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REVUE DE THÉOLOGIE ET DE PHILOSOPHIE, 121 (1989), P. 241-257

LE MATHÉMATICIEN ET SES IMAGES

André Delessert

Lorsqu'on entend parler des images du mathématicien, on pense
immédiatement à des figures géométriques. La notion que je voudrais évoquer est
beaucoup plus générale. Une figure géométrique est un dessin montrant au
naturel ou en perspective un objet mathématique qui pourrait être matérialisé
sous la forme d'une gravure ou d'une construction en fil de fer et en matière
plastique, par exemple. La figure 1 montre deux pentagones du plan tels que

Fig. 1

chacun d'eux est inscrit dans l'autre: chacune des droites portant un côté du
pentagone «noir» comporte un sommet du pentagone «blanc», et
réciproquement. La figure 2 montre en perspective le «double-six de Schlaefli».
Partant d'un parallélipipède quelconque, on considère six droites «noires» et
six droites «blanches» à raison d'une droite de chaque couleur dans chacune
des faces du parallélipipède, par le centre de cette face; chaque droite d'une
couleur coupe cinq droites de l'autre couleur. L'intérêt de ces figures, qui n'est
pas très grand d'ailleurs, apparaît lorsqu'on s'efforce de les dessiner à partir
des seules descriptions verbales qui viennent d'en être données.
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Fig. 2

Malheureusement le domaine d'efficacité de telles figures est assez réduit.

Beaucoup d'objets mathématiques utiles et passionnants n'admettent aucune

figuration dessinée. Il en est ainsi de l'ensemble des points à coordonnées

rationnelles dans un carré-unité. A la figure 3a), nous avons tenté de montrer,

relativement à un repère cartésien orthonormé, l'ensemble des points dont les

deux coordonnées sont des fractions ordinaires comprises entre 0 et 1, au sens

large, c'est-à-dire 0 et 1 inclusivement. Ce brouillard est inclus dans le carré-

unité des points dont les coordonnées sont des nombres réels compris au sens

large entre 0 et 1. La figure 3 b) devrait faire apparaître les points de ce carré

a) a b) a

Fig. 3 tisi)((1:1(i.l 1 11

b~

11:0Bio

qui n'appartiennent pas au premier ensemble, c'est-à-dire les points du carré

dont l'une des coordonnées au moins est irrationnelle. Ce deuxième brouillard

se distingue mal du premier, bien qu'il n'ait aucun point en commun avec lui.

De telles figures sont de nature à égarer l'imagination. Pour des raisons

analogues, il faut renoncer à représenter fidèlement des objets qui ne trouvent pas

place dans l'espace à trois dimensions dont nous avons l'habitude. Examinons

ce qu'il en est pour le n-simplexe ou Simplexe de dimension n : c'est l'enveloppe

convexe de (n+ 1) points en position générale dans un espace numérique de

dimension n. Par la figure 4, nous essayons d'illustrer ce qui se présente pour

les premières valeurs de n. Le O-simplexe se réduit à un point. Le 1-simplexe

est la plus petite figure convexe comportant deux points en position générale,
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Fig. 4

n=0 n=i
o o ¦

n=2

n=4

c'est-à-dire distincts, sur une droite : c'est un segment de droite. Le 2-simplexe
est un triangle plein : enveloppe convexe de trois points non alignés dans un
plan. Pour obtenir le 3-simplexe, il faut prendre dans l'espace à trois dimensions

quatre points non coplanaires; leur enveloppe convexe est un tétraèdre
plein. Nous pouvons le représenter en perspective avec une arête cachée. A
partir de n 4, les choses se gâtent. On peut à la rigueur reprendre les quatre
points qui nous ont servi à représenter le tétraèdre en perspective et y adjoindre,

un peu au hasard, un cinquième point. Le 4-simplexe a cinq sommets. Ses

arêtes (ou 1 -faces) sont au nombre de dix : les six du tétraèdre plus les quatre
issues du cinquième sommet. Ses 2-faces sont les quatre du tétraèdre de départ
plus les six qui, partant du cinquième sommet, s'appuient sur les arêtes du
tétraèdre, soit dix au total. Enfin il a cinq 3-faces, autant que de manières
différentes d'écarter un sommet parmi les cinq. Les quatre premiers dessins

nous font voir chacun un objet concret. Le cinquième, qui ne nous montre rien
de matériel, nous permet cependant de réfléchir d'une manière cohérente sur
un objet qui est le fruit de notre seule pensée. Nous venons de faire un petit pas
vers l'idée d'image.

