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REVUE DE THEOLOGIE ET DE PHILOSOPHIE, 129 (1997), P. 225-240

DE QUOI LES MATHÉMATIQUES TRAITENT-ELLES? *

André Delessert

Résumé

Les théorèmes de complétude et d'incomplétude de Godei forment un tout.
Ils éclairent la nature très complexe des êtres mathématiques, même de ceux
qui passent pour élémentaires. L'image des mathématiques qui en résulte

présente une analogie surprenante avec celle que dressait le philosophe
Proclus au cinquième siècle de notre ère.

Préambule

Il n'existe pas de nom simple et commun pour désigner le domaine propre
des mathématiques. Existe-t-il même un tel domaine? Ou bien les mathématiques

ne sont-elles qu'un outil à usage variable, un langage au service des

autres sciences et des techniques? Un essai de réponse a été donné par le

philosophe et théologien Jean Duns Scot (- 1266 - 1308) : les mathématiques
seraient la «science des relations» '. Certains estiment aujourd'hui encore que
cette définition est bonne. On peut toutefois se demander de quelles relations
elles traitent, ne serait-ce que pour distinguer le mathématicien du sociologue.
Après quoi il faudrait encore préciser la nature de ces relations. Sont-elles
réelles ou simplement rationnelles? Enfin la même question se poserait pour
les objets - nombre, triangle, sphère - entrant dans ces relations.

Chose remarquable, les réponses les plus claires à notre question ont été

données dans l'Antiquité grecque déjà. Elles sont de trois types. La conception
platonicienne voit d'abord dans les êtres mathématiques des Idées, des Formes

ou des Causes éternelles. Les mathématiciens en manipulent des images
dégradées avec l'intention d'entrevoir les principes dont elles découlent. Pour

Aristote, les êtres mathématiques sont obtenus par abstraction à partir des

impressions sensibles. Enfin l'attitude que je qualifierai d'eudoxienne est celle
du mathématicien qui ne s'embarrasse pas de telles ratiocinations et se contente

Conférence présentée devant le groupe neuchâtelois de la Société romande de

philosophie le 21 mai 1997.
1

Pour plus de détails sur les vues de Duns Scot concernant les mathématiques, on
peut se reporter à G. Martin, Klassische Ontologie der Zahl. Köln. Kölner Universitäts-
Verlag. 1956.
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d'établir des résultats mathématiques nouveaux et surprenants. A peu de choses

près, ces trois conceptions ont traversé les siècles jusqu'à nous. Parmi ce «peu
de choses», je mentionnerai l'opinion de saint Augustin. H se situait dans la

lignée platonicienne, mais il voyait dans la fermeté et la pérennité des relations

arithmétiques la preuve de l'existence de Dieu, du Dieu personnel du
christianisme. Plus tard. Thomas d'Aquin qui, sur le point considéré ici, se rangeait
derrière Aristote. fondait malgré tout les êtres mathématiques dans la pensée
divine. Pendant de nombreux siècles jusqu'à nos jours, les mathématiques ont
été marquées par des considérations théologiques chrétiennes.

Les trois opinions classiques au sujet des objets mathématiques restent

aujourd'hui fermement défendues. Les utilisateurs des mathématiques adoptent
généralement la conception aristotélicienne. Les mathématiciens professionnels

sont souvent eudoxiens. en paroles tout au moins. Certains d'entre eux
vont proclamant que les interrogations sur la nature des êtres mathématiques
ne sont que de «la bouillie pour les chats». Quant à ceux qui prêtent quelque
réalité aux objets mathématiques, ils sont traités par les autres de «platoniciens»,

épithète fortement péjorative. Mais on observe aussi des tentatives

d'apporter du neuf à la philosophie des mathématiques.
Relevons-en quelques-unes Pour les uns. les objets mathématiques sont

construits par les hommes. Ils ne sont donc ni incréés, ni abstraits. Pour
d'autres, il n'y a pas d'objets mathématiques. Les mathématiciens ne s'occupent

que de ce qui est possible. Pour d'autres encore, toute théorie mathématique

est révisable. Aucun théorème n'est absolument vrai. La lecture des

arguments présentés à l'appui de ces diverses thèses appelle deux remarques.
Les principes sur lesquels elles s'appuient demanderaient à être discutés. Cela

poserait généralement des problèmes au moins aussi graves et aussi difficiles
que ceux que ces théories prétendent résoudre. Ainsi l'assertion «Tout ce qui
est pratiquement réel peut ou doit être considéré comme objectivement réel»
soulève de sérieuses interrogations sur une «réalité» susceptible d'être tantôt
«pratique», tantôt «objective». Cette légèreté philosophique est confirmée par
des assertions telles que : «Tous les objets mathématiques dont parle Platon
sont abstraits.» 3 Et une négligence semblable se manifeste à propos des
théorèmes dits de Godei. Ils sont assez souvent évoqués. Personne ne met en doute
leur validité ni la justesse de leurs preuves. Mais ils sont rarement énoncés et
ils sont souvent interprétés d'une manière simpliste. Le théorème de complétude

est vu comme l'énoncé d'une banalité. Quant au théorème d'incomplétude,

il est un peu bizarre, mais il ne paraît pas de nature à gêner les
mathématiciens.

2 Plusieurs de ces tentatives apparaissent dans l'ouvrage publié par Th. Tymoczko,
New Directions in the Philosophy of Mathematics. Boston. Birkhaüser. 1986.

3 Cf. N. D. Goodman, «Mathematics as an Objective Science», in Th. Tymoczko,
p. 79-85.
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Si divergents que soient ces divers discours, ils présentent une même lacune
essentielle. Ils ne tiennent aucun compte des conséquences surprenantes des

théorèmes de Godei. Ce sont quelques-unes d'entre elles que je voudrais
évoquer ici. Il faut pour cela rappeler très succinctement le contexte dans lequel
ces théorèmes prennent leur sens.

