Zeitschrift: Revue Militaire Suisse

Herausgeber: Association de la Revue Militaire Suisse

Band: 79 (1934)

Heft: 10

Artikel: Le nouvel armement de notre artillerie

Autor: Gonard

DOI: https://doi.org/10.5169/seals-341584

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Le nouvel armement de notre artillerie.

L'introduction des canons et mortiers d'infanterie libérera notre artillerie divisionnaire d'un certain nombre de tâches d'accompagnement immédiat qui lui incombaient souvent faute d'armes lourdes d'infanterie. Affranchie de cette servitude, est-elle à même, dans l'état actuel de son armement, d'exécuter de façon satisfaisante les missions qu'on doit pouvoir lui confier ?

En ce qui concerne la *pièce de campagne* on peut répondre sans hésitation oui, grâce aux modifications qu'elle a subies ces dernières années :

Modifications:

1. 3 charges partielles (au lieu d'une charge unique)

2. Une nouvelle charge «4»

- 3. Un nouveau projectile « allongé »
- 4. Pièce complètement démontable
- 5. Nouvel affût

Leurs conséquences:

enrichissement considérable de la gamme des trajectoires, partant moins d'angles morts, défilement meilleur, usure moins rapide des tubes;

(voir ci-dessous);

tiré avec charge « 4 », permet d'atteindre une portée de plus de 11 000 m., doublant ainsi l'ancienne portée de la pièce;

transport en montagne possible;

champ de tir en élévation plus grand;

6. Nouvelle hausse à tambour

l'ancienne hausse à tige ne correspondait plus aux nouvelles possibilités de la pièce;

7. Chevalets

hauteur de feu plus grande de 50 cm., supprime le creusage d'un fossé pour la bêche (tir sous grands angles);

8. Freins de tir neufs

pour recevoir le recul à charge 4.

Au terme de ce rajeunissement complet, notre pièce de campagne peut soutenir avec aisance la comparaison avec les matériels similaires de l'étranger.

Aucune amélioration de la pièce de montagne ne fut possible. Le tube n'aurait pas supporté des pressions accrues; l'affût limite étroitement le champ de tir en élévation. Pour parer à l'insuffisance radicale de notre artillerie de montagne, une seule solution était possible : son remplacement par un matériel nouveau. Dire ce qu'il est, quelles sont ses possibilités sera l'objet essentiel de cet exposé.

L'obusier de 12 cm. n'échappe pas à cette ère de transformations. Nous espérons en réduisant son calibre par tubage à 105 mm. obtenir un gain de portée et une précision plus grande. L'avenir dira si cet espoir est justifié.

Passons à l'artillerie de corps — ou d'armée.

L'obusier de 15 cm. donne toute satisfaction. Il est précis ; le projectile, d'une efficacité remarquable, est capable d'effets de destruction importants. Sa portée maximum n'est malheureusement que de 8 km., insuffisante dans bien des cas si l'on considère les tirs de contre-batterie comme l'une des missions importantes de l'artillerie de corps.

Au bilan du canon de 12 cm. on peut porter 3 vitesses initiales différentes au lieu d'une seule qu'il avait. Sa mobilité tout terrain a été accrue par les cingolis. Néanmoins, l'affût construit il y a plus de 50 ans ne supporte pas sans graves dommages pour le matériel des vitesses horaires

supérieures à 10 km. Or une caractéristique essentielle d'une artillerie de corps et surtout d'armée doit être une mobilité stratégique beaucoup plus considérable. Pour un pays pauvre en artillerie comme le nôtre, c'est même un moyen économique, par des déplacements rapides, de la multiplier. La portée maximum — 10 500 m. — est encore insuffisante pour une artillerie de corps. Il serait regrettable que l'étranger nous sache de prime abord incapables de contre-battre à plus de 10 km. Ce fait seul pourrait nous coûter infiniment plus cher que le remplacement à temps de ces anciennes batteries par un matériel plus puissant. Les types pouvant entrer en ligne de compte pour le réarmement de nos groupes longs sont décrits plus loin.