Convenons de donner le nom d'image à toute constellation d'objets de

pensée, constellation qui soit en outre bien reconnaissable et capable
d'engendrer la réflexion. Reprenons les trois volets de cette convention. Une
image est d'abord la donnée de certains objets pensés — donc pas nécessairement

réalisables matériellement — soumis à un principe organisateur.
Ensuite, cet organisme doit être bien reconnaissable en ceci, qu'il livre son
identité d'un seul coup, d'une manière globale. Enfin, par l'effet d'une sorte de
force interne, il doit exciter la curiosité et guider la compréhension.

Une image est d'autant plus intéressante qu'elle est économique, à la fois
simple et potentiellement significative. Généralement, plus elle est complexe
et plus sa portée est réduite. C'est le cas des figures géométriques dont il a été

question précédemment. Ce sont aussi des images, puisque aussi bien tout être

mathématique est un objet de pensée. Mais comme elles doivent remplir
d'abord une mission de figuration, elles ne conviennent qu'à des situations
géométriques très spécifiques.
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Sous la forme où nous l'avons présentée, la notion d'image est encore
excessivement vague. Plutôt que de la préciser théoriquement, donnons-en
des exemples. Nous les prendrons dans le domaine mathématique, évidemment,

et nous les choisirons de manière à suggérer leur grande diversité.
Notre première image est évoquée par une configuration de signes:

f
A ^B
a h^ f (a)

A et B désignent des collections d'objets, le plus souvent des ensembles.
f est, par définition, une collection de couples (a, b) satisfaisant les conditions
suivantes:

• a est dans A, b est dans B

• pour tout a dans A, il existe dans f un couple dont le premier élément
est a

• quel que soit a, si (a,b) et (a, b') sont dans f, b b'.

Si (a,b) est dans f, b se note aussi f(a). Ces propriétés se résument en disant

que f a le caractèrefonctionnel. Tout ce qu'on appelle «fonction» entre dans

un tel schéma. Une loi de composition, comme l'addition des nombres entiers

qui, à une paire d'entiers, associe leur somme est aussi assimilable à une
fonction. Il en est de même dans toute transformation géométrique : symétrie,
rotation, projection, etc. Les propriétés des équations différentielles apparaissent

plus clairement lorsqu'on les regarde comme des fonctions convenables
d'une variété — pensons à une surface — vers l'ensemble des vecteurs tangents
à cette variété.

On retrouve l'image qui nous intéresse dans des situations plus générales

encore. C'est le cas lorsqu'on fait correspondre à tout ensemble l'ensemble de

ses sous-ensembles. Les lettres A et B désignent alors des collections beaucoup
plus grandes que des ensembles. On peut dire sans exagération que toutes les

mathématiques sont marquées par cette image. Au point que j'ai hésité à la

faire apparaître, tant il y a de phénomènes intéressants à mentionner à son

propos. Je me bornerai ici à quelques remarques.
Relevons d'abord que cette image engendre naturellement d'autres images

qui renforcent son pouvoir suggestif. Considérons, par exemple, la composition

des fonctions qu'on peut schématiser par le diagramme suivant:

gof

A-^ B — C

a \-> f(a) \-> g(f(a»
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Une chaîne un peu plus longue met en évidence l'associativité de la
composition des fonctions:

ho (g of) (ho g) of

f ^
f g h

A -> B -—C -? D

a h- f(a) M g(f(a)) M h(f(g(a)))

Il s'agit là d'une propriété intéressante lorsqu'on pense au rôle que joue
l'associativité dans toutes les parties des mathématiques. En poussant la chose
un peu plus loin, on tombe sur des configurations telles que celle qui est
représentée à la figure 5. Supposons que toutes les lettres qui y apparaissent

_t> B r> C 1>° D 1> E

symbolisent des ensembles, et toutes les flèches des fonctions. Même si on ne
précise rien de plus, il est naturel de se demander si, partant d'un élément de A
et en suivant les deux itinéraires indiqués sur la figure, qui tous deux
aboutissent en E, on obtient le même élément final. Il arrive que la chose soit vraie,
mais qu'elle soit difficile à prouver. On constate qu'une telle image peut
suggérer un théorème éventuel avant qu'on ait la moindre idée sur la manière
de le démontrer.