La logique du premier ordre

La logique du premier ordre est une sorte d'algèbre jouant sur des agrégats
de signes typographiques effectivement écrits. A titre d'exemple, considérons
l'un de ces agrégats :

(3 x ((R',"(x,c) v (R',"(c,x)) -> (-,(x c))))

Le premier signe est une ouverture de parenthèse. Le deuxième est le

quantificateur existentiel qui se lit «... il existe un tel que...», x est un signe
de variable individuelle. Il peut être muni d'un ou de plusieurs accents, de

manière à former des symboles de variables distincts. R',"est un symbole de

relation binaire. Le premier accent sert à le numéroter. Les deux accents
suivants, séparés du précédent par une virgule, indiquent que ce symbole de

relation porte sur deux individus. Dans l'exemple considéré, ces individus sont

x et c, c étant un symbole de constante individuelle. Les signes v, —>, —, et
sont des connecteurs lus respectivement «ou», «implique», «non» et «égale».
Les quatre derniers signes sont des fermetures de parenthèses. L'exemple
choisi fait apparaître un jeu complet de signes typographiques susceptibles
d'intervenir dans les agrégats. On peut ajouter qu'a priori, il est dénué de toute
signification.

Se donner un langage L, c'est choisir une collection de signes de constantes
individuelles c, c', c", et une collection de signes de relations. Des règles
de formation propres à la logique du premier ordre déterminent des agrégats
appelés formules de L. L'une de ces règles, qui est spécifique à la logique du

premier ordre, exige que le quantificateur 3 soit nécessairement suivi d'un
symbole de variable individuelle4. L'exemple ci-dessus est une formule dans

un langage comportant au moins un symbole de constante c et deux symboles
de relations binaires R, "et R', ". Le quantificateur porte sur x, qui est alors dit
lié dans notre formule. Celle-ci ne comporte pas de signe de variable non lié.
En conséquence on l'appelle un énoncé dans L.

Les axiomes logiques du langage L sont des formules par lesquelles les

connecteurs et le quantificateur reçoivent une interprétation naturelle qui justifie

leur nom. Ainsi les axiomes de l'égalité traduisent les propriétés habituel-

4 Dans la logique du second ordre, un quantificateur peut porter sur un symbole
individuel ou un symbole de relation.
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les du signe Un système formel du premier ordre L(S) est la donnée dans

L d'une collection S de formules n'appartenant pas à la liste des axiomes

logiques et appelées axiomes non logiques de IfS).
Il est possible d'effectuer des déductions formelles dans IfS). Il existe pour

cela des règles d'inférence ou de dérivation. Le système de Hilbert comporte
deux règles, celle dite de modus ponens et celle de généralisation 5. Une preuve
d'une formule B dans L(S) est une suite effective de formules de L :

'()' 1' 2' 3' "'"' n
'

où An coïncide avec la formule B, et telle que chacune d'elles soit ou bien un
axiome (logique ou non) de L(S), ou bien une formule qu'on peut inférer à

partir de celles qui la précèdent dans la suite.

On appelle théorie du premier ordre tout système formel du premier ordre

L(S) comportant une formule sans preuve dans L(S) 6. On dit alors que le

système d'axiomes S et le système formel IfS) sont consistants. Les énoncés

d'une théorie qui admettent une preuve sont les théorèmes de cette théorie. Par

la suite, nous nous bornerons à la logique du premier ordre et j'omettrai de

le spécifier.
Il est souvent difficile d'établir qu'un système formel est consistant. Le

théorème de compacité permet parfois de surmonter l'obstacle. Il s'énonce
ainsi : La condition nécessaire et suffisante pour qu'un système formel L(S)
soit consistant est que toute partie finie de S soit consistante.

Tout ce qui précède est purement formel. Autrement dit, il est possible de

confier à une machine le soin de déterminer si un agrégat de signes est une
formule dans L, si une suite de formules est une preuve dans L(S) et de quoi
elle est la preuve.

La notion d'interprétation ensembliste est faite pour donner un contenu

sémantique aux formules d'un système formel IfS). Soit E un ensemble non
vide. Considérons une fonction J attachant à tout symbole de constante de L
un élément de £ et à tout symbole de relation de L à p arguments une partie
non vide de E P 7. Le couple (E,J) est une interprétation de L dans E. Les règles
de formation des formules dans L sont telles que l'interprétation (E,J) peut
s'étendre naturellement à toutes les formules de L. Chaque formule est alors
traduite par l'assertion que certains éléments appartiennent à des ensembles

5 Selon la règle modus ponens, A et B étant des formules de /., des formules A et

(A—>B), on infère B. Selon la règle de généralisation, si x n'est pas un symbole de

variable non lié dans la formule D, de (C—>D), on infère (3 x C)—»D.
6 Si le système IfS) n'est pas consistant, il existe une preuve d'une «contradiction»,

c'est-à-dire d'une formule de la forme (-> (A v-, (A)). Réciproquement l'existence d'une
telle preuve dans L(S) entraîne la non-consistance de L(S). Par suite, la preuve d'une
seule contradiction dans L(S) entraîne l'existence des preuves de toutes les contradictions

dans IfS).
1 Ef est l'ensemble des p-uples d'éléments de E.
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bien déterminés. Lorsque cette appartenance est réalisée, la formule considérée
est satisfaite dans l'interprétation (E,J). Un modèle ensembliste d'une théorie
(L,S) est une interprétation (E,J) de (L,S) dans laquelle tous les axiomes de

S sont satisfaits. Les règles d'inférence de Hilbert ont été choisies de manière

que tous les théorèmes de (L,S) soient aussi satisfaits dans tout modèle
ensembliste de (L,S).

