Krayer, O.: Arch. exp. Path. Pharmak. 162, 1 (1931). - 48. Krogh, A.: J. Physiol. (Lond.) 49, XXXII (1915). – 49. Lorber, V.: Amer. Heart J. 23, 37 (1942). –

50. Lorber, V., Lifson, N., Wood, H. G., und Barcroft, J.: Amer. J. Physiol. 145, 557 (1945). - 51. Lorber, V., und Olsen, N. S.: Proc. Soc. exp. Biol. (N.Y.) 61, 227 (1946). - Markwalder, J., und Starling, E. H.: J. Physiol. (Lond.) 47, 277 (1913). – 53. Moe. G. K., und Visscher, M. B.: Amer. J. Physiol. 125, 461 (1939). – 54. Morawitz, P., und Zahn, A.: Zbl. Physiol. 26, 456 (1912). - 55. Müller, A.: Helv. physiol. pharmacol. Acta 8, 409 (1950). - 56. Opdyke, D. F., Duomarco, J., Dillon, W. H., Schreiber, H., Little, R. C., und Seely, R. D.: Amer. J. Physiol. 154, 258 (1948). - 57. Patterson, S. W., und Starling, E. H.: J. Physiol. (Lond.) 48, 357 (1914). - 58. Rühl, A.: Arch. exp. Path. Pharmak. 172, 568 (1933). - 59. Rushmer, R. F., und Krystal, D. K.: Circulation (N.Y.) 4, 211 (1951). - 60. Schär, M.: Arch. int. Pharmacodyn. 93, 357 (1953). - 61. Starling, E. H., und Jerusalem, E.: J. Physiol. (Lond.) 40, 279 (1910). - 62. Starling, E. H., und Visscher, M. B.: J. Physiol. (Lond.) 62, 243 (1926). - 63. Staub, H.: Arch, exp. Path. Pharmak. 162, 420 (1931). - 64. Staub, H., und Bucher, K.: Helv. med. Acta 8, Heft 6, Suppl. VII, 64 (1941). - 65. Volkow, B.: Acta physiol. scand. 27, 118 (1952). - 66. Wearn, J. T.: Exp. Med. Surg. 47, 293 (1928). - 67. Wiggers, C. J., und Werle, J. M.: Amer. J. Physiol. 136, 421 (1941). - 68. Zipf, K.: Arch. exp. Path. Pharmak. 160, 579 (1938). - 69. Ziylstra, W. G.: Fundamentals and Applications of Clinical Oxymetry, Assen (Holland) 1951.