Revenons au schéma de la relation fonctionnelle:

f
A -* B

a |-> f(a)

La lettre a désigne un élément «quelconque» de A. Il n'est pas facile de
comprendre ce qu'il faut entendre au juste par «quelconque». Tout nombre
naturel, comme 12 ou 57, est soit pair soit impair. Mais il semble bien qu'un
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nombre naturel quelconque ne soit ni l'un, ni l'autre, ce qui est un peu
surprenant. Et pourtant la notion d'objet quelconque, de point quelconque, de

triangle, de courbe quelconque est des plus utiles en mathématiques. Ainsi, le

diagramme ci-dessus mentionne encore deux collections quelconques A et B et

une fonction quelconque f. Les mathématiciens ont dû maîtriser cette notion
délicate. Il faut renoncer à dire ici comment ils s'y sont pris. Mais ils y sont

parvenus et ils sont probablement les seuls à avoir su le faire. Contentons-

nous de noter que cette idée étrange semble liée à celle d'image.

Reprenons le même diagramme. Il comporte des flèches. La flèche est un
signe qui suggère au moins deux relations bien familières : celle de cause à effet
et celle d'implication logique. Commençons par la causalité, cette bizarre
manie que nous avons de croire, selon Chesterton, que lorsqu'une chose

incompréhensible suit constamment une autre chose incompréhensible, les

deux forment ensemble une chose compréhensible. La fonction f apparaît
parfois comme une machine. Lorsqu'on y introduit l'élément a, il en sort à

l'autre bout l'élément f(a). On dit que f envoie a sur f(a), ou encore que f (a) varie
en fonction de a. Cause, effet, envoi, variation, autant de termes qui se réfèrent
à une évolution dans la durée. Le temps joue un rôle majeur en physique et on
sait que les mathématiques trouvent dans la physique une bonne partie de
leurs motivations. Et pourtant, dès les origines, les penseurs ont été attirés par
la vision d'êtres mathématiques vivant hors de la durée. Cette tendance entre
en conflit avec le sentiment naturel du mathématicien qui, lui, vit bel et bien
dans la durée. A ce propos, il est intéressant de noter que Newton, lorsqu'il
étudiait une fonction d'une variable indépendante x, considérait que x variait
avec le temps. Nous en avons conservé la trace dans l'expression bizarre:
«faire tendre x vers 0». Aujourd'hui, certains problèmes de fondement ont été
éclaircis. On peut déclarer que la durée est essentiellement étrangère aux êtres
mathématiques. L'image qui nous a servi de point de départ le montre. Une
fonction est un ensemble de couples ; et comme tout ensemble mathématique,
il est, tout simplement. Il n'est pas en gestation, en évolution, en puissance. Il
est actuellement, présent de toute éternité, définitivement achevé. Pour le

mathématicien, le mouvement d'un solide est une courbe dans un espace
convenable, donc encore un ensemble actuel. Pour se faire comprendre du
profane, le mathématicien parlera de point mobile, de vitesse. Mais ce sont là
des concessions pédagogiques, semblables à celles des parents qui expliquent
que le fer à repasser brûle parce qu'il est méchant. C'est sans doute efficace,
mais ce n'est pas la pure vérité.

Les flèches qui apparaissent dans le diagramme de la fonction évoquent
encore l'idée d'une implication logique. Lorsqu'on choisit a dans la collection
A, l'élément f(a) qui forme couple avec lui devrait apparemment résulter d'un
calcul effectué sur a. La lettre f, initiale de «fonction», fait penser à une
procédure logique réalisant le passage de a à f(a). Si on considère, par exemple,
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la fonction q déterminée et illustrée à la figure 6, fonction bien familière aux
écoliers, on voit se profiler la consigne donnée par une suite d'opérations:

=.2 i— ^

A«

R
D>Fig. 6

Or il faut se rappeler que toute fonction est un ensemble de couples, rien de

plus. L'analyste doit pouvoir utiliser l'ensemble de toutes les fonctions d'une
variable réelle, à valeurs réelles. Et il sait bien que, parmi ces fonctions, les

fonctions calculables sont des exceptions, quel que soit le sens qu'on donne au

mot calcul. Ce fait a beaucoup troublé certains mathématiciens qui auraient
aimé n'utiliser que des fonctions qu'ils puissent «nommer», c'est-à-dire
construire. C'est ici qu'il faut mentionner un phénomène mathématique d'une
grande importance, qu'on évoque en parlant de l'axiome du choix. Que le
lecteur essaie d'imaginer tous les ensembles non vides de nombres réels. Bien
entendu, la chose est impossible, mais qu'il essaie quand même. Qu'il tente
maintenant d'imaginer une fonction, que nous appellerons «de choix», qui
prélève un élément et un seul dans chacun de ces ensembles non vides. On sait