Le théorème de complétude de la logique du premier ordre

Nous sommes maintenant en mesure d'énoncer le théorème de complétude.
Il existe plusieurs manières de le démontrer, de sorte qu'il se présente comme
un bouquet de propositions. Voici la première :

Proposition 1 : Un système formel du premier ordre est une théorie si
et seulement s'il possède un modèle ensembliste.

La suffisance de cette condition est évidente. Sa nécessité est plus difficile
à établir. L'un des procédés consiste à construire un ensemble modèle à partir
de la collection des formules du système formel. Cette construction fait usage
de la «théorie» des ensembles.

Proposition 2 : L'énoncé T est un théorème dans la théorie (L,S) si et
seulement s'il est satisfait dans tous les modèles ensembliste

s de (L,S).

Les mathématiques classiques - l'ensemble des nombres naturels, la droite
réelle, le plan euclidien, etc. - se présentent comme une collection de théories
du premier ordre. La proposition 2 affirme donc que la logique du premier ordre
est exactement celle dont les mathématiques (classiques) ont besoin. D'autre
part, la condition formulée est un bon critère de validité pour les théorèmes
du premier ordre. Elle est simple, naturelle et générale. Le fait qu'elle soit
nécessaire et suffisante montre qu'en principe on pourrait faire l'économie des

modèles ensemblistes. Le discours mathématique pourrait donc être entièrement

formulé au moyen de la logique du premier ordre.

Enonçons un simple corollaire de la proposition 2 :

Proposition 3 : Si l'énoncé A n'est pas un théorème dans la théorie L(S),

il existe un modèle de IfS) où (non A) est satisfait.

Si on se bornait aux trois propositions précédentes, on pourrait conclure

que tout va pour le mieux en mathématiques ; que tout ce qui y est vrai peut
y être démontré ; qu'elles possèdent un langage parfait auquel elles pourraient
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apparemment se réduire. Toutefois elles dissimulent des faits plus surprenants.
Il suffit de remarquer qu'il existe un système formel du premier ordre pour
les ensembles. Les mathématiciens utilisent généralement celui de Zermelo-
Fraenkel. qu'ils désignent par (ZF) 8. Ils le considèrent évidemment comme
consistant. Les ensembles dont ils se servent sont qualifiés de «naïfs». Ils

constituent un modèle non ensembliste de (ZF), comme le montre le fameux

paradoxe de Russell. Toutefois, sous l'hypothèse que (ZF) est une théorie, la

proposition 1 implique qu'elle admet en plus un modèle ensembliste. Nous

voici en présence de deux modèles essentiellement distincts de la «théorie»
des ensembles. Mais il y a plus grave.

La démonstration de la proposition 1 repose sur la construction d'un
modèle ensembliste à partir de l'ensemble des formules d'un système formel
L(S). La grandeur du modèle ainsi construit dépend étroitement de la grandeur
de l'ensemble des symboles propres - symboles de constantes et de relations -
de L(S). Cela se traduit par les propositions suivantes.

Proposition 4 : Lorsque l'ensemble des symboles propres d'une théorie est

fini, cette théorie admet un modèle au plus dénombrable.

Autrement dit, les éléments du modèle considéré peuvent être numérotés

par tout ou partie des nombres naturels. La «théorie» des ensembles (ZF) ne

comporte que deux symboles propres : 0, interprété comme l'ensemble vide,
et e symbole de relation binaire traduit par l'appartenance d'un élément à

un ensemble. Il en résulte que la «théorie» des ensembles admet un modèle
dénombrable.

On peut adjoindre librement de nouveaux symboles de constantes ou de

relations au langage L sans changer la consistance du système formel L(S). Cela

permet d'énoncer :

Proposition 5 : Lorsqu'une théorie admet un modèle infini de cardinal b,

elle admet îles modèles de cardinal arbitraire ß' > ß.

Donc lorsqu'une théorie admet un modèle infini, elle en admet une infinité
d'autres, tous essentiellement différents 9. Or cette situation est la plus
fréquente en mathématiques, qu'il s'agisse des nombres naturels, des ensembles,
des nombres réels, du plan et de l'espace euclidiens, etc. Ce phénomène heurte

nos habitudes de pensée. Nous sommes prêts à nous représenter plusieurs plans

s Voir, par exemple. P. J. Cohen. Set Theory and the Continuum Hypothesis. New
York. Benjamin. 1966.

9 Deux modèles d'une théorie sont équivalents lorsqu'il existe une correspondance
biunivoque entre leurs éléments, correspondance qui respecte toutes les relations
impliquées par les axiomes de la théorie. Ils sont essentiellement différents lorsqu'une telle
correspondance n'existe pas. C'est le cas. en particulier, lorsque ces modèles n'ont pas
le même cardinal.
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euclidiens. Mais nous les voyons comme les copies fidèles les uns des autres.
Il est difficile de croire qu'il puisse en exister deux qui soient essentiellement
différents tout en possédant, chacun de son côté, les mêmes propriétés
géométriques. Pourtant, tel est le cas. Et il n'existe aucun moyen logique d'améliorer

la situation. 11 est inutile d'espérer piéger un modèle infini unique en

ajoutant de nouveaux axiomes à la théorie considérée. La proposition 5

s'appliquerait encore au nouveau système formel.
La proposition 5 admet encore un raffinement :

Proposition 6 : Lorsqu 'une théorie du premier ordre admet des modèles

finis dont le nombre des éléments est aussi grand qu 'on

veut, elle admet un modèle infini.

