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L'IDEE DE DIMENSION

I. L'idée de dimension, bien qu'elle soit une des plus intuitives et
anciennes de la géométrie, n'a été l'objet d'une théorie exacte et
satisfaisante que depuis vingt ou trente ans, et ce n'est que ces
derniers temps qu'elle a atteint une certaine perfection. La question,
touchée déjà dans les Eléments d'Euclide, a été reprise autour de

1900 sous un nouvel aspect, entre autres par le célèbre mathématicien

français Henri Poincaré, et ses idées sont à la base des recherches

ultérieures qui ont donné lieu à une des plus belles théories
géométriques.

Si je vais essayer de vous présenter quelques résultats et idées

simples à ce sujet — dans la forme plus ou moins incomplète que le

cadre de cette leçon m'impose et que mes collègues mathématiciens
voudront bien excuser — c'est parce que je crois qu'il s'agit là d'une
chose dont on parle assez souvent en disant que l'espace a trois
dimensions, qu'une surface en a deux, que le temps a une dimension,
en faisant allusion, avec un sous-entendu mystérieux, à la quatrième
dimension —¦ sans bien se rendre compte de ce qu'on entend par là,
et sans savoir qu'il s'agit d'une question d'importance fondamentale

pour la géométrie et pour toutes les sciences.

Toutefois, je ne considère tout ceci que comme un exemple, et
le but de mon exposé sera atteint, si j'arrive à vous donner une idée

N. B. — Leçon inaugurale prononcée à la Faculté des Sciences de l'Université
de Lausanne, le 5 février 1943.
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des relations assez délicates qui existent entre l'intuition, l'expérience

et l'abstraction, et qui sont caractéristiques de la façon de

penser et de travailler en géométrie moderne.

2. Venons en à notre problème : Que notre espace soit à trois dimensions,

qu'une courbe soit à une dimension, etc., qu'est-ce que cela

veut dire Quelles sont les raisons et les conséquences de ce fait
Avant tout : Qu'est-ce que l'espace Il nous faut bien distinguer

deux choses : l'espace de notre intuition et expérience, où nous
vivons — je veux l'appeler dans ce qui suit l'espace réel (seulement
à titre d'abréviation, car il y a plusieurs sortes ou gradations de

réalité) — et l'espace géométrique qui est une création abstraite de

l'esprit.
L'espace réel —¦ je ne veux pas essayer d'en donner une définition

fermée ; ses propriétés sont plus ou moins imprécises ; car les objets
considérés ne sont pas des points, droites, etc., mais des arêtes d'un

corps, des rayons lumineux, des réticules, des plans plus ou moins

rugueux, des figures dessinées d'une manière un peu inexacte ; et si

on essayait de rendre plus exactes les propriétés de ces objets par
approximations successives, on n'y arriverait pas, même théoriquement

; comment arriver, par exemple, à une droite précise, la matière
étant composée d'atomes, ou de molécules en mouvement thermique
Et un rayon lumineux, dès qu'on essaie de le rendre suffisamment

fin, commence à se disperser On peut même dire que les propriétés
de tous ces objets changent de temps en temps ¦—¦ suivant nos moyens
et nos possibilités expérimentales. Sans trop en discuter, nous voulons

admettre que tout ce qu'on dit de l'espace réel est vrai dans

un sens naïf et pas tout à fait définitif.
Dans l'espace géométrique, les choses sont bien différentes. Ses

objets ont des propriétés tout à fait exactes : ce sont ou bien des

axiomes qu'on ne démontre pas, ou bien des théorèmes qu'on
démontre à l'aide des axiomes et de la déduction logique. Mais que
sont ces objets On n'en dit rien ; ce ne sont en tout cas pas les

objets inexacts de l'espace réel, mais des êtres abstraits qui ont
seulement les propriétés qu'on leur a attribuées sous forme d'axiomes.
Ces axiomes ne sont donc sûrement ni vrais ni faux ni évidents,
mais tout simplement des postulats, des conventions qu'on impose
à des êtres abstraits appelés points, droites, etc. Ces conventions
sont naturellement inspirées par le réel ; elles idéalisent des choses