aujourd'hui qu'on ne peut pas faire de mathématiques sans s'appuyer sur la

présence actuelle d'une telle fonction. Et pourtant aucun mathématicien n'est
arrivé, et sans doute n'arrivera, à en donner une description effective. Faire
des mathématiques aujourd'hui implique l'emploi d'objets de pensée réels,
dont l'existence ne résulte d'aucune construction possible, mais seulement du
fait que leurs propriétés sont logiquement compatibles. Cette exigence apparaît

déjà lorsqu'on évoque l'image dont nous sommes partis, image qui couvre
toutes les fonctions, même celles qui n'auront jamais de nom. On constate que
l'image de la relation fonctionnelle, si anodine qu'elle paraisse au premier
abord, s'enracine dans les fondements ténébreux de la pensée mathématique.
C'est de là sans doute qu'elle tire sa force suggestive.
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Nous nous sommes un peu attardés sur l'image de la fonction. Passons un

peu plus rapidement sur d'autres exemples, qui permettront de compléter et
de corriger les impressions provoquées par ce qui précède.

Considérons des paires d'opposés telles que:

• fini — infini

• discret — continu
• local — global

Contrairement à l'image de la fonction, elles ne sont pas figurées par des

diagrammes spécifiques. Mais comme elle, elles sont bien des images selon

notre convention. Alors que l'idée de fonction repose sur le principe du couple
ordonné, ces duettistes s'articulent suivant une polarité symétrique. Ils
évoquent des tensions entre des notions antinomiques. Malgré l'intérêt que
présente l'opposition du local et du global, nous nous bornerons aux deux
premières images.

Prenons la paire fini-infini. Comme tout le monde, le mathématicien vit
dans un milieu matériel. Il ne peut y écrire qu'un nombre fini de signes, y
prononcer qu'un nombre fini — encore que trop grand — de mots. Il est

apparemment condamné à la finitude. Cependant les êtres mathématiques
auxquels il a affaire l'obligent à traiter de collections infinies. L'exemple le

plus simple et à la fois le plus pradoxal est celui des nombres naturels, qui
naissent justement de l'étude des ensembles finis. La figure 7 nous présente sur
une première ligne l'ensemble vide, puis des ensembles comportant un, deux,
trois, quatre éléments, etc. La deuxième ligne montre l'ensemble N des
cardinaux respectifs de ces ensembles, notés comme à l'habitude 0, 1,2, 3, 4,...
Nous avons profité de l'occasion pour faire apparaître l'application de N vers

N
Fig. 7

N

N envoyant chaque nombre naturel sur son successeur immédiat. On obtient
de la sorte une correspondance parfaite entre tous les nombres naturels et les
nombres naturels différents de 0, qui forment un sous-ensemble propre de N.
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Cette situation est liée au fait que N est un ensemble infini, comme nous le

verrons plus loin. Depuis toujours, les mathématiciens ont été tentés de

raisonner sur la totalité N des nombres naturels. Longtemps, les philosophes leur
ont contesté ce droit. L'infini, attribut divin, n'était pas un jouet pour eux.
Comme le disait à peu près Aristote: «Je ne veux pas priver les mathématiciens

de leur science en réfutant l'existence actuelle de l'infini. En fait, il n'en
ont pas besoin et ils ne l'utilisent pas». Et il ajoutait: «Ils postulent seulement

qu'un segment de droite peut être prolongé autant qu'ils le veulent» (in
Physique, livre III, chapitre 7). Paraphrasons ce dernier passage, pour notre propos:

ils postulent simplement qu'ils peuvent toujours prendre un nombre
naturel plus grand qu'un nombre naturel arbitrairement choisi à l'avance. Ce
discours a traversé les âges et de grands mathématiciens le tenaient encore au
début de ce siècle. Malheureusement, aucun d'eux n'était fidèle à ses propres
principes sur ce point. On a pu montrer qu'ils ne se privaient pas de manipuler
l'infini actuel et même qu'en réalité ils ne pouvaient rien faire d'autre. Il s'est
révélé en effet que l'infini actuel est plus accessible au mathématicien que le

fini. Je voudrais le faire sentir à l'aide d'un exemple.
Lorsqu'on veut caractériser mathématiquement le fini, on a le choix entre

plusieurs possibilités. A peu de chose près, elles se réduisent aux deux
suivantes:

f-\ L'ensemble non vide E est fini s'il existe un nombre naturel n tel qu'on
puisse établir une correspondance biunivoque entre E et l'ensemble

(1,2,3,..., n).
F2 (Dedekind). L'ensemble non videE estimi s'il est impossible de le mettre en

correspondance biunivoque avec l'un quelconque de ses sous-ensembles

propres.