A titre d'exemple, prenons la théorie Gr des groupes. Par exemple, les

rotations du plan qui transforment un carré en lui-même forment un groupe
cyclique à quatre éléments. Les axiomes non logiques de Gr sont faciles à

écrire. On enseigne cela à l'école. Ajoutons à ces axiomes toutes les propriétés
des groupes finis, écrites comme formules dans le langage de Gr. La théorie
obtenue a évidemment pour modèles les groupes cycliques à n éléments, n

pouvant prendre n'importe quelle valeur naturelle non nulle. Elle possède donc

un modèle infini. Autrement dit, il est impossible de caractériser formellement
et simplement la finitude en mathématiques. Pourtant rien ne semble plus banal

que d'affirmer d'une collection d'objets qu'elle est finie.
Une manière relativement simple de caractériser la finitude consiste à

passer par la «théorie» des ensembles (ZF). Il faut alors utiliser en particulier
l'axiome dit «de l'infini» et l'axiome dit «du choix» '". Ce dernier peut s'énoncer

ainsi : soit E un ensemble non vide, dont les éléments sont des ensembles

non vides F,-g/ ; il existe une fonction / qui à tout ensemble Fj attache un
élément de Fj. Autrement dit, / est une fonction qui choisit dans chaque
ensemble Fj un élément de cet ensemble. Le contenu de cet axiome semble

clair. Si E est l'ensemble des disques du plan euclidien, la fonction qui attache
à chaque disque son centre est une telle fonction de choix. En xevanche

lorsqu'on prend pour E l'ensemble des parties non vides du plan, on ne sait

10 Dans ses grandes lignes, la méthode consiste à prendre un ensemble infini E,

dont l'existence est garantie par l'«axiome de l'infini». E peut être muni d'un bon ordre,
en vertu de l'«axiome du choix». E est bien ordonné s'il est totalement ordonné et que
toute partie non vide de £ a un premier élément. On peut alors montrer que l'ensemble
bien ordonné E est isomorphe à un ordinal infini (j)

E.
Un ordinal <(> est un ensemble bien

ordonné par la relation d'appartenance e et dont le plus petit élément est 0. Les éléments
de <|> sont eux-mêmes des ordinaux. Si ß est un ordinal, son successeur est la réunion
de ßetde l'ensemble à un seul élément {ß}. Cet ensemble ß u {ß} est aussi noteß + 1.

Il existe beaucoup d'ordinaux qui ne sont pas de la forme ß +1. L'ensemble vide 0
en est un. Le plus petit ordinal distinct de 0 qui n'est le successeur d'aucun autre ordinal
est désigné par (0. On qualifie alors défini tout ensemble qu'on peut mettre en
correspondance biunivoque avec un élément de co.
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pas définir une telle fonction. Pourtant cet axiome est indispensable en
mathématiques, même pour caractériser des notions très simples, comme on vient
de le voir. Mais son contenu est définitivement mystérieux.

En résumé, les propositions rangées sous le nom du théorème de complétude

révèlent que les notions mathématiques considérées comme élémentaires
sont d'une complexité essentielle.

Le théorème d'incomplétude

De nouveau il faut décrire le paysage mathématique et logique sur lequel
se détache ce théorème. Les mathématiciens admettent que les nombres
naturels forment un ensemble noté N et qu'il existe un système formel (LN,SN)
permettant de décrire les propriétés classiques de N. Les axiomes de SN
s'obtiennent en formalisant les axiomes de Peano pour l'arithmétique. L'idée de

Godei est d'arithmétiser la logique du premier ordre, c'est-à-dire de traduire
dans (LN,SN) les opérations formelles effectuées dans un système formel
quelconque du premier ordre. Nous avons vu que toutes les formules d'un tel

système formel sont des agrégats de signes typographiques. Ceux que nous

avons choisis sont au nombre de douze. Numérotons-les arbitrairement et

supposons que les numéros respectifs de x, et sont 1, 3, 8, 9. La formule
toute simple F (x x), par exemple, fait apparaître dans l'ordre les numéros

8, 1, 3, 1 et 9. Le nombre de Godei G(F) de F est défini par :

G(F):= 28.31.53.7'.119= l'440'491'680'032'000

où les numéros précédents figurent, dans l'ordre, en exposants des nombres

premiers consécutifs à partir de 2. Il suffit de décomposer G(F) en facteurs

premiers pour retrouver, dans l'ordre, les numéros des signes typographiques,
donc la formule F. Il est évident qu'on peut attacher un nombre de Godei à

toute suite effective de formules, en particulier à toute preuve.
La fonction arithmétique G a des propriétés intéressantes. Toutes les

opérations formelles sur les formules d'un système formel - règles de formation,

inferences, recherches des formules établies par des preuves données -
peuvent se traduire en calculs effectifs sur leurs nombres de Godei. Ces calculs

sont qualifiés d'effectifs parce qu'ils peuvent être effectués entièrement à l'aide
de fonctions arithmétiques particulières dites fonctions récursives générales.
Il n'est pas utile d'en donner une définition ici. Disons simplement que ces

fonctions peuvent être ramenées à des suites effectivement écrites d'opérations
exposées dans le système formel (LN,SN). Pour présenter ces descriptions, il
convient d'adjoindre à LN de nouveaux symboles de relations, livrant ainsi un

nouveau langage AN. En ajoutant à SN les axiomes fixant les propriétés de ces

nouveaux symboles, on obtient un système d'axiomes LN. Les systèmes
formels (LN,SN) et (AN,SN) sont équivalents. Ils sont consistants ou inconsistants
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en même temps et, le cas échéant, ils ont les mêmes modèles. Les fonctions
récursives jouent un rôle important dans l'étude des calculs mécaniques.

