Zeitschrift: Revue Militaire Suisse

Herausgeber: Association de la Revue Militaire Suisse

Band: - (2017)

Heft: 5

Artikel: S'inspirer du vivant pour accroître la résilience : Introduction au

biomimétisme

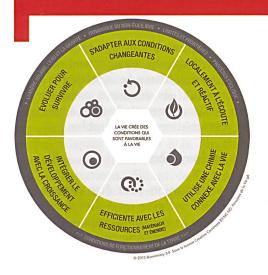
Autor: Chambaz, Grégoire

DOI: https://doi.org/10.5169/seals-781605

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation


L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Les Life's Principles (Principles du Vivant) de Biomimicry 3.8, le principal outil mondial d'enseignement et de consulting pour le biomimétisme. Crédit illustration © biomimicry. net/DesignLens, traduction française par biomimicryswitzerland.org.

Résilience

S'inspirer du vivant pour accroître la résilience: Introduction au biomimétisme

Cap Grégoire Chambaz

Rédacteur adjoint RMS+

a formation de la planète Terre remonte à quatre milliards et six cent millions d'années. Huit cents millions d'années après, la vie émergeait sur la planète. Dès lors, la vie a évolué continuellement.¹ En tout, il aura fallu trois milliards et huit cents millions d'années pour générer l'expression actuelle de la vie sur la planète Terre. Cependant, la vie a connu cinq épisodes de destruction massive² (les « extinctions de masse ») qui ne l'ont pas empêchée de récupérer et de poursuivre son développement.

L'évolution de la vie constitue un laboratoire considérable d'expériences : les formes de vie en résultant procèdent à la fois d'une longue adaptation à leur environnement et de l'accumulation de 3,8 milliards d'années d'évolution, sur le principe de « l'essai-erreur. » Dans ce cadre, la vie a considérablement à apprendre à l'Humanité, notamment dans le domaine de la résilience des organisations.³

1 - 3,8 milliards d'années : apparition dans l'eau des premières formes de vie, les bactéries. - 3 milliards d'années : émergence des premiers organismes capables de capter l'énergie du soleil, les «algues bleues.» - 2 milliards d'années : apparition des premières cellules complexes – les eucaryotes. - 1 milliard d'année : manifestation des premiers végétaux aquatiques. - 600 millions d'années : apparition des premiers animaux marins. - 500 millions d'années : émergence des poissons. - 470 millions d'années : conquête des terres émergées par les végétaux, puis par les animaux (les premiers sont les insectes, suivis des amphibiens, puis des reptiles, des mammifères et enfin des oiseaux). - 100 millions d'années : apparition des fleurs. - 4 millions d'années : différentiation des australopithèques. - 2,8 millions ans : bifurcation du genre homo. - 250'000 ans : émergence de l'homme de Néandertal. - 35'000 ans : apparition de la forme moderne d'homo sapiens.

2 Le premier se déroule il y a 445 millions d'années : il entraîne la disparition de 85 % des espèces. Le deuxième se produit entre 380 et 360 millions d'années et provoque une réduction de 75 % de la diversité des espèces. Le troisième – le plus considérable – intervient entre 245 et 252 millions d'années : il entraîne l'élimination de 95 % des espèces marines et 70 % des espèces terrestres. Le quatrième se produit il y a 200 millions d'années et provoque la disparition de 75 % des espèces marines et 35 % des espèces terrestres. Enfin, le cinquième se produit il y 66 millions d'années et est responsable de la disparition de 50 % des espèces.

3 Dans un but de concision, ce texte ne se concentre que sur la résilience des organisations. Il serait bien évidemment possible de réfléchir à Cet apprentissage est à la fois une opportunité et une impérieuse nécessité, l'essor de la civilisation ayant amorcé un sixième épisode de destruction massive de la biodiversité,⁴ dont les humains pourtant dépendent pour leur survie.

Les Principes du Vivant

Comment apprendre du vivant? Les connaissances scientifiques actuelles permettent une large compréhension des processus généraux de la vie, appelés les *Principes du Vivant*. Ceux-ci constituent un ensemble de règles et de propriétés permettant aux organismes à la fois de prospérer sur la planète, mais aussi d'être – dans une certaine mesure – compatibles entre eux. Il en existe plusieurs listes (hiérarchisées ou non), se recoupant en grande partie. Les seize principes d'Hoagland & Dodson constituent l'une d'entre elles (voir encadré). De ceux-ci, il est possible de s'inspirer pour apprendre du vivant : c'est l'objet du biomimétisme.