La figure 8a) illustre l'application de la règle Ft à un ensemble fini pour
lequel n 3. La figure 8b) montre un essai infructueux d'établir une
correspondance parfaite entre un ensemble de quatre éléments et l'un de ses sous-
ensembles propres formé de trois éléments.

La propriété F1 est assez intuitive. Mais, à la réflexion, elle est ambiguë
parce qu'elle ramène le fini au nombre naturel qui, à son tour, semble découler

a) b)

Fig. 8

[>2
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de l'idée de finitude. La propriété F2 est peut-être moins immédiate, mais elle

est plus séduisante parce qu'elle évite le cercle vicieux précédent. Longtemps
les mathématiciens ont cru que les propriétés Ff et F2 étaient équivalentes.
Cela les autorisait à utiliser indifféremment l'une ou l'autre suivant les

circonstances. On a pu montrer toutefois que, pour qu'un ensemble fini au sens
de F2 soit aussi fini au sens de F1, il faut poser une hypothèse très forte portant
sur tous les ensembles infinis. Une hypothèse du genre suivant: tout ensemble

infini possède un sous-ensemble en correspondance parfaite avec l'ensemble
des nombres naturels N. Cette condition est proche de l'axiome du choix dont
il a été question précédemment. Pour circonscrire la finitude, on a donc à

choisir entre un cercle vicieux et un détour par une propriété indémontrable,
particulièrement peu intuitive, concernant l'infini. Il résulte de ce genre de

considérations que l'opposition entre le fini et l'infini est irréductible, en ce

sens qu'elle ne pourra pas être résolue par un progrès de la connaissance. La
tension dialectique qu'elle provoque alimente et alimentera la pensée des

mathématiciens, du moins tant qu'ils seront d'accord pour bannir des méthodes

et des hypothèses considérées aujourd'hui comme déraisonnables.

La continuité est l'un des outils utilisés en mathématiques pour apprivoiser
l'infini. Elle joue un rôle important dans la vie de tous les jours. Nous
n'identifions la plupart des objets matériels qui nous entourent que dans la

mesure où nous pouvons, si besoin est, les suivre des yeux: un oiseau, un

nuage, un personnage dans la foule, un nombre de plusieurs chiffres. Il est

remarquable aussi que notre langue ne possède guère de mots pour désigner
d'un seul coup des systèmes d'objets distincts, mais qui vont toujours ensemble

: une tasse et sa soucoupe, un boulon et un écrou, une clé et sa serrure, par
exemple. Nous sommes tous sensibles à la connexité, par quoi s'opposent le

discret et le continu. Du point de vue mathématique, le discret et le continu
apparaissent particulièrement bien quand on met en regard les nombres
naturels et les nombres réels (fig. 9).

N 0 1

nb. naturels

Fig. 9

vT
-t>

La branche des mathématiques qu'on appelle topologie a pour tâche de
caractériser les ensembles qu'on peut considérer comme continus, ainsi que
les fonctions qui respectent cette propriété et qu'on qualifie à juste titre de
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continues. Elle vise surtout à découvrir les conséquences qui découlent de ces
caractères. Les définitions posées sont finalement assez simples, bien qu'il ait
fallu attendre le XIXe siècle pour qu'elles apparaissent clairement. En revanche,

les phénomènes qui en résultent n'ont pas fini de surprendre les
mathématiciens. Ceux-ci s'en trouvent comblés, car contrairement à ce qu'un vain
peuple imagine, ils demandent à être étonnés et non pas à se sentir enfermés
dans des mécanismes sans fantaisie. Il est difficile de montrer ici l'un de ces

phénomènes qui ravissent les mathématiciens: ils ne sont généralement pas
élémentaires. Tentons cependant de suggérer ce type de surprise en présentant
au profane une situation qui lui permet de tester sa propre intuition de la
continuité. La figure 10 a) montre deux objets de l'espace composés chacun
d'un disque à deux trous et d'un fil circulaire. Dans le premier cas. le fil passe

b)