Le système formel de l'arithmétique comporte deux symboles de constantes,

0 et 1. On peut inférer de ses axiomes que(—1(0= 1 ou, si on préfère, (0^1).
Il est donc équivalent de dire que (LN,SN) est inconsistant ou qu'on peut y
prouver (0=1). L'affirmation :

«Quel que soit n, n n'est pas le nombre de Godei d'une preuve de (0=1)
dans (AWSN)»

exprime que (AN,ZN)- et par suite (LN,SN)- sont consistants. Ce qui précède

permet de deviner que cette phrase peut être traduite par un énoncé dans AN.
On l'abrège parfois en «consis M>. L'existence dans un système formel d'une
formule exprimant que ce système est consistant est un fait surprenant. C'est
le point crucial de ce qui va suivre. Le théorème d'incomplétude de

l'arithmétique peut alors s'énoncer ainsi :

Proposition 7 : Si le système formel (L^S^ est consistant, il existe dans

(A^Z^ des énoncés F tels qu'on ne puisse prouver ni F,

ni (non F) dans (A^E^). L'énoncé «consis N» en est un.

Donc, si le système formel du premier ordre (AN,EN) pour l'arithmétique
est une théorie, il est impossible d'y prouver qu'il est consistant. Ce théorème
a souvent été interprété - un peu hâtivement - comme une limitation essentielle,

voire une faillite de la logique du premier ordre et, par suite, des

mathématiques. L'impossibilité de prouver la consistance de (AN,ZN) a été

comprise comme une preuve de l'inconsistance de l'arithmétique. C'était
oublier l'hypothèse même du théorème. Toutefois ce théorème marque l'échec
du «programme de Hilbert» selon lequel la totalité des théories mathématiques,

y compris les preuves de leur consistance, peut être formalisée dans la logique
du premier ordre.

Nous avons noté qu'on peut faire apparaître un modèle des nombres

naturels en utilisant la «théorie» des ensembles. Mais celle-ci est aussi victime
d'un théorème d'incomplétude. En effet, la proposition 7 a été étendue à une
classe très vaste de systèmes formels. La «théorie» des ensembles en fait partie.
C'est pourquoi j'ai mis le mot de théorie entre guillemets dans ce cas. J'y
renoncerai par la suite.

Dans le voisinage du théorème d'incomplétude, on peut mentionner un
théorème résultant des travaux de Church et de Tarski, et exprimant l'impossibilité

de formaliser la vérité en arithmétique :

Proposition 8 : Dans le système formel de l'arithmétique (L^S^, il
n 'existe pas de formule H(n) comportant un symbole de

variable n, telle que la condition «H(t) est satisfaite dans

(L^S^)» soi! nécessaire et suffisante pour que t égale le

nombre de Godei d'un théorème de (L^S^).
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Autrement dit. il n'existe pas de programme permettant à un ordinateur de

prouver et. par suite, de déceler les théorèmes de l'arithmétique ".

Quelques conséquences des théorèmes de Godei

Il était utile de montrer que les propositions qui précèdent et qui vont être

commentées sont des faits établis selon les principes et les procédures de la

science mathématique. Ils sont donc irrévocables pour quiconque s'exprime
sur les mathématiques. Les remarques que nous ferons sont d'un autre ordre.
Mais elles sont étroitement liées à ces faits mathématiques.

Le formalisme du premier ordre est l'appareil convenant aux démonstrations

mathématiques. Mais il ne permet pas d'établir l'existence de la totalité
des nombres naturels, ni de caractériser simplement la finitude, à moins de

passer par la théorie des ensembles dont la consistance, à son tour, n'est pas
établie. Donc l'activité mathématique doit combiner la logique du premier
ordre à quelque chose qui échappe à ce formalisme. Nous inspirant de Godei,

nous utiliserons le terme d'intuition '2 pour désigner cet agent extra-logique.
Symboliquement, j'écrirai :

science mathématique formalisme x intuition

Le membre de gauche ne comporte pas seulement le catalogue des faits

mathématiques mais encore l'activité de recherche et d'invention des
mathématiciens. Le membre de droite est un produit qui serait nul si l'un des facteurs

était nul (ou absent). L'intuition ne doit pas être comprise comme un substitut
fortuit de la raison. C'est, au contraire, une forme supérieure de l'intelligence.
Elle comporte au moins trois composantes. La première est une série d'actes
de foi : une confiance dans la cohérence de l'arithmétique, de la théorie des

ensembles, y compris les axiomes de l'infini ct du choix. La deuxième est la

compréhension, c'est-à-dire la connaissance par participation immédiate aux

objets mathématiques et non le simple enregistrement d'informations. Cette

composante en implique une troisième qui est le don de conjecture, autrement
dit le pouvoir de prolonger le savoir par des hypothèses pertinentes et
plausibles. C'est grâce à l'intuition que le mathématicien peut aller au-delà des

" Les énoncés de (LN,SN) peuvent être classés selon l'ordre croissant de leurs
nombres de Godei : Alr A;. A,. Supposons qu'il existe un programme informatique
permettant de calculer une preuve de Ar lorsque cet énoncé est un théorème et
d'afficher 0 dans le cas contraire. L'ensemble fini des consignes données à l'ordinateur
pourrait s'écrire comme une formule arithmétique H(n) qui serait vérifiée lorsqu'on
substitue à n le nombre de Godei d'un théorème et dans ce cas seulement. Or la

proposition 8 exprime qu'une telle formule n'existe pas.
12 Le terme d'intuition qu'emploie Godei désigne tout autre chose que celui qu'utilisent

les intuitionnistes (ou constructivistes).
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procédés mécaniques qui régissent la logique du premier ordre. C'est par elle

que certains faits mathématiques indémontrables et inobservables dans le
monde matériel - comme l'existence de la totalité des nombres naturels - sont
intégrés à l'action mathématique.