qu'on a constatées dans le réel d'une manière assez grossière. Mais
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elles dépassent tout ce que le réel peut nous donner : si l'on dit, par
exemple, que deux droites se coupent en un point, ou si l'on parle du

comportement à l'infini, l'espace réel ne nous donne jamais de

renseignements précis et directs là-dessus. Il y a donc une part d'arbitraire

dans les axiomes ; l'espace géométrique serait-il ainsi une
construction purement logique qui se base sur des conventions
arbitraires Heureusement il est plus que cela, plus qu'un simple jeu
logique : il est une image schématique de l'espace réel, extrêmement
utile d'ailleurs ; on s'en sert à tout instant dans notre vie, dans la

technique, dans les sciences.

En conclusion : l'espace géométrique est une construction logique
dont la base est formée par les axiomes, c'est-à-dire des conventions
arbitraires du point de vue logique, mais inspirées par le réel et en

conséquence justifiées. L'espace géométrique n'est pas identique à

l'espace réel, mais il en est — pour employer une expression due à

M. Gonseth — un schéma simple et efficace.

On peut naturellement créer d'autres geometries, en choisissant

comme base de la construction logique des axiomes un peu
différents, et on l'a fait. C'est alors l'expérience qui nous amène à prendre
l'une de ces geometries plutôt qu'une autre comme schéma de

l'espace réel. La géométrie ordinaire ou euclidienne est considérée

comme la plus simple et la plus efficace pour les besoins ordinaires ;
mais il se peut que, pour des cas extraordinaires, en astronomie ou
en atomistique, par exemple, on se voie contraint de préférer un
autre schéma.

3. Maintenant que nous avons bien distingué deux choses, l'espace
réel, d'une part, et l'espace géométrique, d'autre part, nous pouvons
préciser notre question :

A quelles propriétés de l'espace géométrique abstrait fait-on appel
en disant que l'espace réel est à 3 dimensions

Une méthode très simple pour y répondre est la suivante : Tout
point de l'espace géométrique peut être caractérisé par trois nombres

réels, appelés coordonnées ; remarquons que d'une manière analogue
on fixe un point sur une droite par un nombre (on fait cela sur chaque
règle) et un point dans le plan par deux nombres (on le fait sur toute
carte topographique). Les 3 coordonnées d'un point P dans l'espace
sont par exemple les 3 distances de P à 3 plans perpendiculaires
deux à deux, ou bien les 2 coordonnées de la projection de P dans
le plan horizontal et la hauteur au-dessus de ce plan (fig. 1).
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Si on fait varier ces trois nombres indépendamment les uns des

autres, on obtient tous les points de l'espace. Connaissant les

coordonnées de deux points de l'espace, on peut calculer leur distance par
une formule simple ; à l'aide des coordonnées, on peut calculer des

angles, déduire des propriétés géométriques par de simples calculs,
etc. —¦ c'est la méthode bien connue sous le nom de géométrie

analytique. Dans cette géométrie, un point c'est trois nombres, et

l'espace c'est l'ensemble obtenu en faisant varier ces trois nombres

indépendamment. C'est pourquoi l'on dit que l'espace géométrique

X

y

x
y

Fig. t.

a trois dimensions, en entendant par nombre des dimensions le

nombre des coordonnées variant indépendamment.

4. Oublions maintenant pour un instant la signification extérieure
de l'espace géométrique, oublions qu'il est le schéma de l'espace
réel. Alors on ne comprend plus le rôle extraordinaire du nombre 3

dans cette construction ; car il est clair que la même construction

logique peut se faire avec 4 ou 5 ou un nombre quelconque n de

coordonnées ; on obtient alors l'espace à n coordonnées ou à « dimensions.

