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REVUE DE THEOLOGIE ET DE PHILOSOPHIE, 129 (1997), P. 225-240

DE QUOI LES MATHEMATIQUES TRAITENT-ELLES? *

ANDRE DELESSERT

Résumé

Les théorémes de complétude et d’incomplétude de Godel forment un tout.
Ils éclairent la nature trés complexe des étres mathématiques, méme de ceux
qui passent pour élémentaires. L’image des mathématiques qui en résulte
présente une analogie surprenante avec celle que dressait le philosophe
Proclus au cinquiéme siécle de notre ére.

Préambule

Il n’existe pas de nom simple et commun pour désigner le domaine propre
des mathématiques. Existe-t-il méme un tel domaine? Ou bien les mathéma-
tiques ne sont-elles qu'un outil & usage variable, un langage au service des
autres sciences et des techniques? Un essai de réponse a été donné par le
philosophe et théologien Jean Duns Scot (~ 1266 - 1308) : les mathématiques
seraient la «science des relations» ', Certains estiment aujourd’hui encore que
cette définition est bonne. On peut toutefois se demander de quelles relations
elles traitent, ne serait-ce que pour distinguer le mathématicien du sociologue.
Apres quoi il faudrait encore préciser la nature de ces relations. Sont-elles
réelles ou simplement rationnelles? Enfin la méme question se poserait pour
les objets — nombre, triangle, sphére — entrant dans ces relations.

Chose remarquable, les réponses les plus claires a notre question ont été
données dans I’ Antiquité grecque déja. Elles sont de trois types. La conception
platonicienne voit d’abord dans les étres mathématiques des Idées, des Formes
ou des Causes éternelles. Les mathématiciens en manipulent des images dé-
gradées avec I'intention d’entrevoir les principes dont elles découlent. Pour
Aristote, les étres mathématiques sont obtenus par abstraction a partir des
impressions sensibles. Enfin I'attitude que je qualifierai d’eudoxienne est celle
du mathématicien qui ne s’embarrasse pas de telles ratiocinations et se contente

" Conférence présentée devant le groupe neuchatelois de la Société romande de
philosophie le 21 mai 1997,

' Pour plus de détails sur les vues de Duns Scot concernant les mathématiques, on
peut se reporter a G. MARTIN, Klassische Ontologie der Zahl, Koln, Kolner Universitits-
Verlag, 1956.
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d’établir des résultats mathématiques nouveaux et surprenants. A peu de choses
pres, ces trois conceptions ont traversé les siecles jusqu’a nous. Parmi ce «peu
de choses», je mentionnerai I’opinion de saint Augustin. Il se situait dans la
lignée platonicienne, mais il voyait dans la fermeté et la pérennité des relations
arithmétiques la preuve de I'existence de Dieu, du Dieu personnel du chris-
tianisme. Plus tard, Thomas d’Aquin qui, sur le point considéré ici, se rangeait
derriere Aristote, fondait malgré tout les étres mathématiques dans la pensée
divine. Pendant de nombreux siecles jusqu’a nos jours, les mathématiques ont
¢té marquées par des considérations théologiques chrétiennes.

Les trois opinions classiques au sujet des objets mathématiques restent
aujourd’hui fermement défendues. Les utilisateurs des mathématiques adoptent
généralement la conception aristotélicienne. Les mathématiciens profession-
nels sont souvent eudoxiens, en paroles tout au moins. Certains d’entre eux
vont proclamant que les interrogations sur la nature des étres mathématiques
ne sont que de «la bouillie pour les chats». Quant a ceux qui prétent quelque
réalité¢ aux objets mathématiques, ils sont traités par les autres de «platoni-
ciens», ¢pithete fortement péjorative. Mais on observe aussi des tentatives
d’apporter du neuf a la philosophie des mathématiques.

Relevons-en quelques-unes 2. Pour les uns, les objets mathématiques sont
construits par les hommes. Ils ne sont donc ni incréés, ni abstraits. Pour
d’autres, il n’y a pas d’objets mathématiques. Les mathématiciens ne s occu-
pent que de ce qui est possible. Pour d’autres encore, toute théorie mathéma-
tique est révisable. Aucun théoréme n’est absolument vrai. La lecture des
arguments présentés a I’appui de ces diverses theses appelle deux remarques.
Les principes sur lesquels elles s’appuient demanderaient a étre discutés. Cela
poserait généralement des problémes au moins aussi graves et aussi difficiles
que ceux que ces théories prétendent résoudre. Ainsi 'assertion «Tout ce qui
est pratiquement réel peut ou doit étre considéré comme objectivement réel»
souleve de sérieuses interrogations sur une «réalité» susceptible d’étre tantot
«pratique», tantdt «objective». Cette 1égereté philosophique est confirmée par
des assertions telles que : «Tous les objets mathématiques dont parle Platon
sont abstraits.» * Et une négligence semblable se manifeste & propos des théo-
remes dits de Godel. Ils sont assez souvent évoqués. Personne ne met en doute
leur validité ni la justesse de leurs preuves. Mais ils sont rarement énoncés et
ils sont souvent interprétés d’une manicre simpliste. Le théoreme de complé-
tude est vu comme 1'énoncé d’une banalité. Quant au théoreme d’incomplé-
tude, 1l est un peu bizarre, mais il ne parait pas de nature a géner les mathé-
maticiens.

* Plusieurs de ces tentatives apparaissent dans I’ouvrage publié par TH. Tymoczko,
New Directions in the Philosophy of Mathematics, Boston, Birkhatiser, 1986.

* Cf. N. D. Goopbman, «Mathematics as an Objective Science», in Th. Tymoczko,
p. 79-85.
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Si divergents que soient ces divers discours, ils présentent une méme lacune
essentielle. Ils ne tiennent aucun compte des conséquences surprenantes des
théoremes de Godel. Ce sont quelques-unes d’entre elles que je voudrais
évoquer ici. Il faut pour cela rappeler trés succinctement le contexte dans lequel
ces théoremes prennent leur sens.