Les théorèmes de Godei font apparaître une autre notion. Considérons un
modèle N des nombres naturels:

N (0, 1, 2, 3, 58, 1

Convenons d'appeler numéral tout nombre de cette suite qu'il est possible
d'écrire effectivement. 0, 1, 2, 3 sont manifestement des numéraux. Mais il
est clair qu'il existe de très grands nombres naturels que personne ni aucune
machine humaine ne peuvent écrire effectivement. Les numéraux figurent dans

tous les modèles ensemblistes de l'arithmétique. Cependant la notion de

numéral n'est pas mathématique. Les numéraux ne constituent pas en eux-
mêmes un modèle. Ils ne forment même pas un ensemble. La science
mathématique transcende le numéral puisqu'elle utilise pleinement la totalité des

nombres naturels, des nombres réels, les axiomes des ensembles, etc. En
revanche les formules et les preuves de la logique du premier ordre se déploient
dans le numéral. Le formalisme et l'intuition composent donc, pour les

mathématiques, un attelage dissymétrique.
C'est ce fait que le théorème d'incomplétude met en évidence. L'intuition

nous informe que l'arithmétique est consistante. Le théorème d'incomplétude
prouve qu'aucun numéral n'est le nombre de Godei d'une preuve de cette
consistance. Il mêle l'aspect infinitiste de l'arithmétique et l'aspect numéral
de la logique du premier ordre. D'une part, il invoque les propriétés communes
à tous les modèles ensemblistes de (LN,SN) ; de l'autre, il se restreint aux
numéraux, c'est-à-dire à des éléments communs à tous les modèles
ensemblistes de l'arithmétique. Ces éléments sont rares au sein de chaque
modèle. Il n'est pas étonnant qu'on n'y trouve pas d'élément satisfaisant une
formule arithmétique donnée. La proposition 3 nous donne la clé de ce paradoxe

apparent. Puisque l'énoncé (non «consis N») n'est pas un théorème dans

(AN,2ZN), il existe un modèle de (AN,ZN) où sa négation, «consis M>. est

satisfaite. C'est ce qu'établit en substance un théorème de Gentzen. Le «nombre

de Godei» d'une preuve de «consis N» existe dans un modèle assez grand
de l'arithmétique '\ Naturellement il faut admettre pour cela des preuves de

longueurs transfinies.
Le théorème d'incomplétude ne révèle donc pas une faille secrète des

mathématiques. Il souligne le fait évident et connu dès l'origine que les preuves

13 La théorie des ordinaux permet d'étendre le procédé de l'induction mathématique
aux ordinaux transfinis, c'est-à-dire aux ordinaux supérieurs à ft) (voir note 11 On parle
alors d'induction transfmie. Les ordinaux transfinis réalisent de «grands» modèles de

l'arithmétique. Parallèlement, ils permettent de considérer des preuves de longueurs
transfînies.
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logiques ne se situent pas dans le même espace de pensée que les faits
mathématiques auxquels elles correspondent.

Le théorème de complétude montre que chaque être mathématique se

manifeste à plusieurs niveaux d'existence. Pour fixer les idées, prenons l'exemple

de la sphère. A un niveau supérieur on voit apparaître la Sphère en elle-
même. On en parle au singulier. On peut imaginer un «traité de la Sphère».
C'est un archétype unique, distinct de la Droite, du Cercle, du Cube et de tous
les autres êtres mathématiques exemplaires. Lorsqu'il était de bon ton de crier
«A bas le triangle!», c'était le Triangle archétypique qui était visé l4. A un
niveau plus bas, la Sphère se manifeste dans les sphères du mathématicien.
Dans un même espace euclidien, le géomètre peut considérer autant de sphères

qu'il veut. Il peut même considérer plusieurs espaces euclidiens. Mais on a

vu que l'Espace euclidien admet une infinité de modèles essentiellement
différents. Il en est donc de même des sphères qui y sont incluses. Par un double
engendrement, la Sphère principale se déploie dans l'univers du mathématicien.

A un troisième niveau, on trouve les objets sphériques de la physique.
Le physicien trouve intérêt à leur prêter la traduction de certaines propriétés
des sphères géométriques. Elles peuvent être matérielles, comme des bulles de

savon ou la surface de billes en acier. Elles peuvent aussi être abstraites du

monde physique: une surface de potentiel constant autour d'une charge
électrique considérée comme ponctuelle et seule dans l'espace physique est une

sphère physique. Elle résulte de la combinaison de deux opérations: une
abstraction à partir d'une situation physique et l'attribution opportune d'une

étiquette empruntée à la géométrie. A un niveau inférieur encore, on rencontre
les objets ronds fabriqués par l'artisan ou par l'artiste, dont on dit alors qu'il
fait de l'art «géométrique».

Une analogie : le monde mathématique de Proclus

Proclus (Byzance, ~ 410 - Athènes, 485) est l'un des derniers grands
philosophes néoplatoniciens. Son Commentaire au premier livre des Eléments

d'Euclide est intéressant à plusieurs titres. D'après les spécialistes, c'est dans

les prologues de ce texte qu'il expose avec le plus de clarté sa doctrine

philosophique l5. Il y témoigne aussi d'une expérience vécue de l'activité du

14 Les slogans «A bas le triangle!» et «A bas Euclide!» ont été lancés par le
mathématicien bourbachique Jean Dieudonné, à plusieurs reprises, dans des colloques
internationaux au cours des années soixante.