Un point de cet espace â n dimensions, c'est » nombres réels, et
on obtient tout l'espace, si on les fait varier indépendamment. On

peut y faire de la géométrie analytique : la distance de deux points se

calcule à partir des coordonnées à l'aide d'une formule analogue au

cas des trois dimensions, etc.
Inutile de demander si cet espace à 4 ou à 5 ou à « dimensions

existe ou non — il est simplement une construction logique qui ne

prétend pas donner des renseignements sur quelque chose de réel —
l'espace à 3 dimensions ne le fait pas non plus ; il peut servir comme
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schéma de l'espace réel, voilà son rôle particulier (D'ailleurs
l'espace à deux dimensions est, d'une manière analogue, le schéma du

plan, et celui à une dimension de la droite.)
On va se demander : Ne pourrait-on pas prendre comme schéma

de l'espace réel l'espace à 4 ou 5 ou à un autre nombre de dimensions

aussi bien que celui à 3 dimensions Cela nous donnerait une

géométrie bien différente de la nôtre
Mais parmi toutes ces possibilités, l'expérience nous en a fait

choisir une : 3 dimensions sont, comme on l'a toujours constaté,

juste ce qu'il faut pour décrire (d'une manière schématique, mais

efficace) les points de notre espace réel. Et même si l'on a essayé,

Fig. 2.

comme je l'ai déjà dit, de modifier un peu notre géométrie (par
exemple en prenant une autre formule pour la distance), on n'a

jamais été amené à changer ce nombre 3 des dimensions, des

coordonnées variant indépendamment.
Mais il y a une autre possibilité qui reste plus ou moins ouverte :

Il se pourrait que notre espace réel fît partie d'un espace réel à

4 dimensions (c'est-à-dire de quelque chose dont le schéma devrait
être l'espace abstrait à 4 dimensions), comme un plan qui fait partie
de l'espace ordinaire, qui est « plongé » dans cet espace. Certaines

propriétés géométriques diffèrent essentiellement suivant qu'on
reste dans l'espace ou qu'on en sort dans l'espace à 4 dimensions.

Pour mieux comprendre ceci, examinons la situation pour le plan.
Comparons la géométrie dans le plan, selon qu'on reste dans le plan
en faisant abstraction de l'espace qui l'entoure, ou qu'on n'y reste

pas.
Considérons un rectangle, et un point à l'intérieur (fig. 2) ; dans
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le plan, il est impossible de faire sortir le point de l'intérieur du

rectangle sans qu'il traverse un des côtés ; donc, s'il lui est défendu de

les traverser, s'il est «enfermé», il ne peut pas sortir sans qu'on
« n'ouvre une porte » Or, à travers l'espace, cela est bien possible :

on élève le point dans la direction d'un troisième axe, perpendiculaire

au plan, on le déplace parallèlement au plan, on le fait retomber
dans le plan.

Considérons la situation analogue dans l'espace : si un objet est

enfermé dans une armoire (dans un cube), il est impossible de l'en
faire sortir sans « ouvrir la porte », sans traverser les faces, sans y
percer un trou. Or, si notre espace était plongé dans un espace à

4 dimensions ou plus, cela serait bien possible. On peut le vérifier
aisément et rigoureusement dans la géométrie analytique de l'espace

Kg. 3-

à 4 dimensions, en y donnant par formules le mouvement nécessaire :

on déplace le point dans la direction d'un quatrième axe, on le transporte

parallèlement à l'espace, et on le fait retomber dans l'espace,
dans notre monde.

On peut indiquer d'autres phénomènes de ce genre qui pourraient
se produire, si notre espace était plongé dans l'espace à 4 dimensions :

On pourrait transformer par un simple mouvement un gant droit
en un gant gauche, on pourrait résoudre un nœud fermé sans couper
la ficelle (fig. 3), on pourrait séparer deux anneaux enlacés, sans les

ouvrir (fig. 3), et ainsi de suite.
Si de tels phénomènes se produisaient régulièrement et qu'ils

fussent confirmés par des expériences physiques, le moyen le plus
simple et clair pour s'en rendre compte et pour les formuler et

expliquer serait le schéma d'un espace à 4 dimensions dans lequel
se trouverait notre espace. Or, excepté quelques trucs de prestidigitation,

ces phénomènes, désignés comme surnaturels, n'ont jamais
été observés. C'est un résultat empirique (comme, par exemple, la
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non-existence du mouvement perpétuel de première ou de seconde

espèce). Pour la description de notre espace et de ses phénomènes,

l'hypothèse d'une quatrième dimension est superflue.