Ayant accompli ce rapide tour d'horizon, passé en revue les transformations subies ou projetées, examinons le nouveau matériel.

LE NOUVEAU CANON DE MONTAGNE.

Après trois ans d'études et clôturant la période des essais éliminatoires, la décision fut prise de réarmer notre artillerie de montagne avec le matériel Bofors. Les crédits sont votés.

L'usine suédoise de Bofors est depuis longtemps spécialisée dans les constructions d'artillerie. Néanmoins, pour la pièce de montagne, — matériel si spécial et devant répondre à tant de conditions — ses ingénieurs manquant de champ d'expérience comme de tradition se sont soumis avec beaucoup de souplesse et de compréhension à nos exigences ou conseils, améliorant sans cesse le modèle initial pour parvenir enfin au type adopté. Chacune de ces améliorations, problème toujours ardu en soi, ne devait pas compromettre d'autres résultats déjà acquis : le poids ne pouvait croître ou le démontage se compliquer, par exemple. Les constructeurs ont su éviter ces écueils avec habileté, parvenir au but avec élégance. Réarmée, notre artillerie de montagne disposera d'une pièce puissante, moderne, soigneusement

adaptée aux conditions de la guerre de montagne et nettement supérieure, pour le moment du moins, aux matériels de l'étranger.

Caractéristiques essentielles.

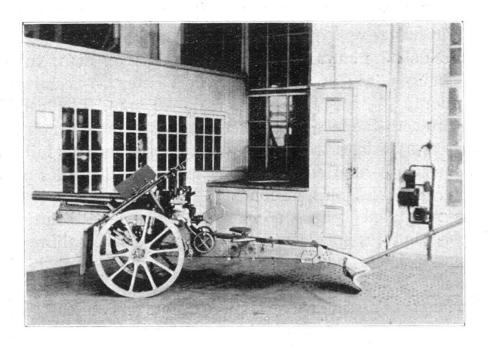
Calibre	75 mm.	
Longueur du tube	22 calibres	
Projectiles de notre artillerie		
de campagne.		
Nombre de charges partielles	5	
V° 1-5	200 à	données
	500 m. sec.	
Portée maximum	1050 m.	approximatives
Champ de tir latéral	6°	
» » en élévation .	$-10^{\circ} \text{à} + 50^{\circ}$	O
Transport chargé, nombre	b.	
de bêtes	9	
Modes d'attelage	2	

Discussion.

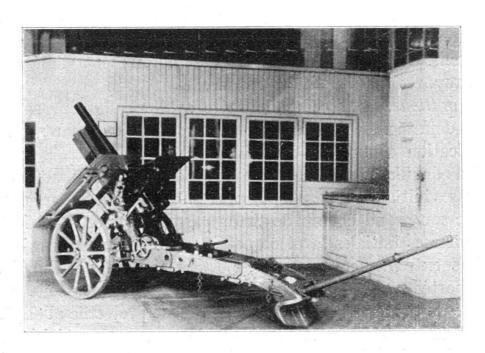
Tube. L'avantage essentiel du calibre de 75 mm. est d'être celui de notre canon de campagne et de montagne (mod. Krupp). Il est ainsi possible de tirer les mêmes munitions, à condition d'employer une douille adaptée à la chambre de charge de la pièce Bofors. L'avantage qu'il y a à ne fabriquer qu'une espèce de munitions pour deux pièces différentes saute aux yeux; il prend toute son importance si l'on songe à la production au cours d'une guerre. Le ravitaillement est simplifié, surtout celui d'unités d'armée dont l'artillerie est panachée. Enfin, facteur important, le transport en montagne de projectiles de ce calibre et poids ne présente pas de difficultés. 75 mm. est le calibre maximum permettant encore en haute montagne un apport coulant et massif de munitions aux pièces en position, sans compromettre, par épuisement rapide, la capacité de

rendement des hommes et bêtes des trains muletiers de ravitaillement.