La logique du premier ordre

La logique du premier ordre est une sorte d’algebre jouant sur des agrégats
de signes typographiques effectivement écrits. A titre d’exemple, considérons
I'un de ces agrégats :

(3 x (R""(x,) v (R","(c,x)) = (=(x = ¢))))

Le premier signe est une ouverture de parenthese. Le deuxiéme est le
quantificateur existentiel qui se lit «... il existe un ... tel que...». x est un signe
de variable individuelle. Il peut étre muni d’un ou de plusieurs accents, de
manicre a former des symboles de variables distincts. R”,” est un symbole de
relation binaire. Le premier accent sert a le numéroter. Les deux accents
suivants, séparés du précédent par une virgule, indiquent que ce symbole de
relation porte sur deux individus. Dans I’exemple considéré, ces individus sont
x et ¢, ¢ étant un symbole de constante individuelle. Les signes v, —, — et =
sont des connecteurs lus respectivement «ou», «implique», «non» et «égale».
Les quatre derniers signes ) sont des fermetures de parenthéses. L’exemple
choisi fait apparaitre un jeu complet de signes typographiques susceptibles
d’intervenir dans les agrégats. On peut ajouter qu’a priori, il est dénué de toute
signification.

Se donner un langage L, ¢’est choisir une collection de signes de constantes
individuelles ¢, ¢, ¢” ... et une collection de signes de relations. Des régles
de formation propres a la logique du premier ordre déterminent des agrégats
appelés formules de L. L’une de ces regles, qui est spécifique a la logique du
premier ordre, exige que le quantificateur 3 soit nécessairement suivi d’un
symbole de variable individuelle *. L’exemple ci-dessus est une formule dans
un langage comportant au moins un symbole de constante ¢ et deux symboles
de relations binaires R, ” et R’,”. Le quantificateur porte sur x, qui est alors dit
lié dans notre formule. Celle-ci ne comporte pas de signe de variable non lié.
En conséquence on I'appelle un énoncé dans L.

Les axiomes logiques du langage L sont des formules par lesquelles les
connecteurs et le quantificateur regoivent une interprétation naturelle qui jus-
tifie leur nom. Ainsi les axiomes de 1'égalité traduisent les propriétés habituel-

* Dans la logique du second ordre, un quantificateur peut porter sur un symbole
individuel ou un symbole de relation.
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les du signe =. Un systeme formel du premier ordre L(S) est la donnée dans
L d’une collection S de formules n’appartenant pas a la liste des axiomes
logiques et appelées axiomes non logiques de L(S).

I est possible d’effectuer des déductions formelles dans L(S). Il existe pour
cela des régles d’inférence ou de dérivation. Le systeme de Hilbert comporte
deux regles, celle dite de modus ponens et celle de généralisation >. Une preuve
d’une formule B dans L(S) est une suite effective de formules de L :

(B B B By s Big ]

0

ol A,, coincide avec la formule B, et telle que chacune d’elles soit ou bien un
axiome (logique ou non) de L(S), ou bien une formule qu’on peut inférer a
partir de celles qui la précédent dans la suite.

On appelle théorie du premier ordre tout systeme formel du premier ordre
L(S) comportant une formule sans preuve dans L(S) 6. On dit alors que le
systeme d’axiomes S et le systeme formel L(S) sont consistants. Les énoncés
d’une théorie qui admettent une preuve sont les théoremes de cette théorie. Par
la suite, nous nous bornerons a la logique du premier ordre et j’omettrai de
le spécifier.

Il est souvent difficile d’établir qu'un systéme formel est consistant. Le
théoreme de compacité permet parfois de surmonter 1’obstacle. Il s’énonce
ainsi : La condition nécessaire et suffisante pour qu’un systeme formel L(S)
soit consistant est que toute partie finie de S soit consistante.

Tout ce qui précede est purement formel. Autrement dit, il est possible de
confier a une machine le soin de déterminer si un agrégat de signes est une
formule dans L, si une suite de formules est une preuve dans L(S) et de quoi
elle est la preuve.

La notion d’interprétation ensembliste est faite pour donner un contenu
sémantique aux formules d’un systeme formel L(S). Soit £ un ensemble non
vide. Considérons une fonction J attachant a tout symbole de constante de L
un élément de E et a tout symbole de relation de L a p arguments une partie
non vide de EP 7. Le couple (E,J) est une interprétation de L dans E. Les régles
de formation des formules dans L sont telles que 'interprétation (E,J) peut
s’étendre naturellement a toutes les formules de L. Chaque formule est alors
traduite par I’assertion que certains éléments appartiennent a des ensembles

3 Selon la régle modus ponens, A et B étant des formules de L, des formules A et
(A—B), on infere B. Selon la regle de généralisation, si x n’est pas un symbole de
variable non lié dans la formule D, de (C—D), on infére (3 x C)—D.

© Sile systéme L(S) n’est pas consistant, il existe une preuve d’une «contradiction»,
¢’est-a-dire d’une formule de la forme (— (A v—(A)). Réciproquement I'existence d une
telle preuve dans L(S) entraine la non-consistance de L(S). Par suite, la preuve d’une
seule contradiction dans L(S) entraine I'existence des preuves de toutes les contradic-
tions dans L(S).

7 EP est I'ensemble des p-uples d’éléments de E.
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bien déterminés. Lorsque cette appartenance est réalisée, la formule considérée
est satisfaite dans I'interprétation (E,J). Un modele ensembliste d’une théorie
(L,S) est une interprétation (E,J) de (L,S) dans laquelle tous les axiomes de
S sont satisfaits. Les regles d’inférence de Hilbert ont été choisies de maniére
que tous les théoremes de (L,§) soient aussi satisfaits dans tout modéle
ensembliste de (L,S).