Fig. 10

par les deux trous ; dans le second, il ne traverse que l'un d'eux. Supposons que
le fil et le disque sont en caoutchouc. Il est assez évident qu'il est impossible de

déformer le premier objet dans le second d'une manière continue. On doit
nécessairement casser le fil (fig. 10 b) ou déchirer le disque (fig. 10 c), quitte à

les recoller par la suite. Examinons cependant la figure 11. Sous forme d'une
petite bande dessinée, elle montre une suite de déformations réalisables avec
une membrane élastique qui, contre toute attente, fait effectivement passer de
la première à la deuxième configuration de la fig. 10 a.

Ce petit exemple suggère en miniature les phénomènes inattendus que la

topologie, pour ne parler que d'elle, réserve au mathématicien. Parmi ceux-là,
l'un des plus inquiétants est apparu assez récemment, à propos du discret et du
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Fig. 11
M

continu tels qu'ils sont illustrés par les nombres naturels et les nombres réels

(cf. fig. 9). Depuis Dedekind, il semblait possible de construire les nombres
réels à partir des nombres naturels par une procédure transparente. L'une des

opérations nécessaires en cours de route consiste à introduire l'ensemble de

tous les ensembles de nombres naturels. Elle est aussi facile à imaginer qu'à
énoncer. Et pourtant il s'est révélé qu'il est impossible de savoir au juste ce que
produit cette opération. Comme l'a montré Paul J. Cohen en 1963, on peut
formuler une infinité d'hypothèses exclusives les unes des autres sur le résultat
obtenu. Cette opération est mystérieuse et elle le restera sans doute définitivement.

De nouveau une coupure essentielle sépare deux notions antagonistes.

Elle continuera à exciter la curiosité et l'imagination des mathématiciens.
Et ceux-ci persisteront à s'appuyer sur une intuition dont ils ne sauraient se

passer, mais dont ils savent qu'elle est capable de les trahir.
Les constatations qui précèdent conduisent assez naturellement à la

dernière image que nous montrerons. Elle est suggérée par le diagramme de la

figure 12. A partir d'un segment de droite AtA2, les mathématiciens cons-

A1=A2

Al _A2 <>
Fig. 12

truisent un cercle en identifiant en un même point A les extrémités de A i et A2
du segment. Sans entrer dans les détails, disons qu'il faut éventuellement
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prendre quelques précautions pour que la couture en A disparaisse sur le
cercle. Cette opération est l'une des plus fréquentes en mathématiques. Donnons

quelques exemples géométriques obtenus à partir d'un simple carré. La
figure 13 a) montre comment on obtient une sphère en identifiant tous les

points du bord du carré, à la façon dont on serre les cordons d'une bourse. La
bande de Moebius de la figure 13 c) s'obtient en identifiant, sur deux côtés

Fig. 13

mA A A
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\ A A
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=>

opposés, les points qui occupent des positions symétriques par rapport au
centre du carré. Cette surface intéressante est souvent proposée aujourd'hui à

l'esprit d'invention et de découverte des élèves des petites classes. A la figure
14 a), on a représenté la confection du tore T2. On peut procéder en deux
étapes. A l'issue de la première, on obtient un tuyau à section circulaire; la
seconde consiste à identifier les deux bouts de ce tuyau en respectant les sens
de parcours indiqués. Le résultat est une surface qui ressemble à une chambre
à air d'automobile. La figure 14 b) fait apparaître la bouteille de Klein ou tore
de Klein. On peut aussi procéder en deux temps. Le premier est le même que
celui de la figure 14 a). Le second exige une petite contorsion : l'un des bouts du
tuyau doit être introduit à travers la surface latérale du cylindre afin que l'on
puisse souder les deux bases conformément aux sens de parcours prescrits. La
figure 15 c) présente le cas où on identifie deux à deux les points du bord qui
sont symétriques par rapport au centre du carré. L'objet obtenu est le plan
projectlf réel. Comme pour la bouteille de Klein, sa représentation dans
l'espace ordinaire n'est pas très heureuse. On voit mal, par exemple, que ces deux
surfaces n'ont qu'un seul côté, comme la bande de Moebius.
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Fig. 14
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Fig. 15