Il fut un temps question, sous une forme spéciale, du calibre de 90 mm. Chaque affût aurait reçu deux tubes interchangeables : un tube-canon de 75 mm. — celui qui est adopté —, un tube-obusier de 90 mm. L'efficacité d'un projectile de 90 est sensiblement plus grande. En outre, les vitesses initiales très réduites des charges les plus faibles des obusiers permettent de fouiller les angles morts les plus rapprochés et les plus profonds.

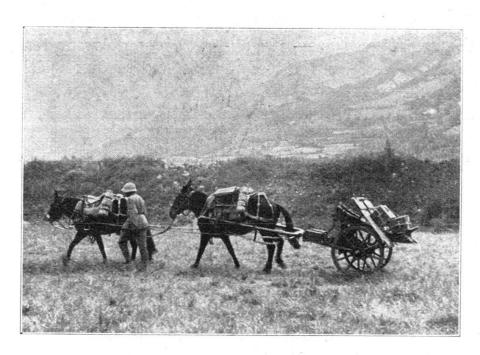

En montagne, plus que partout ailleurs, les solutions simples sont les meilleures. Les avantages du calibre de 75 mm. priment pour nous ceux du 90 mm., dont l'idée fut heureusement abandonnée.

La longueur du tube classe la pièce Bofors dans la catégorie des canons, si l'ancienne distinction entre canons et obusiers vaut encore la peine d'être rappelée.


Les rayures sont à pas constant; le projectile reçoit ainsi dès le début de sa course dans l'âme sa vitesse de rotation maximum (de l'ordre de 200 tours-sec.). Contre l'attente de quelques constructeurs, partisans des rayures à pas progressif, les ceintures de forcement résistent à ce brutal traitement. L'usinage des tubes, notamment l'alésage des rayures est simplifié d'autant.

Munitions. Sont celles de notre artillerie de campagne. J'ai déjà signalé l'avantage de cette solution quant à la fabrication comme au ravitaillement.

La douille contient 5 charges partielles donnant des vitesses initiales allant d'à peu près 200 à presque 500 m. sec. Avec son grand champ de tir en élévation et cette variété de vitesses initiales la pièce possède une gamme de trajectoires extrêmement bien fournie et riche en possibilités. La portée max. d'environ 10 500 m. est atteinte sous un angle de tir de 42°, avec la charge 5 et le projectile allongé. C'est une performance remarquable pour un matériel de ce poids; jamais encore une pièce de montagne n'a porté si loin.


Canon de montagne de 75 mm. (Modèle Bofors.)

Canon de montagne de 75 mm. (Modèle Bofors.) Elévation maximum.

Canon de montagne 75 mm. (Modèle Bofors.) La « voiture-tube ». Passage d'un remblai. On distingue les traits du premier mulet de l'attelage.

Canon de montagne 75 mm. (Modèle Bofors.) La «voiture-affût.»

Il ne sert à rien de tirer très loin ou très courbe, si la précision de l'arme n'est pas grande. La dispersion se paie par de grandes consommations de munitions. A ce point de vue les essais ont donné, aux différentes charges et distances, des résultats excellents. Sans publier ici des chiffres que contiennent les tables de tir, on peut citer l'agréable surprise qu' est l'observation du tir pour les artilleurs ayant servi longtemps l'ancien modèle : les projectiles éclatent dans une zone étroitement limitée et suivent avec une grande exactitude les corrections.

Champs de tir.

Le champ de tir *latéral* est caractérisé par l'amplitude du déplacement possible du tube, sans mouvement correspondant de l'affût inférieur. L'affût supérieur coulisse sur l'essieu. Exprimé en langage d'artilleur, son étendue est de $120^{\circ}/_{00}$ (6°,5); donc toutes les fois qu'on veut modifier la direction de plus de $60^{\circ}/_{00}$ à gauche ou à droite, il faut déplacer tout l'affût et procéder à un repointage complet.

Le champ de tir en élévation est par contre considérable puisqu'il s'étend de -10° à $+50^{\circ}$, comptés sur terrain horizontal, bêche enfoncée, mais sans travaux spéciaux pour l'enterrer.