Le théoréme de complétude de la logique du premier ordre

Nous sommes maintenant en mesure d’énoncer le théoreme de complétude.
Il existe plusieurs manieres de le démontrer, de sorte qu’il se présente comme
un bouquet de propositions. Voici la premiére :

Proposition 1 : Un systéme formel du premier ordre est une théorie si
et seulement s’il possede un modeéle ensembliste.

La suffisance de cette condition est évidente. Sa nécessité est plus difficile
a établir. L un des procédés consiste a construire un ensemble modele a partir
de la collection des formules du systéme formel. Cette construction fait usage
de la «théorie» des ensembles.

Proposition 2 : L'énoncé T est un théoréeme dans la théorie (L,S) si et
seulement s'il est satisfait dans tous les modéles ensem-
blistes de (L,S).

Les mathématiques classiques — I’ensemble des nombres naturels, la droite
réelle, le plan euclidien, etc. — se présentent comme une collection de théories
du premier ordre. La proposition 2 affirme donc que la logique du premier ordre
est exactement celle dont les mathématiques (classiques) ont besoin. D’autre
part, la condition formulée est un bon critere de validité pour les théorémes
du premier ordre. Elle est simple, naturelle et générale. Le fait qu’elle soit
nécessaire et suffisante montre qu’en principe on pourrait faire I'économie des
modeles ensemblistes. Le discours mathématique pourrait donc étre enticre-
ment formulé au moyen de la logique du premier ordre.

Enongons un simple corollaire de la proposition 2 :

Proposition 3 : Si l'énoncé A n’est pas un théoreme dans la théorie L(S),
il existe un modeéle de L(S) ot (non A) est satisfait.

Si on se bornait aux trois propositions précédentes, on pourrait conclure
que tout va pour le mieux en mathématiques ; que tout ce qui y est vrai peut
y étre démontré ; qu’elles posseédent un langage parfait auquel elles pourraient
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apparemment se réduire. Toutefois elles dissimulent des faits plus surprenants.
[l suffit de remarquer qu’il existe un systeme formel du premier ordre pour
les ensembles. Les mathématiciens utilisent généralement celui de Zermelo-
Fraenkel, qu’ils désignent par (ZF) . Ils le considerent évidemment comme
consistant. Les ensembles dont ils se servent sont qualifiés de «naifs». Ils
constituent un modele non ensembliste de (ZF), comme le montre le fameux
paradoxe de Russell. Toutefois, sous I"hypothése que (ZF) est une théorie, la
proposition I implique qu’elle admet en plus un modele ensembliste. Nous
voict en présence de deux modeles essentiellement distincts de la «théorie»
des ensembles. Mais il y a plus grave.

La démonstration de la proposition [ repose sur la construction d’un
modele ensembliste a partir de I'ensemble des formules d’un systeme formel
L(S). La grandeur du modele ainsi construit dépend étroitement de la grandeur
de I'ensemble des symboles propres — symboles de constantes et de relations —
de L(S). Cela se traduit par les propositions suivantes.

Proposition 4 : Lorsque ['ensemble des symboles propres d’une théorie est
[ini, cette théorie admet un modeéele au plus dénombrable.

Autrement dit, les éléments du modele considéré peuvent €tre nume€rotés
par tout ou partie des nombres naturels. La «théorie» des ensembles (ZF) ne
comporte que deux symboles propres : &, interprété comme I'ensemble vide,
et € , symbole de relation binaire traduit par I"appartenance d’un ¢lément a
un ensemble. Il en résulte que la «théorie» des ensembles admet un modele
dénombrable.

On peut adjoindre librement de nouveaux symboles de constantes ou de
relations au langage L sans changer la consistance du systeme formel L(S). Cela
permet d’énoncer :

Proposition 5: Lorsqid'une théorie admet un modele infini de cardinal b,
elle admet des modeles de cardinal arbitraire "> .

Donc lorsqu’une théorie admet un modele infini, elle en admet une infinité
d’autres, tous essentiellement différents *. Or cette situation est la plus fré-
quente en mathématiques, qu’il s’agisse des nombres naturels, des ensembles,
des nombres réels, du plan et de I'espace euclidiens, etc. Ce phénomene heurte
nos habitudes de pensée. Nous sommes préts a nous représenter plusieurs plans

8 Voir, par exemple, P.I. Couin, Set Theory and the Continuum Hypothesis, New
York, Benjamin, 1966.

? Deux modeles d une théorie sont équivalents lorsqu’il existe une correspondance
biunivoque entre leurs éléments, correspondance qui respecte toutes les relations im-
pliguées par les axiomes de la théorie. Ils sont essentiellement différents lorsqu’une telle
correspondance n’existe pas. C'est le cas, en particulier, lorsque ces modeles n’ont pas
le méme cardinal.
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euclidiens. Mais nous les voyons comme les copies fideles les uns des autres.
I1 est difficile de croire qu’il puisse en exister deux qui soient essentiellement
différents tout en possédant, chacun de son coté, les mémes propriétés géo-
métriques. Pourtant, tel est le cas. Et il n’existe aucun moyen logique d’amé-
liorer la situation. Il est mnutile d’espérer piéger un modele infini unique en
ajoutant de nouveaux axiomes a la théorie considérée. La proposition 5 s’ap-
pliquerait encore au nouveau systéeme formel.
La proposition 5 admet encore un raffinement :

Proposition 6 : Lorsqu'une théorie du premier ordre admet des modeéles
finis dont le nombre des éléments est aussi grand qu’on
veut, elle admet un modéle infini.