5. Ce qui, naturellement, ne nous empêche pas, nous autres
mathématiciens, de parler de l'espace à quatre dimensions ou plus, considéré

uniquement comme système logique, et d'examiner ses

propriétés. On garde le même langage géométrique et on parle de points,
de droites, de plans, d'angles, etc., bien qu'en général ces choses ne

puissent pas être mises en correspondance avec des objets de l'espace
réel Néanmoins cette construction est très importante et efficace,

pour les raisons suivantes :

Elle permet au mathématicien de traduire en langage géométrique
des faits et problèmes analytiques ou algébriques, ce qui simplifie
parfois énormément la solution et suggère des méthodes et résultats ;

on peut presque dire qu'en pratiquant cette géométrie, on arrive à

une certaine intuition de l'espace à n dimensions — je ne sais pas si

c'est la grande analogie avec l'espace à 3 dimensions (qui naturellement

peut aussi nous tromper ou tout simplement l'habitude de

penser à ces choses.

Plus importante encore est l'application que voici : il y a, soit
dans le monde de l'expérience et de l'intuition, soit en physique,
soit dans les différentes branches mathématiques, des objets et

phénomènes pour lesquels il y a grand avantage à prendre l'espace
à n dimensions comme « schéma », dans ce sens qu'ils peuvent être
décrits par n nombres réels variant indépendamment comme les

coordonnées dans l'espace à n dimensions. On appelle alors ceci

un continu à n dimensions ou à n degrés de liberté.

On en trouve des exemples dans tous les domaines de la science :

a) Une courbe est un continu à une dimension ; on peut « numéroter »

ses points par un nombre variable, à savoir par la longueur de l'arc
de courbe à partir d'un certain point fixe. En d'autres termes, on

peut faire correspondre aux points de la courbe les points d'une
droite (espace à une dimension de telle sorte qu'à deux points
distincts correspondent deux points distincts, et qu'à des points
voisins correspondent des points voisins. On parle dans ce cas d'une

correspondance bi-univoque (c'est-à-dire univoque dans les deux

sens) et continue.
b) Autre exemple : le temps est un continu à une dimension, car

on fixe les instants divers par un nombre.



72 BENO ECKMANN

c) Un morceau de surface, par exemple d'une sphère, est un continu

à 2 dimensions : on peut en décrire les points par 2 nombres,
les 2 coordonnées d'une carte topographique de la surface (soit la

longitude et la latitude).
d) Les mouvements dans le plan (par exemple d'un segment) forment

un continu à 3 dimensions : tout mouvement est donné par 2

déplacements indépendants et par une rotation. On dit qu'un corps
possède pour les mouvements dans le plan 3 degrés de liberté, et on

peut représenter ces mouvements par 3 nombres, donc par les points
de l'espace à 3 dimensions.

e) D'une manière analogue, les mouvements d'un corps dans l'espace

ont 6 degrés de liberté : 3 translations indépendantes et une rotation

qui est donnée par trois nombres. Les mouvements dans

l'espace, donnés par 6 nombres, peuvent donc être représentés par des

points de l'espace à 6 dimensions. (Si on fixe un point du corps en

mouvement, il n'a que 3 degrés de liberté, ceux de la rotation. Si on
fixe 2 points, il ne reste qu'un degré de liberté, celui de la rotation
autour de la droite qui joint les 2 points.)