Transport.

La pièce démontée se charge sur 9 bêtes qui portent :

- 1. bouche à feu;
- 2. bloc de culasse;
- 3. traîneau;
- 4. berceau-frein;
- 5. affût supérieur;
- 6. affût milieu et inférieur;
- 7. train (essieu, roues, limonière);
- 8. bouchée;
- 9. 2e train;

soit 8 bêtes pour la pièce proprement dite, la 9e portant un second jeu de roues, limonière, etc., dont nous verrons l'emploi.

Les poids sont très exactement répartis. La charge la plus lourde pèse approximativement 110 kg., la plus légère environ 100 kg., la moyenne étant 105 kg. Le poids des charges supérieures est de 50 % du poids total. Rappelons pour permettre d'apprécier le progrès que la charge la plus lourde de l'ancien matériel pèse 125 kg., l'écart entre la plus lourde et la plus légère est de 20 kg. et que 70 % environ du poids total est placé comme charge supérieure.

Les bâts sont munis d'un châssis spécial permettant de charger n'importe quelle partie de la pièce. Ces châssis sont donc interchangeables. Par rapport au modèle Krupp les charges supérieures ont toutes été abaissées de 3 cm., ce qui améliore beaucoup leur assiette et facilite le travail des bêtes. Enfin la pièce se charge indifféremment sur mulets ou chevaux.

Une des particularités les plus remarquables de la pièce Bofors est de pouvoir être *attelée*, telle quelle, en une voiture, ou de pouvoir être fractionnée en deux voitures.

L'attelage selon le premier de ces modes nécessite trois bêtes en tandem (trait direct). L'affût milieu et inférieur, les caisses d'équipement et de hausse-doivent néanmoins être chargés. Ce mode d'attelage est surtout intéressant en ceci qu'il offre la possibilité, si le terrain est favorable, d'entrer sur l'emplacement de tir comme d'en sortir attelé ce qui réduit de beaucoup le moment si critique qu'est, pour une batterie, la prise de position et surtout le départ de celle-ci. Cette manœuvre s'effectue ainsi comme celle de l'artillerie de campagne, mais au pas.

La pièce peut aussi être fractionnée en deux voitures, — voiture-tube et voiture-affût, — chacune du poids de 400 kg. approximativement, attelée de deux bêtes. Ce mode d'attelage, essentiellement pratique pour la montagne, sera la règle. Le poids du matériel qui doit encore être chargé est infime; pratiquement tout est sur roues. La longueur

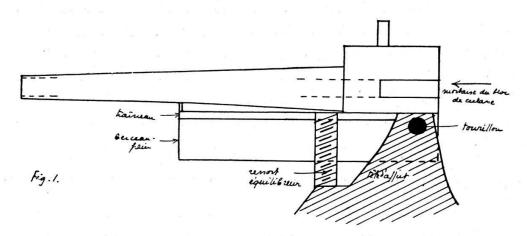
de l'attelage est réduite d'un quart (2 au lieu de 3 bêtes en tandem), avantage qui prend toute sa signification sur les chemins en lacets, dans les contours en épingle à cheveux. Cette solution nécessite, il est vrai, un train de voiture de plus, porté, lorsque la batterie est chargée, par la 9e bête de chaque pièce; elle impose ainsi 4 bêtes de plus par batterie, mais l'avantage est si considérable qu'il vaut ce sacrifice.

Quelques particularités.

La hausse à tambour et visée dépendante, semblable à celle dont vient d'être dotée l'artillerie de campagne, est de fabrication suisse.

La culasse est automatique. En chargeant, le rebord de la douille libère un ressort dont l'extension provoque la fermeture du coin. Au retour en batterie une came de la culasse heurte un levier. Un ressort se détend alors, le coin s'ouvre et la douille est éjectée.

Un *levier de mise à feu* est à main droite du pointeur qui peut ainsi tirer le feu lui-même, au moment exact où les bielles sont en place. Ce procédé assure un synchronisme parfait entre le pointage en élévation et le départ du coup.