A titre d’exemple, prenons la théorie Gr des groupes. Par exemple, les
rotations du plan qui transforment un carré en lui-méme forment un groupe
cyclique a quatre éléments. Les axiomes non logiques de Gr sont faciles a
écrire. On enseigne cela a I’école. Ajoutons a ces axiomes toutes les propriétés
des groupes finis, écrites comme formules dans le langage de Gr. La théorie
obtenue a évidemment pour modeles les groupes cycliques a n éléments, n
pouvant prendre n’importe quelle valeur naturelle non nulle. Elle possede donc
un modele infini. Autrement dit, i/ est impossible de caractériser formellement
et simplement la finitude en mathématiques. Pourtant rien ne semble plus banal
que d’affirmer d’une collection d’objets qu’elle est finie.

Une maniere relativement simple de caractériser la finitude consiste a
passer par la «théorie» des ensembles (ZF). 1l faut alors utiliser en particulier
I’axiome dit «de I'infini» et I’axiome dit «du choix» '’. Ce dernier peut s’énon-
cer ainsi : soit £ un ensemble non vide, dont les éléments sont des ensembles
non vides Fjgj; il existe une fonction f qui a tout ensemble F; attache un
¢lément de F;. Autrement dit, f est une fonction qui choisit dans chaque
ensemble F; un élément de cet ensemble. Le contenu de cet axiome semble
clair. Si E est I'ensemble des disques du plan euclidien, la fonction qui attache
a chaque disque son centre est une telle fonction de choix. En revanche
lorsqu’on prend pour £ I'ensemble des parties non vides du plan, on ne sait

19 Dans ses grandes lignes, la méthode consiste a prendre un ensemble infini E,
dont I'existence est garantie par |'«axiome de I'infini». £ peut étre muni d'un bon ordre,
en vertu de I'«axiome du choix». £ est bien ordonné s’il est totalement ordonné et que
toute partie non vide de E a un premier élément. On peut alors montrer que I'ensemble
bien ordonné E est isomorphe a un ordinal infini ¢ .. Un ordinal ¢ est un ensemble bien
ordonné par la relation d’appartenance € et dont le plus petit élément est @. Les éléments
de ¢ sont eux-mémes des ordinaux. Si B est un ordinal, son successeur est la réunion
de B et de I’ensemble a un seul élément {B}. Cet ensemble B U {B} est aussi noté B + 1.
Il existe beaucoup d’ordinaux qui ne sont pas de la forme  +1. L’ensemble vide &
en est un. Le plus petit ordinal distinct de @ qui n’est le successeur d’aucun autre ordinal
est désigné par ®. On qualifie alors de fini tout ensemble qu’on peut mettre en corres-
pondance biunivoque avec un élément de ®.
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pas définir une telle fonction. Pourtant cet axiome est indispensable en ma-
thématiques, méme pour caractériser des notions tres simples, comme on vient
de le voir. Mais son contenu est définitivement mystérieux.

En résumé, les propositions rangées sous le nom du théoreme de complé-
tude révelent que les notions mathématiques considérées comme €lémentaires
sont d’une complexité essentielle.

Le théoréeme d’incomplétude

De nouveau il faut décrire le paysage mathématique et logique sur lequel
se détache ce théoreme. Les mathématiciens admettent que les nombres na-
turels forment un ensemble noté¢ N et qu'il existe un systeme formel (L,,,S, )
permettant de décrire les propriétés classiques de N. Les axiomes de S, s’ob-
tiennent en formalisant les axiomes de Peano pour I'arithmétique. L’1dée de
Godel est d’arithmétiser la logique du premier ordre, c’est-a-dire de traduire
dans (L,,,S, ) les opérations formelles effectuées dans un systeme formel
quelconque du premier ordre. Nous avons vu que toutes les formules d’un tel
systeme formel sont des agrégats de signes typographiques. Ceux que nous
avons choisis sont au nombre de douze. Numérotons-les arbitrairement et
supposons que les numéros respectifs de x, =, (et ) sont 1, 3, 8, 9. La formule
toute simple F = (x = x), par exemple, fait apparaitre dans I’ordre les numéros
8, 1,3, 1 et 9. Le nombre de Godel G(F) de F est défini par :

G(F) : = 28.31.53.71.11° = 1'440°491°680° 032’000

ou les numéros précédents figurent, dans I’ordre, en exposants des nombres
premiers consécutifs a partir de 2. Il suffit de décomposer G(F) en facteurs
premiers pour retrouver, dans 1’ordre, les numéros des signes typographiques,
donc la formule F. Il est évident qu’on peut attacher un nombre de Godel a
toute suite effective de formules, en particulier a toute preuve.

La fonction arithmétique G a des propriétés intéressantes. Toutes les
opérations formelles sur les formules d'un systeme formel — regles de forma-
tion, inférences, recherches des formules établies par des preuves données —
peuvent se traduire en calculs effectifs sur leurs nombres de Godel. Ces calculs
sont qualifiés d’effectifs parce qu’ils peuvent étre effectués entierement a I’ aide
de fonctions arithmétiques particulieres dites fonctions récursives générales.
Il n’est pas utile d’en donner une définition ici. Disons simplement que ces
fonctions peuvent étre ramenées a des suites effectivement écrites d’opérations
exposées dans le systeme formel (L, ,S, ). Pour présenter ces descriptions, il
convient d’adjoindre a L,, de nouveaux symboles de relations, livrant ainsi un
nouveau langage A, . En ajoutant a S, les axiomes fixant les propriétés de ces
nouveaux symboles, on obtient un systeme d’axiomes X, . Les systemes for-
mels (L,,S, ) et(A,,S, ) sont équivalents. lls sont consistants ou inconsistants
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en méme temps et, le cas échéant, ils ont les mémes modeles. Les fonctions
récursives jouent un role important dans I'étude des calculs mécaniques.