Les physiciens se souviennent bien, de l'importance toute
particulière du nombre de ces degrés de liberté, par exemple dans la
théorie de la chaleur spécifique.

f) Pour fixer le lieu et le temps d'un point qui se déplace, ou d'une
observation, il nous faut 4 nombres : le continu espace-temps est à

4 dimensions, on peut le représenter par les points de l'espace à

4 dimensions, et cela est même d'une grande importance dans la
théorie de la relativité.

g) L'état d'une molécule en mouvement peut être donné par 6 nombres

: les 3 coordonnées du lieu, et les 3 composantes de sa vitesse.
Dans la théorie cinétique des gaz, l'état d'un gaz constitué par
A^ molécules sera donc donné par 6N nombres et les états divers du

gaz peuvent être représentés par les points de l'espace à 6N, disons

io2* dimensions. Cela semble assez drôle, mais c'est très pratique
dans la théorie statistique des molécules.

Je ne veux pas parler des nombreux exemples que le mathématicien

rencontre en géométrie algébrique et dans l'analyse.
6. En résumé :

A la question : « Pourquoi dit-on que notre espace a 3 dimensions »,

on répondra : Parce qu'il a pour schéma l'espace géométrique à

3 dimensions ou coordonnées.

Et à la question : «Pourquoi tel et tel continu a-t-il n dimensions
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ou n degrés de liberté » : Parce qu'il peut être décrit par n nombres

variant indépendamment comme les n coordonnées dans l'espace à

n dimensions, autrement dit : parce que les éléments de ce continu

peuvent être représentés par les points de cet espace, ou mis en

correspondance avec les points de cet espace à n dimensions.

Tout cela semble très simple, et c'est bien ce qu'on a longtemps
regardé comme définition de la dimension, sans bien préciser ce

qu'on entend par cette correspondance (en pensant peut-être surtout
à des correspondances données par des formules simples). Mais c'est

en ce moment que de graves difficultés s'élèvent, difficultés qui sont
de caractère mathématique, c'est-à-dire interviennent dans la
construction logique, et qu'on doit surmonter avant que la définition
de la dimension ne soit justifiée.

7. Ces difficultés, les voici :

Si l'on arrive à décrire un continu, disons par 2 nombres, ne
pourrait-on pas le faire aussi bien par 3 (ou 4 ou 1) — naturellement en

procédant d'une tout autre manière Y a-t-il en somme une
différence entre les espaces à différentes dimensions, par exemple entre
celui à 2 et celui à 3 î Ne pourrait-on pas établir une correspondance

entre les points de ces deux espaces qui permettrait de remplacer
tout simplement l'un par l'autre, surtout pour la description d'un
continu

Vous le voyez : La notion de dimension qui semble si simple et

qui est si importante pour maintes applications, on ne sait pas si

elle a un sens

Vous me répondrez : Ce qu'on peut décrire par 2 nombres variant
indépendamment, on ne le peut pas par 3, car dans le plan il n'y a

pas autant de points que dans l'espace
Or, cela n'est pas vrai dans un certain sens (bien que, si on pense

à un plan plongé dans l'espace, il y ait des points en dehors du plan
En effet, deux faits extrêmement surprenants, découverts vers la
fin du XIXe siècle, l'ont bien mis en évidence.

Premièrement, l'école de Cantor a trouvé des correspondances
entre deux espaces à différentes dimensions (par exemple entre plan
et espace, ou droite et espace à 4 dimensions, etc.), correspondances

qui sont bi-univoques, c'est-à-dire qu'à deux points différents
correspondent deux points différents. On pourrait dire que de cette manière
les deux espaces contiennent « le même nombre de points », et on pourrait,

en effet, remplacer l'un de ces espaces par l'autre
Et maintenant Faut-il pour cela abandonner l'idée de dimen-
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sion comme nous l'avons formulée Non. Car cette correspondance
de Cantor, bien qu'elle soit bi-univoque, n'est pas continue, c'est-à-
dire qu'à des points voisins correspondent des points éloignés dans

l'autre espace, ou dans le continu qu'on veut décrire, et dont la
connexion serait ainsi complètement détruite Or, pour définir la

dimension, on n'a sûrement pas envisagé de telles correspondances ;

elles sont à exclure.
Le second fait, c'est la célèbre courbe de Péano. C'est une courbe,

en ce sens que c'est l'ensemble des points parcourus par un point
qui se déplace dans le plan ; on peut numéroter ces points à l'aide
du temps, donc d'un nombre, c'est-à-dire on peut les mettre en

correspondance avec les points de la droite. Or, cette courbe de Péano

a la propriété de remplir complètement un carré, donc un continu
à 2 dimensions, et elle établit ainsi une correspondance entre droite
et plan. Cette fois, la correspondance est continue — mais elle n'est

pas bi-univoque, car il y a des points du carré qui sont parcourus
plusieurs fois, et pour cela elle est aussi à exclure.