Le biomimétisme (voir encadré)

Le biomimétisme propose l'application des *Principes du Vivant* aux activités humaines. Formalisé en 1997 par Janine M. Benyus, il s'exerce à trois niveaux:

- Le biomimétisme de forme, visant à améliorer les performances, notamment environnementales, d'une technologie par un travail sur la forme, inspiré du vivant. C'est l'application la plus répandue;
- Le biomimétisme des procédés et des matériaux, consistant à améliorer les performances d'un matériau (ciments, composés électroniques, textiles, etc.) ou de sa fabrication, diminuant significativement son impact environnemental;
- Le biomimétisme écosystémique, ayant pour but de s'inspirer des relations entre les différentes espèces

d'autres applications, par exemple comme celle écosystèmes ou des systèmes territoriaux.

⁴ Résultant de la conquête du globe par l'Homme et multipliée par les révolutions agricoles, scientifiques et industrielles.

RMS+ N°5 - 2017

Biomimétisme*

Du grec bios: vie et mimesis: imitation.

1. La nature comme modèle

Le biomimétisme est une nouvelle science qui étudie les modèles de la nature, puis imite ou s'inspire de ces idées et procédés pour résoudre des problèmes humains.

2. La nature comme étalon

Le biomimétisme utilise des critères écologiques pour déterminer si nos innovations sont « bonnes. » Au bout de 3,8 milliards d'années d'évolution, la nature a appris à reconnaître ce qui marche; ce qui est approprié, ce qui dure.

3. La nature comme maître

Le biomimétisme est une nouvelle façon de considérer et d'apprécier la nature. Il ouvre une ère fondée non pas sur ce que nous pouvons extraire du monde naturel, mais sur ce que nous pouvons apprendre.

* Extrait de Janine M. Benyus, *Biomimétisme*: *Quand la nature inspire des innovations durables*, Rue de l'échiquier (Initial(e)s DD) 1^{er} janvier 2011, p. 4.

afin d'en renforcer l'adaptabilité et la durabilité d'un processus ou d'une organisation. Incluant éventuellement les deux niveaux précédents, il s'agit du type le plus complexe.

L'approche de l'équipe de Janine M. Benyus, *Biomimicry* 3.8, propose une adaptation pratique et compatible avec le biosphère des *Principes du Vivant*, intitulé les *Life's Principles* (voir encadré). Destinée aux praticiens – notamment dans le domaine de la fabrication – la

Les seize principes d'Hoagland & Dodson*

- 1. La vie se développe du bas vers le haut;
- 2. La vie s'assemble en chaînes;
- 3. La vie a besoin d'un dedans et d'un dehors;
- La vie utilise peu de thèmes pour générer de multiples variations;
- 5. La vie s'organise grâce à l'information;
- 6. La vie encourage la diversité en redistribuant l'information ;
- 7. La vie crée à partir d'erreurs;
- 8. La vie naît dans l'eau;
- 9. La vie se nourrit de sucre;
- 10. La vie fonctionne par cycles;
- 11. La vie recycle tout ce qu'elle utilise;
- 12. La vie perdure grâce aux rotations de matière;
- 13. La vie tend à optimiser plutôt qu'à maximiser;
- 14. La vie est opportuniste;
- 15. La vie est compétitive sur un socle de coopération;
- 16. La vie est interconnectée et indépendante.
- * D'après M. N. Hoagland, B. Dodson & J. Hauck, Exploring the Way Life Works: The Science of Biology, Jones & Barlett Learning, 2011. Traduction de Gauthier Chapelle.

majorité de ceux-ci est directement transposable à la résilience des organisations. Et c'est essentiellement dans une optique de biomimétisme écosystémique qu'ils dégagent toute leur valeur: ils devraient permettre de créer et d'entretenir des structures résilientes, à même de persister après des perturbations considérables.