Le systeme formel de I’arithmétique comporte deux symboles de constan-
tes, O et 1. On peut inférer de ses axiomes que (—(0=1)) ou, si on préfere, (01).
Il est donc €quivalent de dire que (L,,S, ) est inconsistant ou qu’on peut y
prouver (0O=1). L affirmation :

«Quel que soit n, n n'est pas le nombre de Godel d’une preuve de (0=1)
dans (A, S8,)»

exprime que (A, X, ) — et par suite (L,,,S,, ) — sont consistants. Ce qui précede
permet de deviner que cette phrase peut étre traduite par un €énoncé dans A, .
On I’abrege parfois en «consis N». L’existence dans un systeme formel d’une
formule exprimant que ce systeme est consistant est un fait surprenant. C’est
le point crucial de ce qui va suivre. Le théoréme d’incomplétude de I’arith-
métique peut alors s’€noncer ainsi :

Proposition 7 : Si le systeme formel (L,,S,) est consistant, il existe dans
(A, X)) des énoncés F tels qu’on ne puisse prouver ni F),
ni (non F) dans (A, 2,). L'énoncé «consis N» en est un.

Dong, si le systeme formel du premier ordre (A, ,Z, ) pour |’arithmétique
est une théorie, il est impossible d’y prouver qu’il est consistant. Ce théoreme
a souvent €été interprété — un peu hativement — comme une limitation essen-
tielle, voire une faillite de la logique du premier ordre et, par suite, des
mathématiques. L’impossibilité de prouver la consistance de (A, %, ) a €té
comprise comme une preuve de l'inconsistance de I'arithmétique. C’était
oublier I'hypothese méme du théoreme. Toutefois ce théoréeme marque I’échec
du «programme de Hilbert» selon lequel la totalité des théories mathématiques,
y compris les preuves de leur consistance, peut étre formalisée dans la logique
du premier ordre.

Nous avons noté qu’on peut faire apparaitre un modele des nombres
naturels en utilisant la «théorie» des ensembles. Mais celle-ci est aussi victime
d’un théoréme d’incomplétude. En effet, la proposition 7 a été étendue a une
classe tres vaste de systémes formels. La «théorie» des ensembles en fait partie.
C’est pourquoi j’ai mis le mot de théorie entre guillemets dans ce cas. J'y
renoncerai par la suite.

Dans le voisinage du théoreme d’incomplétude, on peut mentionner un
théoreme résultant des travaux de Church et de Tarski, et exprimant ['impos-
sibilité de formaliser la vérité en arithmétique :

Proposition 8 : Dans le systeme formel de ['arithmétique (L,,S,), il
n'existe pas de formule H(n) comportant un symbole de
variable n, telle que la condition «H(t) est satisfaite dans
(L\,Sy)» soit nécessaire et suffisante pour que t égale le
nombre de Godel d’un théoréeme de (Ly,Sy).
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Autrement dit, il n’existe pas de programme permettant a un ordinateur de
prouver et, par suite, de déceler les théoremes de I'arithmétique ''.

Quelgues conséquences des théoremes de Gadel

[ était utile de montrer que les propositions qui précedent et qui vont étre
commentées sont des faits établis selon les principes et les procédures de la
science mathématique. 1ls sont donc irrévocables pour quiconque s’exprime
sur les mathématiques. Les remarques que nous ferons sont d’un autre ordre.
Mais elles sont étroitement liées a ces faits mathématiques.

Le formalisme du premier ordre est 'appareil convenant aux démonstra-
tions mathématiques. Mais il ne permet pas d’établir I’existence de la totalit¢
des nombres naturels, ni de caractériser simplement la finitude, & moins de
passer par la théorie des ensembles dont la consistance, a son tour, n’est pas
¢tablie. Donc IMactivité mathématique doit combiner la logique du premier
ordre a quelque chose qui échappe a ce formalisme. Nous inspirant de Godel.
nous utiliserons le terme d’intuition '> pour désigner cet agent extra-logique.
Symboliquement, j’écrirai :

science mathématigue = formalisme X intuition

Le membre de gauche ne comporte pas seulement le catalogue des faits
mathématiques mais encore I'activité de recherche et d’invention des mathé-
maticiens. Le membre de droite est un produit qui serait nul si I'un des facteurs
¢tait nul (ou absent). L’intuition ne doit pas étre comprise comme un substitut
fortuit de la raison. C’est, au contraire, une forme supérieure de I'intelligence.
Elle comporte au moins trois composantes. La premiere est une série d actes
de foi : une confiance dans la cohérence de 1'arithmétique, de la théorie des
ensembles, y compris les axiomes de I'infini et du choix. La deuxiéme est la
compréhension, c¢’est-a-dire la connaissance par participation immédiate aux
objets mathématiques et non le simple enregistrement d’informations. Cette
composante en implique une troisieme qui est le don de conjecture, autrement
dit le pouvoir de prolonger le savoir par des hypotheses pertinentes et plau-
sibles. C’est grace a I'intuition que le mathématicien peut aller au-dela des

" Les énoncés de (L,.S, ) peuvent étre classés selon I'ordre croissant de leurs
nombres de Godel : A, A, A,, ... Supposons qu'il existe un programme informatique
permettant de calculer une preuve de A, lorsque cet énoncé est un théoreme et d’af-
ficher 0 dans le cas contraire. L'ensemble fini des consignes données a I'ordinateur
pourrait s’écrire comme une formule arithmétique H(n) qui serait vérifiée lorsqu’on
substitue a4 n le nombre de Godel d’un théoréme et dans ce cas seulement. Or la
proposition 8 exprime qu’une telle formule n’existe pas.