8. Si ces résultats vous semblent un peu étranges, n'oubliez pas
qu'on parle des espaces géométriques abstraits ; il ne s'agit donc pas
de l'intuition, mais de la construction logique qui, bien qu'elle soit

inspirée par le réel, dépasse — même dans son fondement axiomatique

—¦ les possibilités de notre intuition et expérience. Et comme
cette construction est à la base de l'idée de dimension exprimée dans

la définition, on voit maintenant ce qu'il nous faut pour sauver

cette idée de dimension : il faut démontrer qu'il est impossible
d'établir une correspondance qui soit en même temps bi-univoque
et continue entre deux espaces à différentes dimensions. En d'autres
termes : qu'il est impossible de construire une image bi-univoque et
continue de l'espace à n dimensions dans un espace à dimension
inférieure, par exemple d'un plan dans une droite.

On peut démontrer cela. Cette fois l'intuition ne nous trompe pas.
La première démonstration a été donnée en 1911 par Brouwer M ;

en 1913, il en a donné une autre, plus profonde que la première, en

précisant des idées énoncées en 1912 par Poincaré dans son célèbre

mémoire : «Pourquoi l'espace a trois dimensions» W. Les recherches
de Brouwer et l'importance de ses résultats ne furent guère connues
pendant plusieurs années. En 1922, les mêmes idées furent reprises

Voir la note bibliographique à la fin de cette conférence.
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indépendamment par Menger et Urysohn <J) et bien approfondies. C'est

alors qu'une belle théorie a été créée avec la collaboration d'un
grand nombre de mathématiciens. On peut dire que le point final de

ce développement, bien que maints problèmes y restent ouverts,
c'est le livre de Hurewicz et Wallmann, Dimension Theory, paru en

1941 à Princeton (*>.

9. Un des principaux résultats de toutes ces recherches —¦ mais

non le seul — c'est donc que l'ancienne définition commune de la

dimension, comme nous l'avons formulée, subsiste, qu'elle a un sens.

Quelle est au fond la signification de ce fait A quel ordre d'idées

appartient-il
Le point essentiel, nous l'avons vu, c'étaient les correspondances

ou images bi-univoques et continues. Considérons, par exemple,

un cercle, et un cercle mal dessiné, c'est-à-dire une déformation du

premier. C'est bien une image bi-univoque et continue du cercle.

On constate que presque toutes les propriétés géométriques se sont
perdues, longueur, angles, directions, la courbe n'a plus de centre,
etc. Il y a pourtant quelque chose qui subsiste : la courbe est

toujours un continu à une dimension, et elle est fermée (non ouverte).
Ces propriétés qui n'ont pas changé sont d'un autre ordre que celles

qu'on considère en géométrie ordinaire, on dirait d'un ordre plus
élémentaire. La discipline qui s'occupe de telles propriétés, s'appelle

analysis situs ou topologie.
Par exemple, il n'y a pas de différence topologique entre une sphère

et un œuf ou un ellipsoïde ou une surface fermée de ce genre, mais

bien entre une sphère et un tore. Et c'est une propriété topologique
de dire que deux courbes fermées dans l'espace soient enlacées

(fig. 3) ou non. Le célèbre théorème d'Euler sur les polyèdres (la

somme des sommets et des faces moins la somme des arêtes est

égale à 2) est de caractère topologique ; car il faut seulement que le

polyèdre ait la connexion, le genre d'une sphère ; la forme, les

angles, les côtés des faces n'y jouent aucun rôle.