La résilience des sociosystèmes

La résilience d'une organisation peut être caractérisée comme celle d'un système social: c'est-à-dire la capacité d'un système à absorber les perturbations — d'origine naturelle ou humaine — et à se réorganiser de façon à maintenir ses fonctions et sa structure tout en gardant son identité (à savoir ses composants, son organisation et ses interrelations). Deux formes de résilience sont alors à distinguer:

- La *résilience spécifique*, désignant la résilience d'un système à un type de perturbation particulier;
- La résilience générale, représentant la résilience d'un système à n'importe quel type de choc (y compris les plus imprévisibles).

Si la résilience spécifique peut être améliorée en identifiant les variables à la source de perturbations et en y parant, la résilience générale présuppose de considérer l'ensemble des perturbations possibles, celles-ci relevant nécessairement de l'imprévu. Ces formes de résilience sont contraires, c'est-à-dire que le renforcement de l'une produit un affaiblissement de l'autre. Elles illustrent l'opposition entre les tendances à l'optimisation (résilience générale) et à la maximalisation (résilience spécifique).

S'inspirer des *Life's Principles* pour accroître la résilience

Le premier *Life's Principle*, «évoluer pour survivre,» propose trois actions pratiques. Tout d'abord, copier les stratégies qui fonctionnent. Adapté à la résilience, ce principe renvoie principalement à l'ensemble des autres actions que proposent les *Life's Principles*; celles-ci sont présentées dans la suite du texte. Ensuite, intégrer l'inattendu, ce qui recoupe une posture essentielle de la gestion des risques: se préparer à être surpris. Enfin, réorganiser l'information: s'appuyant sur le cinquième Principe du Vivant «la vie s'organise grâce à l'information», cet élément requiert de redistribuer l'information afin de favoriser la diversité – et donc la résilience. Cela implique une communication transparente, franche, systématique et régulière.

Le deuxième Life's Principle, « utiliser efficacement les ressources, » comporte trois éléments transposables à la résilience: utiliser un design multifonctionnel fait référence au treizième Principe du Vivant (« la vie tend à optimiser plutôt qu'à maximiser »): il préconise la multifonctionnalité plutôt que la spécialisation (privilégiant une résilience générale sur une résilience

⁵ Définition recoupant celle de socio-système et de système socioécologique. D'après Raphaël Mathevet et François Bousquet, Résilience et environnement, Penser les changements socioécologiques, Buchet Chastel, 2014, p. 11.

spécifique) afin d'assurer une capacité optimale de réaction face à un large éventail de situations possibles. Dans le cas d'un approvisionnement réduit, l'utilisation des procédés économes en énergie devrait garantir un allongement du fonctionnement normal d'un système, l'ensemble ne gaspillant pas d'énergie inutilement. Enfin, adapter la forme à la fonction impliquerait de correctement dimensionner la taille et la structure des organisations; autant de facteurs concourant à un accroissement de la résilience.

Le troisième Life's Principle, « s'adapter aux changements de conditions, » suggère trois pratiques: Préserver l'équilibre par autorégénération à savoir, disposer à son échelon de capacités d'intervention et de redémarrage après un choc; renforcer la résilience par la variation, les duplications, les décentralisations, accroissant la capacité de résilience face au risque de centralisation des movens d'action et de décision.6 Elle implique que les soussystèmes d'un tel système seraient différents de sorte à produire pour la même tâche et fonction un rendement non maximisé, assurant en revanche dans tous les cas un rendement minimum; et inclure la diversité des acteurs et des moyens, participant de fait à accroître la disponibilité, l'optimisation et la redondance du tout après un choc. Cette diversité devrait s'exprimer à deux endroits : dans la diversité fonctionnelle, visant la couverture de chaque fonction du système par plusieurs acteurs, et dans la diversité de réponses à une perturbation donnée. Cette combinaison assure une redondance optimale au sein du système. Elle implique que les sous-systèmes de ce système auraient des rendements différents et non maximisés pour la même tâche et fonction.

Le quatrième Life's Principle, « unir développement et croissance, » indique trois recommandations: combiner composants modulaires et emboîtés, signifiant installer une modularité dans le réseau - à savoir avec des connexions faibles entre les modules, mais fortes à l'intérieur de ceux-ci, la basse connectivité entre les modules agissant comme une protection face à une propagation de perturbation. Dans cette perspective, une architecture organisationnelle en « réseaux de réseaux » constituerait une forte garantie de résilience en cas de choc, le système étant en capacité de redémarrer à partir de réseaux de moindre envergure. Dans ce sens, construire de la base vers le haut (de manière bottom-up) s'inscrit intégralement dans la suite de la recommandation précédente, en cherchant à concevoir des structures des les petits jusqu'aux grands éléments. Le défi en résultant est alors de trouver la dimension idéale des structures, une taille excessive constituant avant tout une vulnérabilité. 7 Dans ce cadre, les organisations devraient, une fois leur taille optimale atteinte, cesser de croître et se reproduire.8

Les Life's Principles de Biomimicry 3.8

Evoluer pour survivre:

- Copier les stratégies qui fonctionnent;
- Intégrer l'inattendu;
- Réorganiser l'information.