On peut faire quelque chose d'analogue à partir d'un cube. Par exemple en
identifiant deux à deux les points des faces opposées qui appartiennent à une
même perpendiculaire à ces faces (Fig. 15). On obtient de la sorte un être

géométrique qui a globalement quelque parenté avec le tore, mais qui
ressemble localement à l'espace habituel à trois dimensions. On l'appelle le tore
T3. On voit en passant se manifester l'opposition entre le local et le global, que
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nous avons laissée de côté jusqu'ici. Remarquons qu'un rayon lumineux
partant d'un point P perpendiculairement à une face du cube parcourrait en
réalité un cercle dans T3. Il toucherait la paroi en un point R et réapparaîtrait à

l'instant derrière P, au même point R, pour repasser par P, et ainsi de suite,
indéfiniment. On peut s'amuser à imaginer que nous vivons à notre insu dans

un tel espace, de diamètre si grand qu'aucun faisceau lumineux n'a encore eu le

temps d'en faire le tour depuis le «big bang». Notons en passant que la
construction de cet espace est plus facile à penser qu'à réaliser matériellement.

Revenons à la figure 12, qui représente la situation-type. On observe
d'abord avec quelle désinvolture les mathématiciens identifient les extrémités
d'un même segment. Quelle est l'identité d'un objet qui résulte de l'identification

de deux objets différents? Il suffit de savoir que cette opération,
moyennant des précautions assez élémentaires, ne crée aucune contradiction
logique. Les objets qui en résultent non seulement sont possibles, mais ils sont.
Dans la mesure où cela fait problème pour la philosophie, il faut considérer les

mathématiques comme un laboratoire d'essais des matériaux philosophiques.

D'autre part, on ne peut manquer d'être frappé par l'analogie entre
l'identification des extrémités d'un segment et le symbole bien connu de la
«coïncidence des opposés». Le cercle obtenu évoque tout naturellement l'Ourobo-
ros, le dragon qui se mord la queue. Selon les spécialistes de la mythologie, ces
deux thèmes sont proches du mythe de 1'« Eternel Retour», qu'illustre assez
bien le rayon lumineux repassant indéfiniment par le même point. Il est
intéressant de retrouver en mathématiques, dépouillés apparemment de toute
connotation mythique, des symboles qui ont habité si longtemps les pensées
des hommes. Et qui les hantent aujourd'hui encore, si on accepte de voir une
conjonction des opposés dans l'acharnement des physiciens et des biologistes
à rechercher dans l'infiniment petit le secret du grand Tout, du Cosmos ou de
la Vie.

On pourrait multiplier les exemples. Il serait même indispensable de le

faire si l'on désirait serrer d'un peu plus près le rôle joué par les images dans la
pensée mathématique. Il faudrait introduire des descriptions plus techniques.
Nous devons y renoncer dans un exposé qui se veut une simple introduction.

Les exemples qui précèdent avaient pour but de faire ressortir quelques-
uns des caractères de ce que j'ai introduit sous le nom d'image. Peut-être la
schématisation de la fonction, les oppositions fini-infini, discret-continu et
l'opération d'identification apparaissent-elles maintenant comme des
constellations assez simples d'idées que la pensée appréhende d'un seul coup et
qu'elle reconnaît immédiatement, un peu comme on le fait d'Orion et de la
Grande Ourse dans le ciel étoile. J'ai tenté de suggérer qu'elles peuvent surgir
dans des situations très diverses; qu'à la fois elles nous éclairent et elles nous



256 ANDRÉ DELESSERT

inquiètent, de sorte que le mathématicien se sent interpellé par elles. Sans

doute a-t-on remarqué qu'elles entrent en résonance les unes avec les autres.
Pour ne souligner qu'une rencontre parmi d'autres, le mythe de l'Eternel
Retour est interprété ordinairement comme l'abolition du temps profane et

l'émergence d'un présent intemporel, qui est justement le propre des êtres

mathématiques.
Malgré ce que cet exposé a de lacunaire, essayons non pas d'énoncer des

conclusions, mais de dégager quelques perspectives. Il faut relever d'abord

que les images du mathématicien ne sont pas des objets mathématiques.
Contrairement à la sphère, à l'intégrale de Riemann ou aux séries trigonomé-
triques qui sont caractérisées d'une façon neutre écartant toute donnée
subjective, les images ne fonctionnent comme telles que dans la mesure où elles