15 Voir, par exemple, Proclus, A Commentary on the First Book of Euclid's
Elements, traduction, introduction et notes par G. R. Morrow, Princeton Univ. Press

1970, page Ivi. Ou encore N. Hartmann, «Principes philosophiques des mathématiques»,

in S. Brkton (éd.), Philosophie et mathématique chez Proclus, Paris, Beauchesne,
1969, p. 187.
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mathématicien. Essayons de dresser schématiquement un tableau de l'univers
proclusien.

La description de Proclus évoque l'image d'une pyramide. Au sommet
figure l'Un, principe de toute chose. Par une sorte de générosité surabondante,
l'Un engendre des êtres. A leur tour, héritant de cet élan, ceux-ci engendrent
d'autres êtres de proche en proche. Cette cascade descendante est la procession.
Les premiers principes issus de l'Un sont l'Etre, l'Intelligence première et le

Vivant-en-soi. Chez les néo-platoniciens, ces hypostases sont les trois aspects
d'un même être que Proclus appelle voûç ou Intellect. La connaissance propre
à l'Intellect est celle de l'être en tant qu'être. Elle est dite noétique et elle est

non discursive. Au bas de la pyramide se trouve le domaine des choses

sensibles, perçues par les sens et donnant naissance aux opinions. Le domaine
intermédiaire, procédant directement de l'Intellect, est le monde des

mathématiques, domaine de la dianoétique ou connaissance discursive.
La mission du sage, du philosophe, est de s'attacher à la conversion qui

est le mouvement inverse de la procession. Son but est de découvrir dans les

choses les principes dont elles procèdent et de prendre conscience qu'elles sont
toutes des images plus ou moins distantes de l'Un. Proclus adopte la doctrine
des Idées éternelles et immuables. Elles sont situées dans l'Intellect. Parmi elles

se trouvent les archétypes des êtres mathématiques, les Idées-nombres, l'Idée-
sphère par exemple. Selon la procession, chaque Idée mathématique se déroule,
se déploie en une multiplicité illimitée d'images sur lesquelles peut opérer le

mathématicien.
Proclus attribue à la pensée consciente - à l'âme - le passage de l'Idée

unique à la multiplicité de ses manifestations dans le monde dianoétique. Il

compare l'âme à une tablette de cire doublement écrite. Le contenu de

l'Intellect est copié dans l'âme sous la présidence de l'Intellect et par le mouvement

propre de l'âme. Mais dans l'Intellect les êtres sont à l'état de paradigmes, en
concentration et sous forme non discursive. Dans l'âme, ils sont à l'état
d'images, accessibles à la connaissance discursive. Les nombres, par exemple,

y sont encore à l'état de prototypes. Ils ne sont pas des pluralités d'unités. Les

figures - le Triangle, la Sphère - n'y ont pas d'extension, pas de grandeur.
Mais ils sont vivants et automoteurs comme l'âme elle-même. La pensée les

dégage alors et les déploie, donnant naissance aux divers objets dont traite le

mathématicien, par la dianoia ou pensée discursive. Toutefois, l'objectif du

mathématicien est de mieux connaître, au-delà du discours, les Idées dont ces

objets procèdent.
L'âme peut projeter sa connaissance des êtres mathématiques dans le

monde des sensibles. Elle donne ainsi naissance aux mathématiques appliquées

: mécanique, astronomie, canonique, optique, etc. Mais Proclus exclut

l'origine sensible des êtres mathématiques. Où, dans le sensible, voyons-nous
des choses sans épaisseur, sans profondeur? demande-t-il. Bien au contraire,
l'étude des choses sensibles conduit à des connaissances dispersées et
hétérogènes. Les données de nos sens distraient notre esprit de son besoin de
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retrouver l'unité située au-dessus des choses divisées. Il y a là un obstacle

important sur la voie de la conversion. A la manière de Platon, Proclus le

surmonte en recourant à la notion de réminiscence. Les impressions de nos sens

éveillent dans l'âme un souvenir des principes éloignés qui les précèdent dans

la descente. Cette part de l'âme qui se souvient a son essence dans les Idées

mathématiques. Elle en a une connaissance immédiate, même si elle ne s'en
sert pas. Lorsqu'elle se libère des entraves que constitue l'afflux des données

sensorielles, elle s'éveille et devient attentive à elle-même. Cet éveil met la

pensée en marche dans la bonne direction, vers le haut, vers la contemplation
de l'Etre.

Ce survol trop rapide met cependant en relief le rôle majeur que Proclus

impartit aux mathématiques dans la quête du philosophe. Il nous montre aussi

quelques convergences entre sa représentation du monde mathématique et

certaines conséquences des théorèmes de Godei.
Pour Proclus, les êtres mathématiques ne sont pas les produits de

l'abstraction opérant sur des données sensibles. De même, nous savons aujourd'hui
que l'infini est une notion première en mathématiques. Elle précède la notion
de finitude et il est impossible d'en faire l'économie. Mais elle ne saurait

résulter d'aucune observation physique. Il en est de même de la finitude, notion

complexe qui outrepasse la notion non mathématique de numéral. Quant à

l'axiome du choix, non seulement aucune expérience physique ne permet de

le justifier, mais dans la plupart des cas où il est indispensable, aucune
procédure mathématique n'est en mesure de déterminer la fonction de choix
recherchée.

Pour Proclus, les Idées mathématiques sont éternelles, donc hors du temps.
Elles ne sauraient être des créations de l'homme. Qu'en est-il en mathématiques

post-godéliennes? Le verbe «créer» est souvent confus. Le grand
mathématicien Dedekind considère les nombres naturels comme «une libre création

de l'esprit humain» 16. Pour l'établir, il part de l'idée de «chaîne». Il
l'introduit en considérant un ensemble non vide E et une application/; E —> E.