12 Le terme d’intuition qu’emploie Godel désigne tout autre chose que celui qu'uti-
lisent les intuitionnistes (ou constructivistes).
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procédés mécaniques qui régissent la logique du premier ordre. C’est par elle
que certains faits mathématiques indémontrables et inobservables dans le
monde matériel — comme I’existence de la totalité des nombres naturels — sont
intégrés a I’action mathématique.

Les théoremes de Godel font apparaitre une autre notion. Considérons un
modele N des nombres naturels:

Convenons d’appeler numéral tout nombre de cette suite qu’il est possible
d’écrire effectivement. 0, 1, 2, 3 sont manifestement des numéraux. Mais il
est clair qu’il existe de trés grands nombres naturels que personne ni aucune
machine humaine ne peuvent écrire effectivement. Les numéraux figurent dans
tous les modeles ensemblistes de I'arithmétique. Cependant la notion de
numéral n’est pas mathématique. Les numéraux ne constituent pas en eux-
mémes un modele. Ils ne forment méme pas un ensemble. La science mathé-
matique transcende le numéral puisqu’elle utilise pleinement la totalité des
nombres naturels, des nombres réels, les axiomes des ensembles, etc. En
revanche les formules et les preuves de la logique du premier ordre se déploient
dans le numéral. Le formalisme et I'intuition composent donc, pour les ma-
thématiques, un attelage dissymétrique.

C’est ce fait que le théoreme d’incomplétude met en évidence. L intuition
nous informe que I’arithmétique est consistante. Le théoreme d’incomplétude
prouve qu’aucun numéral n’est le nombre de Godel d'une preuve de cette
consistance. Il méle I'aspect infinitiste de 1'arithmétique et 1'aspect numéral
de la logique du premier ordre. D’une part, il invoque les propriétés communes
a tous les modeles ensemblistes de (Ly.Sy): de 'autre, il se restreint aux
numéraux, c’est-a-dire a des éléments communs a tous les modeles
ensemblistes de I'arithmétique. Ces éléments sont rares au sein de chaque
modele. Il n’est pas étonnant qu’on n’y trouve pas d’élément satisfaisant une
formule arithmétique donnée. La proposition 3 nous donne la clé de ce para-
doxe apparent. Puisque I'énoncé (non «consis N») n’est pas un théoréme dans
(Ay,Zy ). il existe un modele de (A,,X, ) ou sa négation, «consis N», est
satisfaite. C’est ce qu’établit en substance un théor¢me de Gentzen. Le «nom-
bre de Godel» d’une preuve de «consis N» existe dans un modele assez grand
de I’arithmétique '*. Naturellement il faut admettre pour cela des preuves de
longueurs transfinies.

Le théoreme d’incomplétude ne révele donc pas une faille secréte des
mathématiques. Il souligne le fait évident et connu dés I’origine que les preuves

'3 La théorie des ordinaux permet d’étendre le procédé de I'induction mathématique
aux ordinaux transfinis, ¢’est-a-dire aux ordinaux supérieurs a @ (voir note 11). On parle
alors d’induction transfinie. Les ordinaux transfinis réalisent de «grands» modeles de
I"arithmétique. Parallélement, ils permettent de considérer des preuves de longueurs
transfinies.
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logiques ne se situent pas dans le méme espace de pensée que les faits ma-
thématiques auxquels elles correspondent.

Le théoreme de complétude montre que chaque étre mathématique se
manifeste a plusieurs niveaux d’existence. Pour fixer les idées, prenons I'exem-
ple de la sphére. A un niveau supérieur on voit apparaitre la Sphere en elle-
méme. On en parle au singulier. On peut imaginer un «traité de la Sphere».
C’est un archétype unique, distinct de la Droite, du Cercle, du Cube et de tous
les autres étres mathématiques exemplaires. Lorsqu’il était de bon ton de crier
«A bas le triangle!», ¢’était le Triangle archétypique qui était visé '*. A un
niveau plus bas, la Sphere se manifeste dans les spheres du mathématicien.
Dans un méme espace euclidien, le géomeétre peut considérer autant de spheres
qu’il veut. Il peut méme considérer plusieurs espaces euclidiens. Mais on a
vu que I’Espace euclidien admet une infinité de modeles essentiellement dif-
férents. Il en est donc de méme des spheres qui y sont incluses. Par un double
engendrement, la Sphere principale se déploie dans I'univers du mathémati-
cien. A un troisiéme niveau, on trouve les objets sphériques de la physique.
Le physicien trouve intérét a leur préter la traduction de certaines propriétés
des spheres géométriques. Elles peuvent étre matérielles, comme des bulles de
savon ou la surface de billes en acier. Elles peuvent aussi étre abstraites du
monde physique: une surface de potentiel constant autour d’une charge élec-
trique considérée comme ponctuelle et seule dans I’espace physique est une
sphere physique. Elle résulte de la combinaison de deux opé€rations: une
abstraction a partir d’une situation physique et I’attribution opportune d’une
étiquette empruntée a la géométrie. A un niveau inférieur encore, on rencontre
les objets ronds fabriqués par I’artisan ou par 1’artiste, dont on dit alors qu’il
fait de I'art «géométrique».

Une analogie : le monde mathématique de Proclus

Proclus (Byzance, ~ 410 — Athenes, 485) est I'un des derniers grands
philosophes néoplatoniciens. Son Commentaire au premier livre des Eléments
d’Euclide est intéressant a plusieurs titres. D’apres les spécialistes, c’est dans
les prologues de ce texte qu’il expose avec le plus de clarté sa doctrine
philosophique 5. 11 y témoigne aussi d’une expérience vécue de I’activité du

'* Les slogans «A bas le triangle!» et «A bas Euclide!» ont été lancés par le
mathématicien bourbachique Jean Dieudonné, a plusieurs reprises, dans des colloques
internationaux au cours des années soixante.