Le frein est à recul constant.

Les tourillons, autour desquels la pièce pivote en élévation, sont placés tout en arrière du bloc de culasse. Ainsi quelle que soit l'élévation, la hauteur de la culasse reste à peu de chose près la même, d'où facilité toujours égale de chargement. En outre, la masse reculante, au maximum de son recul même lors du tir sous grands angles, n'atteint pas le sol. Il n'est ainsi jamais nécessaire de creuser de fossé de recul.

Ressorts équilibreurs. Bien que le bloc : bouche à feu, traîneau, berceau, soit en porte à faux prononcé, l'élévation se donne sans efforts ni démultiplication excessive grâce à ces deux ressorts, fortement comprimés lorsque le tube est horizontal. Ils « équilibrent » le poids assez considérable — environ 250 kg. — de la masse qui se trouve en avant des tourillons (Fig. 1, page 511).

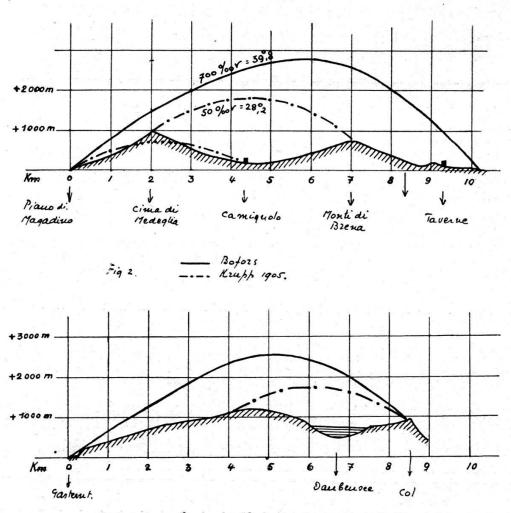
Critiques. Deux critiques sont parfois faites à cette pièce : son champ de tir latéral très étroit ; son manque de rusticité. Sont-elles justifiées ?

Champ de tir latéral. Il est de 120 % La plupart des matériels modernes — lourds ou légers — disposent de champs de tir 10 ou 15 fois plus étendus parce que leur affût est biflèche. La solution moderne est la flèche ouvrante. Nous y avons néanmoins renoncé pour plusieurs raisons, dont voici la principale. Sur l'essieu il faut monter à angle droit une charnière verticale permettant l'ouverture des

flasques. Cette charnière doit elle-même être largement articulée, puisque l'une des bêches sera fréquemment plus haut, l'autre plus bas que la pièce (position à la pente). Or, une pièce de montagne doit être rustique et facilement démontable, deux conditions que la construction ci-dessus décrite ne permet plus de satisfaire d'une façon encore suffisante.

La rusticité. Certes l'aspect élégant de la nouvelle pièce ne parle pas en faveur de sa rusticité. Ceux qui pendant 10, 20 ou 30 ans purent apprécier en maintes circonstances la légendaire rusticité de la pièce Krupp ont des doutes quant à l'aptitude au service en haute montagne du modèle Bofors. C'est une critique si sérieuse qu'elle justifie un examen approfondi. Il s'agit de savoir quand la rusticité d'un matériel de montagne devient un facteur important de sa durée. Il ne peut être question ici que du combat et

du transport « chargé », le transport « attelé » pouvant être éliminé d'emblée. Il est juste de procéder à une comparaison directe de l'ancien avec le nouveau matériel, puisque le premier représente sans discussion la meilleure solution ; nous verrons que la rusticité est une notion toute relative.