provoquent des attirances, des craintes, des tensions vécues personnellement

par le mathématicien. Celui-ci, tout en respectant les règles formelles du jeu
mathématique, y répond selon son tempérament et le sens que sa réponse
prend à ses propres yeux. Nous touchons là à un aspect de l'activité
mathématique qui échappe souvent au profane, car la pudeur du mathématicien le

lui dissimule avec soin. Les théories mathématiques sont traditionnellement
présentées comme des édifices hypothético-déductifs reposant sur un grand
nombre de principes «éloignés de l'usage commun» et «si gros qu'il est

presque impossible qu'ils échappent». La logique, une logique étroite, rigide
et plutôt grossière en gouverne l'architecture. Il est vrai que les ouvrages
mathématiques, à quelques exceptions près, sont écrits en vue d'établir
publiquement la solidité formelle de ces constructions. Dès le premier coup d'œil, le

non-mathématicien y trouve la confirmation de ce que lui a si adroitement
enseigné Pascal, à savoir qu'«il est rare que les géomètres soient fins». Seuls
des esprits sans délicatesse ni jugement, astucieux, droits et d'une patience
illimitée semblent susceptibles de s'adonner à de semblables fantaisies. Ce que
le profane voit mal, et parfois ne veut pas voir, c'est la double réalité à laquelle
se réfère le formalisme mathématique:.celle des êtres mathématiques et celle
du mathématicien qui les interroge. Ce questionnement n'est pas l'effet d'une
simple curiosité ni d'un besoin de distraction. Il trahit une préoccupation,
voire une anxiété. Celui qui se propose de réciter toute la suite: «un, deux,
trois, quatre...» s'engage dans le dialogue difficile du fini et de l'infini. Mais,
par là-même, il éprouve, au plus intime de lui, le fait brutal qu'il n'y parviendra

jamais parce qu'il disparaîtra après n'avoir rien fait de mieux qu'une
tentative dérisoire. Ainsi, la fascination du mathématicien pour l'infini (ou
pour le fini) s'enracine dans l'angoisse viscérale qu'il éprouve lorsqu'il regarde
en face la suite illimitée des nombres naturels, angoisse dont il n'est pas
difficile de trouver le nom véritable. L'image de l'opposition fini-infini — et ce
n'est qu'un exemple parmi d'autres — tire sa force de suggestion d'une
inquiétude fondamentale. Le titre de notre exposé a été choisi en pensant à cet
aspect psychagogique des images.
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On peut dès lors faire un pas de plus. L'activité journalière du mathématicien

n'a pas pour seul but de tordre le cou à des angoisses personnelles. Car
les êtres mathématiques avec lesquels il négocie ne se réduisent pas à des

mécanismes formels. Ils vivent. Ils répondent conformément à leur nature
aux questions du mathématicien. Rarement selon l'attente du «bon sens»,
souvent par de nouvelles énigmes plus déroutantes encore. Celui qui croit
avoir exorcisé la suite illimitée des nombres naturels en articulant la formule
finie de l'induction complète se voit immédiatement confronté au mystère
tout aussi épais de la répartition des nombres premiers. Les êtres mathématiques

se présentent au mathématicien comme des réalités «incontournables»
qui le renvoient avec fermeté à ses interrogations primordiales. On peut
comprendre qu'ils lui apparaissent selon des constellations, des images qui ont
traversé les siècles et les cultures. Lorsqu'il s'interroge sur leur nature, il
s'inscrit consciemment ou non dans les courants de pensée qui n'ont jamais
cessé d'obséder les esprits les plus lucides. Ainsi, par exemple, quelles que
soient les convictions ou l'idéologie qu'il professe, le mathématicien est un
personnage qui a l'expérience d'un dialogue avec des êtres mathématiques
vivant hors de la durée, dans l'éternité au sens platonicien où l'entendent
souvent les théologiens. Voilà comment la plus dure des sciences dites dures

rejoint les sciences humaines les plus perméables à l'enthousiasme.
Les mathématiques sont trop souvent regardées comme une science utile

en ceci, qu'elles sont efficaces pour obliger les réticents à se soumettre aux
décrets d'autorité : échec scolaire ou urgence d'une innovation technique. Ce

qui précède met l'accent sur des raisons plus honorables et plus gratifiantes de
choisir la carrière mathématique. Peut-être cela nous excuse-t-il de ne pas
respecter la discrétion farouche qu'observent à ce sujet la plupart des
mathématiciens.
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