15 Voir, par exemple, ProcLus, A Commentary on the First Book of Euclid’s
Elements, traduction, introduction et notes par G. R. Morrow, Princeton Univ. Press
1970, page lvi. Ou encore N. HarTMANN, «Principes philosophiques des mathémati-
ques», in S. BRETON (éd.), Philosophie et mathématique chez Proclus, Paris, Beauchesne,
1969, p. 187.
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mathématicien. Essayons de dresser schématiquement un tableau de 1’univers
proclusien.

La description de Proclus évoque I'image d’une pyramide. Au sommet
figure I’Un, principe de toute chose. Par une sorte de générosité surabondante,
I’Un engendre des étres. A leur tour, héritant de cet élan, ceux-ci engendrent
d’autres €tres de proche en proche. Cette cascade descendante est la procession.
Les premiers principes issus de 1'Un sont I’Etre, I'Intelligence premiere et le
Vivant-en-soi. Chez les néo-platoniciens, ces hypostases sont les trois aspects
d’un méme étre que Proclus appelle vovs ou Intellect. La connaissance propre
a I'Intellect est celle de I’étre en tant qu’étre. Elle est dite noétique et elle est
non discursive. Au bas de la pyramide se trouve le domaine des choses
sensibles, percues par les sens et donnant naissance aux opinions. Le domaine
intermédiaire, procédant directement de I'Intellect, est le monde des mathé-
matiques, domaine de la dianoétique ou connaissance discursive.

La mission du sage, du philosophe, est de s’attacher a la conversion qui
est le mouvement inverse de la procession. Son but est de découvrir dans les
choses les principes dont elles procedent et de prendre conscience qu’elles sont
toutes des images plus ou moins distantes de I'Un. Proclus adopte la doctrine
des Idées éternelles et immuables. Elles sont situées dans I’ Intellect. Parmi elles
se trouvent les archétypes des étres mathématiques, les Idées-nombres, 1’'ldée-
sphere par exemple. Selon la procession, chaque Idée mathématique se déroule,
se déploie en une multiplicité illimitée d’images sur lesquelles peut opérer le
mathématicien.

Proclus attribue a la pensée consciente — a ['ame — le passage de I'ldée
unique a la multiplicité de ses manifestations dans le monde dianoétique. Il
compare 1’ame a une tablette de cire doublement écrite. Le contenu de I'In-
tellect est copié dans I'ame sous la présidence de |’ Intellect et par le mouvement
propre de 1'ame. Mais dans I'Intellect les étres sont a I’état de paradigmes, en
concentration et sous forme non discursive. Dans I'ame, ils sont a I'état
d’images, accessibles a la connaissance discursive. Les nombres, par exemple,
y sont encore a |’état de prototypes. Ils ne sont pas des pluralités d’unités. Les
figures — le Triangle, la Spheére — n’y ont pas d’extension, pas de grandeur.
Mais ils sont vivants et automoteurs comme |I’ame elle-méme. La pensée les
dégage alors et les déploie, donnant naissance aux divers objets dont traite le
mathématicien, par la dianoia ou pensée discursive. Toutefois, 1’objectif du
mathématicien est de mieux connaitre, au-dela du discours, les Idées dont ces
objets procedent.

L’ame peut projeter sa connaissance des étres mathématiques dans le
monde des sensibles. Elle donne ainsi naissance aux mathématiques appli-
quées : mécanique, astronomie, canonique, optique, etc. Mais Proclus exclut
I"origine sensible des étres mathématiques. Ou, dans le sensible, voyons-nous
des choses sans épaisseur, sans profondeur? demande-t-il. Bien au contraire,
I’étude des choses sensibles conduit a des connaissances dispersées et hété-
rogenes. Les données de nos sens distraient notre esprit de son besoin de
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retrouver |'unité située au-dessus des choses divisées. Il y a la un obstacle
important sur la voie de la conversion. A la maniere de Platon, Proclus le
surmonte en recourant a la notion de réminiscence. Les impressions de nos sens
¢veillent dans I'ame un souvenir des principes €éloignés qui les précedent dans
la descente. Cette part de I'ame qui se souvient a son essence dans les Idées
mathématiques. Elle en a une connaissance immédiate, méme si elle ne s’en
sert pas. Lorsqu’elle se libere des entraves que constitue 1'afflux des données
sensorielles, elle s’éveille et devient attentive a elle-méme. Cet éveil met la
pensée en marche dans la bonne direction, vers le haut, vers la contemplation
de I'Etre.

Ce survol trop rapide met cependant en relief le role majeur que Proclus
impartit aux mathématiques dans la quéte du philosophe. Il nous montre aussi
quelques convergences entre sa représentation du monde mathématique et
certaines conséquences des théoremes de Gaodel.

Pour Proclus, les étres mathématiques ne sont pas les produits de 1" abs-
traction opérant sur des données sensibles. De méme, nous savons aujourd”hui
que I'infini est une notion premiere en mathématiques. Elle précede la notion
de finitude et il est impossible d’en faire 1'économie. Mais elle ne saurait
résulter d’aucune observation physique. Il en est de méme de la finitude, notion
complexe qui outrepasse la notion non mathématique de numéral. Quant a
|'axiome du choix, non seulement aucune expérience physique ne permet de
le justifier, mais dans la plupart des cas ou il est indispensable, aucune pro-
cédure mathématique n’est en mesure de déterminer la fonction de choix
recherchée.