Pour le tir, la pièce Krupp, du fait de son unique trajectoire relativement rasante et de sa portée minime, est réduite impérativement au choix de positions de crête ou légèrement défilées, à courte distance du front. Si elle n'est déjà saisie par le feu ennemi lors de la prise de position, elle ne peut tarder à être découverte; ses boucliers sont une magnifique cible. Attaquée par une artillerie ennemie dont les portées sont doubles, les projectiles deux fois plus efficaces, elle sera détruite sans avoir même pu rendre les coups et devient même un but tentant et possible pour les canons d'infanterie. Quelques coups pleins l'enverront, malgré sa rusticité, ad patres aussi sûrement que la machine la plus compliquée. On peut dire que l'infériorité balistique considérable du matériel Krupp annule tous les avantages qu'il pourrait retirer de sa grande rusticité.

La pièce Bofors, grâce à ses 5 trajectoires, à sa grande portée, peut prendre des positions plus en arrière du front et profondément défilées. Il sera difficile de la découvrir, puis de l'atteindre. Elle peut attaquer avec avantage. Il est évident que quelques coups pleins la mettront tout aussi sûrement hors de combat, mais les probabilités de la toucher sont infiniment moins grandes. On peut dire ainsi que la supériorité balistique considérable du matériel Bofors compense largement sa moins grande rusticité.

Deux profils de régions bien connues illustrent les possibilités des deux matériels (Fig. 2, page 513).

Lorsque la pièce Bofors est chargée, court-elle des risques plus grands que la pièce Krupp? Il ne peut s'agir ici que de la chute d'une bête et d'estimer l'état probable de la charge au bas de la pente. La routine du service en montagne, des expériences — peu nombreuses heureusement mais suffisantes — permettent d'affirmer que cet examen

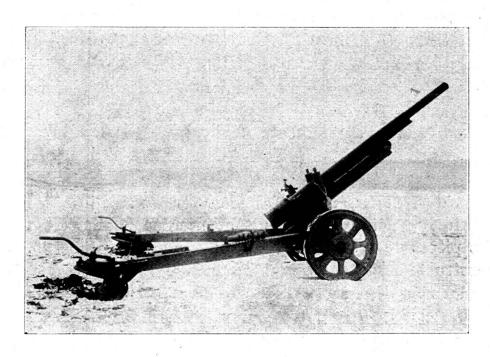
n'est pas une pure spéculation ou un travail d'imagination. Le contour extérieur des charges et leur densité sont déterminants. Une comparaison attentive des divers fardeaux autorise à conclure que le nouveau matériel n'est pas plus

Bofors: du fond du Pasterntal au col de la Gemmi.

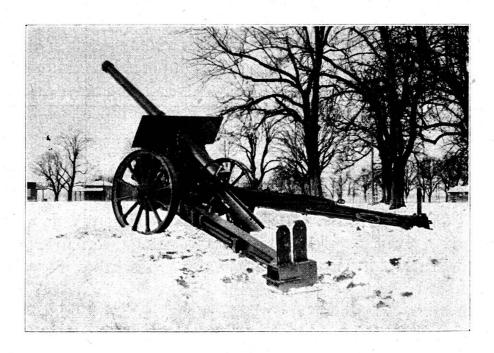
fragile que l'ancien. L'avantage reste même à Bofors pour la tête d'affût et pour le frein avec plus de netteté encore. L'égalisation soigneuse du poids des charges, la suppression des charges supérieures très lourdes, leur abaissement de 3 cm. sont autant de facteurs — déjà cités — qui diminuent les probabilités d'accidents.

Ainsi l'examen conclut à l'envers des apparences, aussi trompeuses en matière d'artillerie qu'ailleurs.

LES CANONS DE 105 MM.


Si les crédits pour le réarmement d'un certain nombre de nos batteries de canons lourds sont votés, au point de vue technique la question n'est pas encore tranchée comme l'est celle du canon de montagne. Aucune décision n'est prise, aucun choix n'est fait quant au matériel qui doit remplacer les canons de 12. Certains modèles nous ont été présentés par des maisons étrangères; si aucun d'entr'eux ne nous satisfait entièrement et ne peut être accepté tel quel, il est fort probable que celui que nous adopterons ne saurait s'éloigner beaucoup de leurs données générales, qui sont approximativement :

un calibre de 105 mm.; une portée de 17 000 m.; la traction automobile.