Et le sens de ce théorème de Brouwer qui était nécessaire pour
sauver l'idée de dimension (qui dit qu'il est impossible d'altérer le
nombre des dimensions par une simple déformation) —¦ c'est que
la dimension d'un espace est une propriété topologique, bien qu'on

(¦) Voir la note bibliographique à la fin de cette conférence.
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l'ait définie à l'aide des coordonnées, donc d'éléments non-topologiques,

à savoir des angles, des longueurs, des droites, etc.
On peut dire — les exemples vous l'ont bien montré —¦ que les

propriétés topologiques sont suggérées par l'expérience et l'intuition

purement géométriques, tandis qu'en géométrie ordinaire on
fait appel à des notions arithmétiques et analytiques d'un tout autre
ordre. Autrement dit : Pour arriver à la géométrie ordinaire, il faut
restreindre le domaine des correspondances envisagées jusqu'ici ;

par exemple si, au lieu de considérer des déformations bi-univoques
et continues, on considère seulement les mouvements dans l'espace,
alors les longueurs et les angles, etc., restent invariants, donc les

choses, dont on s'occupe en géométrie élémentaire métrique. Ainsi
les différents points de vue géométriques sont caractérisés par les

correspondances admises ; le cas le plus général, c'est la topologie ;

le cas le plus restreint, la géométrie métrique, et il y a des cas
intermédiaires.

io. On a donc constaté que l'idée de dimension est d'un caractère

topologique ; aussi devrait-on chercher une définition qui le mette en

évidence, c'est-à-dire une définition n'utilisant que des notions
topologiques.

Pour cela, laissons-nous inspirer tout simplement par l'espace
réel. Dans les Eléments d'Euclide, on trouve l'idée suivante : L'extrémité

d'une courbe, c'est un point, le bord d'une surface, c'est une
courbe, la frontière d'un corps, c'est une surface. Dans le mémoire

que j'ai cité, Poincaré propose de caractériser la dimension par de

telles propriétés, ou des propriétés très voisines. La définition de

Menger et Urysohn, admise aujourd'hui comme étant la meilleure,
n'en diffère presque pas.

On prend un point du continu en question et un voisinage entier
de ce point, et on essaie d'extraire le voisinage hors de ce continu
(fig. 4). Pour cela, on est obligé de couper ou de déchirer le continu
en certains points qu'on appelle points frontières du voisinage.

S'il s'agit d'un continu à une dimension — pensons à une courbe

ou un fil de fer — il suffit de le couper en quelques points isolés (qui
ne forment donc eux-mêmes aucun continu).

S'il s'agit d'un continu à 2 dimensions — pensons à une surface —
il ne suffit pas de la couper en quelques points isolés, on doit la

couper suivant une courbe (donc un continu à une dimension).
S'il s'agit d'un continu à 3 dimensions — pensons à l'espace — ni
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des points isolés ni des courbes ne suffisent ; la frontière d'un voisinage

(par exemple d'une boule solide) et formée par une surface (donc

un continu à 2 dimensions) — et ainsi de suite.
On dira donc qu'un continu est à n dimensions, lorsque les points

frontières d'un voisinage forment un continu an —¦ 1 dimensions.

On peut alors démontrer que l'espace abstrait à n coordonnées

jouit précisément de cette propriété ; ceci montre que l'ancienne et
la nouvelle définitions sont équivalentes. Mais la nouvelle n'utilise ni
longueurs, ni angles, ni droites, seulement les voisinages, qui sont
de caractère purement topologique (leur forme ne joue aucun rôle
C'est peut-être la meilleure méthode pour mettre en évidence ce fait

Fig. 4.

que la dimension, le nombre des degrés de liberté, exprime une
propriété topologique d'un continu.