Utiliser efficacement les ressources:

- Utiliser un design multifonctionnel;
- Utiliser des procédés économes en énergie;
- Recycler tous les matériaux;
- Adapter la forme à la fonction.

S'adapter aux changements de conditions :

- Préserver l'équilibre par autorégénération;
- Renforcer la résilience par la variation, les duplications, les décentralisations;
- Inclure la diversité.

Unir développement et croissance :

- Combiner composants modulaires et emboîtés;
- Construire de la base vers le haut («bottom-up»);
- · S'auto-organiser.

Etre branché sur son milieu et réactif:

- Utiliser une énergie et des matériaux facilement accessibles;
- Cultiver les relations de coopération;
- Investir dans les processus cycliques;
- Utiliser les boucles de rétroaction.

Utiliser une chimie respectueuse du vivant :

- Construire à bon escient en utilisant peu d'éléments;
- Décomposer les produits en éléments inoffensifs;
- Pratiquer la chimie dans l'eau.

C'est pourquoi leur capacité d'auto-organisation est capitale: sans elle, les modules ne pourront pas assurer leur fonctionnement dans l'urgence ou en l'absence d'une direction extérieure, d'où la nécessité de décentraliser dès maintenant une importante part de compétences dans les prises de décisions.

Le cinquième – et le dernier de cette liste – Life's Principle, « être branché sur son milieu et réactif, » recommande quatre actions: utiliser une énergie et des matériaux facilement accessibles afin de réduire une dépendance handicapante en cas de cas de choc prolongé (assurant de fait un approvisionnement durable à long terme, et donc une capacité accrue de résilience). Pour continuer, dans la ligne du quinzième Principe du Vivant (« la vie est compétitive sur un socle de coopération »): cultiver les relations de coopération, ceci afin de renforcer les liens à l'intérieur d'un système pour accroître ses capacités de réaction face à une perturbation ou une menace d'une part, et diminuer la consommation énergétique d'autre part — la compétition se concentrant dans les situation

⁶ Les systèmes de décision centralisés pouvant se trouver, si touchés, dans une incapacité totale d'agir.

^{7 «} La recherche d'une grande taille peut devenir une stratégie risquée, puisque après chaque extinction majeure, quelle qu'en soit l'origine, les paléontologues ont constaté que la plupart des grandes espèces s'étaient éteintes, et que le redémarrage des écosystèmes s'appuyait sur les petites espèces beaucoup moins sensibles à la disparition. » in Gauthier Chapelle et Michèle Decoust, Le vivant comme modèle : la voie du biomimétisme, Albin Michel, 28 octobre 2015, p. 272.

⁸ Différentes options sont envisageables : la création d'entités

^{*} D'après la méthode Biomimicry 3.8 (biomimicry.net). Traduction de Gauthier Chapelle.

indépendantes les unes des autres ; l'expansion en différents réseaux, autonomes mais pas indépendants ; et la transformation en « réseaux d'organisations, » en prêtant attention à ne pas glisser vers le centralisme.

48 RMS+ N°5 - 2017

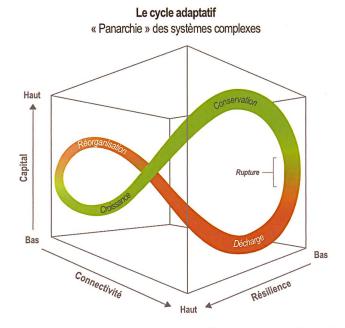


Figure 1: La dynamique cyclique des systèmes adaptatifs complexes.

d'abondance. Ensuite, investir dans des processus cycliques, basés sur le dixième *Principe du Vivant* (« La vie fonctionne par cycles ») a pour objectif d'optimiser la circulation de l'information afin d'effectuer les modifications nécessaires au sein de la structure. Cette circularité permet l'autorégulation et favorise la capacité à gérer les imprévus. Dans cette perspective, utiliser les boucles de rétroaction renforce ce dernier élément, c'est-à-dire en implémentant une culture de communication systématique, rapide et complète.