Pour Proclus, les Idées mathématiques sont éternelles, donc hors du temps.
Elles ne sauraient étre des créations de 1’homme. Qu’en est-il en mathéma-
tiques post-godéliennes? Le verbe «créer» est souvent confus. Le grand ma-
thé maticien Dedekind considere les nombres naturels comme «une libre créa-
tion de I'esprit humain» ', Pour I'établir, il part de I'idée de «chaine». Il
I’introduit en considérant un ensemble non vide E et une application f - E — E.
Une partie non vide K de £ est une chaine si F(K) est inclus dans K. Il introduit
la suite S des ensembles K, f(K), f(fiK)), f(f(fiK))), ... qui le conduit, apres
quelques développements, a I'ensemble N des nombres naturels. Mais on
constate que, dans cette démarche, N est sous-jacent a la construction de .
Dedekind n’a fait que donner un autre nom a une notion qui préexistait dans
sa pensée. D’autre part le théoreme d’incomplétude implique que Dedekind
ne pouvait pas prouver que sa construction fournissait un modele ensembliste
de 'arithmétique. Le théoreme de complétude nous dit en outre que cette
construction ne saurait fournir un modele essentiellement unique des nombres
naturels, a moins qu’elle ne s’appuie sur un tel modele donné a I'avance.
L’exemple de Dedekind montre quelle prudence il faut observer a I'égard de

16 Cf. préface de la premiére édition de I’ouvrage de R. DepekiND, Was sind und
was sollen die Zahlen? Braunschweig, 1888.
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la «construction» par I’esprit humain d’un étre mathématique aussi élémentaire
que le nombre naturel. D ailleurs I'axiome du choix est manifestement 1’aveu
qu’il existe des objets mathématiques que la pensée discursive est incapable
de créer.

Le théoreme de complétude de Godel fait apparaitre, pour chaque étre
mathématique caractérisé par une théorie du premier ordre ayant des modeles
infinis, une disposition pyramidale qu’on retrouve chez Proclus. C’est cette
analogie qui justifie le rapprochement qui est fait ici. Cette ressemblance n’est
pas entierement fortuite, parce qu’il s’agit dans les deux cas des mémes objets.
I serait toutefois téméraire de voir en Proclus un précurseur de Godel. Une
considérable différence d’échelle sépare les connaissances mathématiques du
V¢ siecle de celles du XX¢. Mais les précautions et la lucidité de Proclus quand
il parle des choses de la pensée — I'exemple de Dedekind nous les rend plus
sensibles — nous autorisent a tirer parti de 1'analogie observée.

Pour Proclus le domaine mathématique est a cheval sur le noétique et le
dianoétique, sur la compréhension non discursive et I'intelligence discursive.
Dans le couple godelien formalisme—intuition, le formalisme se situe au niveau
discursif. Mais I’intuition est a cheval sur le discursif et le non-discursif. Elle
opere déja dans le formalisme. Mais son action porte plus haut, sur la repré-
sentation que la pensée se donne des étres mathématiques et, plus haut encore,
sur les choses dont ces représentations livrent des images. Nous sommes la
dans un domaine qui échappe au discours, bien qu’il préside a la recherche
et a I'invention mathématiques.

Il convient aussi de relever au moins deux discordances entre les mathé-
matiques de Proclus et les mathématiques post-godéliennes. La premiere réside
dans la complexité des systemes de modeles d’un méme étre mathématique.
Proclus ne pouvait pas imaginer 'infinie diversité des modeles de I'espace
cuclidien, par exemple, encore que sa doctrine ne I'exclut pas. Une autre
discordance apparait quand on constate le role que Proclus attribue aux ma-
thématiques. Elles sont pour lui une sorte de propédeutique a la théologie sur
la voie de la conversion. I serait imprudent d’en dire autant des mathématiques
d’aujourd’hui.

Conclusion

Ce qui précéde ne répond que treés imparfaitement a la question posée par
le titre de cet exposé. Cette question semble appeler une caractérisation nette
de la nature des étres mathématiques, tout au moins de ceux qui se présentent
comme les plus élémentaires. Or, bien que chacun d’cux soit identifiable,
autonome et consistant, il se réalise a une infinité de niveaux essentiellement
différents. De plus, entre les manifestations concretes de certaines notions —
par exemple la finitude, ’ensemble, la sphere — et les étres mathématiques
qu’elles désignent, il existe une fronticre invisible mais infranchissable. La
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«caractérisation nette» des objets mathématiques exige donc un autre discours
que celut qui convient aux objets des sciences naturelles. Pour en arriver la,
nous nous sommes appuyés sur quelques faits incontestables qui limitent la
fantaisie de ceux qui s’expriment sur la nature des étres mathématiques. Ainsi,
parmi les auteurs qui prétendent apporter du nouveau en philosophie mathé-
matique, certains reprennent a leur compte des préceptes qui ont prévalu
pendant des siecles :

— 1l faut évacuer toute «mystique» des mathématiques.
— 1l faut maintenir une continuité absolue entre les mathématiques et la
physique.

De tels auteurs considerent comme «réel» uniquement ce qui est directe-
ment ou indirectement perceptible par les sens et qui peut &tre localisé dans
I'espace physique. Est qualifié par eux de «mystique» tout ce qui n’est pas réel
au sens précédent. Ces deux injonctions n'en forment peut-€tre qu’une seule.
Quoi qu’il en soit, les travaux de Godel montrent que toutes deux ignorent la
nature des mathématiques.

On peut dire les choses autrement. Les mathématiques d’aujourd’hui
enseignent d’une manicre positive ce que les Anciens avaient compris a leur
facon. A savoir que les €tres mathématiques se déploient dans une réalité
incorporelle, de 1’ordre de la pensée et méme de la pensée non discursive. Ils
en démontrent ['existence et ils font voir que les lois qui régissent cette réalité
different fondamentalement de celles qui nous permettent de décrire la réalité
matérielle. Cette assertion est sans doute banale pour un philosophe. Mais il
est intéressant de constater qu’elle émane de celle qui passe pour la petite
servante des sciences naturelles et techniques.
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