11. Je pourrais encore vous parler d'autres méthodes qui
permettent de caractériser la dimension d'une manière topologique,

par exemple celle proposée par Lebesgue utilisant la notion de

recouvrement ; elle était très importante pour le développement de

la théorie. Je pourrais aussi attirer votre attention sur les espaces à

une infinité de dimensions, ou sur des espaces (abstraits) plus généraux

encore que ceux donnés par des coordonnées ; ce sont les espaces

topologiques, où on n'a presque qu'une seule notion géométrique,
celle du voisinage ; mais comme nous l'avons vu, ces voisinages nous

permettent de parler de la dimension, et on a même trouvé le résultat

intéressant qu'en principe tous ces espaces généralisés sont des

parties des espaces donnés à l'aide de coordonnées. Je pourrais
encore vous parler des problèmes non résolus, des applications à
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l'algèbre et à l'analyse — mais cela me conduirait trop loin, et il est

temps de conclure.

12. Vous avez sûrement constaté que toutes ces méthodes géométriques

sont caractérisées par une collaboration tout à fait particulière

entre l'intuition, l'expérience et l'abstraction, où l'on distingue
toujours strictement entre le réel et la théorie qui peut être son
schéma. C'est d'ailleurs typique pour tout travail mathématique et
même pour les sciences, surtout pour la physique théorique.

Cela ne fut pas toujours le cas. Autrefois on pensait que l'espace

géométrique et l'espace réel, qu'une théorie et son objet, c'était la
même chose. Et tout au fond, disons d'une manière inofficielle, on
le pense peut-être aujourd'hui encore.

Si l'on fut obligé d'abandonner cette idée, si l'on dit sans ambiguïté

que tout ce qu'une théorie énonce ne concerne pas la réalité,
mais seulement son schéma abstrait — n'est-ce pas faire de nécessité

vertu L'intelligence n'est-elle pas ainsi plus modeste qu'elle ne
voudrait l'être

Peut-être devrait-on formuler la chose un peu différemment. Car

ce qu'on appelle la réalité, on ne peut au fond la voir et décrire qu'à
travers un certain schéma abstrait. Sans l'idée préexistante d'un
continu, toute expérience serait impossible, elle se réduirait à des sensations

isolées sans relations. Des concepts simples, considérés comme

appartenant à l'expérience et à l'intuition — comme par exemple
celui de la dimension — supposent au fond déjà une théorie abstraite.
Souvent même les mathématiques, avec leurs constructions et
formalismes abstraits, ont permis de concevoir de nouvelles idées intuitives

ou de découvrir de nouveaux faits expérimentaux ; l'histoire
des sciences nous en donne bien des exemples.

Vous me permettrez donc de voir dans les mathématiques non
seulement un instrument très utile pour les sciences et la technique,
non seulement le langage qui nous permet de mettre en relations les

phénomènes, de formuler des lois et d'en tirer les conséquences,
mais beaucoup plus : J'y vois l'expression de notre façon de penser. Et
si le mathématicien, comme un géographe qui ne se contente pas de

connaître la géographie de son village natal, semble s'éloigner de

plus en plus des schémas ordinaires et ose aller d'une abstraction et
généralisation à l'autre, il ne s'éloigne pas plus pour cela du réel ;

au contraire, il crée de nouvelles possibilités de penser, et de voir et
comprendre notre monde. Beno Eckmann.
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NOTE BIBLIOGRAPHIQUE

Nous n'avons pas indiqué les mémoires et livres qui traitent les questions
mathématiques abordées dans cette conférence. On les trouve cités dans
les deux livres suivants consacrés à la théorie de la dimension :

K. Menger, Dimensionstheorie (Leipzig, 1928).
W. Hurewicz et H. Wallmann, Dimension Theory (Princeton, 1941).
Voir aussi le livre de P. Alexandroff et H. Hopf, Topologie I (Berlin,

1935), dont plusieurs chapitres sont consacrés à la notion de dimension.

Ces questions sont traitées d'une manière plutôt générale dans

H. Poincaré, Dernières pensées (Paris, 1913), le chapitre intitulé «Pourquoi
l'espace a trois dimensions », p. 57-97 ;

Krise und Neuaufbau in den exakten Wissenschaften (Leipzig und Wien,
1933), cinq conférences, dont en particulier :

H. Hahn, Die Krise der Anschauung, p. 42-64.
G. Nœbeling, Die vierte Dimension und der krumme Raum, p. 66-92.
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