Une partie non vide K de E est une chaîne si F(K) est inclus dans K. Il introduit
la suite S des ensembles K, f(K), f(f(K)), f(f(f(K))), qui le conduit, après

quelques développements, à l'ensemble N des nombres naturels. Mais on

constate que, dans cette démarche, A' est sous-jacent à la construction de L.

Dedekind n'a fait que donner un autre nom à une notion qui préexistait dans

sa pensée. D'autre part le théorème d'incomplétude implique que Dedekind

ne pouvait pas prouver que sa construction fournissait un modèle ensembliste
de l'arithmétique. Le théorème de complétude nous dit en outre que cette

construction ne saurait fournir un modèle essentiellement unique des nombres

naturels, à moins qu'elle ne s'appuie sur un tel modèle donné à l'avance.

L'exemple de Dedekind montre quelle prudence il faut observer à l'égard de

16 Cf. préface de la première édition de l'ouvrage de R. Dhdtkind, Was sind und

was sollen die Zahlen? Braunschweig, 1888.
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la «construction» par l'esprit humain d'un être mathématique aussi élémentaire

que le nombre naturel. D'ailleurs l'axiome du choix est manifestement l'aveu
qu'il existe des objets mathématiques que la pensée discursive est incapable
de créer.

Le théorème de complétude de Godei fait apparaître, pour chaque être

mathématique caractérisé par une théorie du premier ordre ayant des modèles

infinis, une disposition pyramidale qu'on retrouve chez Proclus. C'est cette

analogie qui justifie le rapprochement qui est fait ici. Cette ressemblance n'est

pas entièrement fortuite, parce qu'il s'agit dans les deux cas des mêmes objets.
Il serait toutefois téméraire de voir en Proclus un précurseur de Godei. Une
considérable différence d'échelle sépare les connaissances mathématiques du
Ve siècle de celles du XXe. Mais les précautions et la lucidité de Proclus quand
il parle des choses de la pensée - l'exemple de Dedekind nous les rend plus
sensibles - nous autorisent à tirer parti de l'analogie observée.

Pour Proclus le domaine mathématique est à cheval sur le noétique et le

dianoétique, sur la compréhension non discursive et l'intelligence discursive.
Dans le couple gödelien formalisme-intuition, le formalisme se situe au niveau
discursif. Mais l'intuition est à cheval sur le discursif et le non-discursif. Elle
opère déjà dans le formalisme. Mais son action porte plus haut, sur la
représentation que la pensée se donne des êtres mathématiques et. plus haut encore,
sur les choses dont ces représentations livrent des images. Nous sommes là
dans un domaine qui échappe au discours, bien qu'il préside à la recherche

et à l'invention mathématiques.
Il convient aussi de relever au moins deux discordances entre les

mathématiques de Proclus et les mathématiques post-gòdéliennes. La première réside
dans la complexité des systèmes de modèles d'un même être mathématique.
Proclus ne pouvait pas imaginer l'infinie diversité des modèles de l'espace
euclidien, par exemple, encore que sa doctrine ne l'exclut pas. Une autre
discordance apparaît quand on constate le rôle que Proclus attribue aux
mathématiques. Elles sont pour lui une sorte de propédeutique à la théologie sur
la voie de la conversion. Il serait imprudent d'en dire autant des mathématiques
d'aujourd'hui.

Conclusion

Ce qui précède ne répond que très imparfaitement à la question posée par
le titre de cet exposé. Cette question semble appeler une caractérisation nette
de la nature des êtres mathématiques, tout au moins de ceux qui se présentent

comme les plus élémentaires. Or, bien que chacun d'eux soit identifiable,
autonome et consistant, il se réalise à une infinité de niveaux essentiellement
différents. De plus, entre les manifestations concrètes de certaines notions -
par exemple la finitude, l'ensemble, la sphère - et les êtres mathématiques
qu'elles désignent, il existe une frontière invisible mais infranchissable. La
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«caractérisation nette» des objets mathématiques exige donc un autre discours

que celui qui convient aux objets des sciences naturelles. Pour en arriver là.

nous nous sommes appuyés sur quelques faits incontestables qui limitent la
fantaisie de ceux qui s'expriment sur la nature des êtres mathématiques. Ainsi,
parmi les auteurs qui prétendent apporter du nouveau en philosophie
mathématique, certains reprennent à leur compte des préceptes qui ont prévalu
pendant des siècles :

- // faut évacuer toute «mystique» des mathématiques.

- Il faut maintenir une continuité absolue entre les mathématiques et la

physique.

De tels auteurs considèrent comme «réel» uniquement ce qui est directement

ou indirectement perceptible par les sens et qui peut être localisé dans

l'espace physique. Est qualifié par eux de «mystique» tout ce qui n'est pas réel

au sens précédent. Ces deux injonctions n'en forment peut-être qu'une seule.

Quoi qu'il en soit, les travaux de Godei montrent que toutes deux ignorent la

nature des mathématiques.
On peut dire les choses autrement. Les mathématiques d'aujourd'hui

enseignent d'une manière positive ce que les Anciens avaient compris à leur

façon. A savoir que les êtres mathématiques se déploient dans une réalité

incorporelle, de l'ordre de la pensée et même de la pensée non discursive. Ils
en démontrent l'existence et ils font voir que les lois qui régissent cette réalité
diffèrent fondamentalement de celles qui nous permettent de décrire la réalité
matérielle. Cette assertion est sans doute banale pour un philosophe. Mais il
est intéressant de constater qu'elle émane de celle qui passe pour la petite
servante des sciences naturelles et techniques.
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