Destruction créatrice et résilience

Malgré les efforts consentis, un système peut tout de même passer un seuil fatidique — une rupture — le conduisant soit à la destruction, soit à sa régénération. Ce phénomène illustre une partie plus vaste des dynamiques des systèmes complexes. Nommé cycle adaptatif ou panarchie (voir figure 1), le fonctionnement des systèmes peut être décrit en quatre étapes: débutant par une phase de « croissance, » un système atteint ensuite une phase de « conservation » (où sa résilience diminue) jusqu'à une rupture. Une phase de « décharge » s'ensuit, résultant soit en une « révolte » qui alimente une nouvelle divergence et rupture dans un nouveau cycle, soit en la réorganisation du système, qui gagne à nouveau alors en résilience. Une phase de « croissance » recommence alors le processus, illustrant son aspect cyclique.

Lors de l'épisode de la rupture et de la décharge, le système expérimente une destruction créatrice. Loin d'être purement négatif; il peut en résulter des effets positifs. Autrement dit, que la destruction d'un sous-système peut enrichir le système dont il faisait partie. Cela peut s'effectuer en récupérant la matière, l'énergie ou l'information du sous-système. En outre, la disparition d'un sous-système non « adapté » exerce une sélection sur les composants du système d'ensemble, qui en devient plus «adapté» (illustration du principe de la sélection naturelle). Appliquée aux organisations, la disparition d'une unité subordonnée ou équivalente peut accroître la résilience de l'ensemble en en retirant des enseignements ou en en récupérant l'énergie et les ressources précédemment consacrées. Dans cette optique, il peut être pertinent de laisser un composant d'une organisation disparaître. À ce titre, ce phénomène rejoint et illustre la notion d'antifragilité développée par Nassim Nicholas Taleb.10

Conclusion

Que ce soit avec les *Principes du Vivant*, les *Life's Principles* ou encore les événements de destruction créatrice, la vie dispose d'un vaste capital de connaissances, validé par 3,8 milliards d'années d'évolution. Le recours au biomimétisme dans une optique de résilience permet d'extraire une partie de ces connaissances et invite à un changement de paradigme : «faire avec » plutôt que faire « contre. » Si la transposition pratique des éléments mis à jour n'est pas acquise, ¹¹ le potentiel qu'ils recèlent pourrait contribuer de manière significative à la résilience des organisations, des sociétés et même du modèle de civilisation contemporain. Quand des éléments de solutions sont là, pourquoi ne pas s'en inspirer?

G.C.

Pour en savoir plus

Janinec M. Benyus, Biomimétisme : Quand la nature inspire des innovations durables, Rue de l'échiquier (Initial(e)s DD) 2011, 408 p.

Gauthier Chapelle et Michèle Decoust, *Le vivant comme modèle : la voie du biomimétisme*, Albin Michel, 28 octobre 2015, 352 p.

La référence anglophone en matière de biomimétisme, la méthode Biomimicry 3.8 : biomimicry.net et son antenne suisse : biomimicryswitzerland.org

Un outil d'application du biomimétisme dans les organisations pour en accroître leur résilience : resilientweb.eu/en/tools/resilience-toolkit

⁹ Pour les scientifiques, « la compétition [est] un luxe réservé aux situations d'abondance. [Elle se concentre] sur les sites aux conditions les plus favorables au développement des espèces, alors que la coopération se déplo[ie] plutôt sur les sites en situation de pénurie ». in Gauthier Chapelle et Michèle Decoust, op. cit. p. 288.

¹⁰ L'antifragilité est la capacité à profiter d'un choc, c'est-à-dire croître avec la volatilité, l'incertain et le désordre. L'antifragilité d'un système augmente notamment avec la disparition de ses éléments fragiles. Voir Nassim Nicholas Taleb, *Antifragile, Les bienfaits du désordre*, Les Belles Lettres, 22 août 2013, 660 p.

¹¹ Le traitement des résistances organisationnelles, les dynamiques de pouvoir, les représentations et biais (cognitifs et culturels) sont d'un autre ressort.