C'est pourquoi les indications qui suivent n'ont d'autre but que de renseigner, à la façon d'un catalogue, sur ce que l'on fabrique à l'étranger dans le genre susceptible de nous intéresser. Choisissons parmi ceux qui ont été présentés deux spécimens: l'un de Schneider, l'autre de Bofors. En voici leurs caractéristiques principales en regard desquelles sont portées celles du canon de 12 mod. 1882.

Caractéristiques essentielles.

Fabricant:	Schneider	Bofors	mod. 1882
Calibre mm.	105	105	120
Longueur d.tube calibres	37,6	40	25
Vo max m. sec.	725	750	515
Portée max m.	17 000	17 000	10 500
Champ de tir la-			
téral degrés	50	60	= a
Champ de tir en »		× 2 g	
élévation »	$0^{ m o}+43^{ m o}$	$-3^{\circ}+45^{\circ}$	$-8^{\circ}+36^{\circ}$

Canon de 105 mm. (Modèle Bofors.)

Canon de 105 mm. (Modèle Schneider.)

Fabricant:		Schneider	Bofors	mod	. 1882
Poids de la pièce prête au tir .	kg.	3600	3550		4460
Larg. des jantes	mm.	138	300		90
Recul		constant	variable		
Vitesse max. sur route	km.heur	e ?	90		15

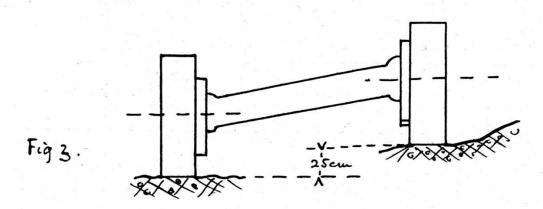
Remarques communes aux deux pièces :

Calibre, portée, poids. Ces trois termes : calibre, portée maximum, poids en batterie sont interdépendants. Le poids des pièces de 105 tirant à 17 km. oscille, quel que soit leur constructeur, autour de 3,5 T, un maximum que nous ne voulons pas dépasser, il est facile de saisir pourquoi. Le poids en batterie croit extrêmement vite dès que le calibre augmente. Les pièces de 150 tirant à 17 km. pèsent de 10 à 12 T. Nous tenons à une portée élevée de l'ordre de 17 km. Le calibre de semblables matériels ne saurait ainsi s'écarter beaucoup de 105 mm.

Champ de tir latéral. Est considérable (900, 1100 %), parce que l'un comme l'autre des affûts est à flèche ouvrante. Les raisons qui ont valu pour l'abandon de ce système à la pièce de montagne sont inopérantes. Sans que l'affût soit déplacé, ces pièces peuvent battre à la portée maximum un front d'environ 17 km. et passer très rapidement d'une extrémité à l'autre de leur zone d'action, qui peut englober celles de plusieurs divisions accolées.

Particularités du matériel Schneider.

Le tube est chemisé. La chemise, naturellement amovible, est fixée au tube près de son extrémité antérieure. Nos poudres peu corrosives ne fatiguent pas les tubes au point de juger ce système indispensable.


Le centre de gravité du bloc « tube-frein » est placé sur l'essieu, d'où la silhouette particulière. Le traîneau est prolongé très en arrière.

La fermeture de culasse est à vis, système courant Schneider. En conséquence, la charge est en gargousses.

Les flèches sont fixées au sol par des couteaux que l'on enfonce. Il ne semble pas que ce mode de fixation soit employable partout dans notre pays au sous-sol fréquemment rocheux.

Particularités du matériel Bofors.

Le 105 Bofors présente beaucoup de ressemblances techniques avec la pièce de montagne de la même maison. Le centre de gravité du bloc « tube-frein » est très en avant,

d'où nécessité de ressorts équilibreurs. Coin à mortaise, donc projectile à douille. Pas de bouclier.

La hausse est à visée indépendante. Fixée à l'affût et non pas au berceau, elle ne suit pas les mouvements en élévation de la bouche à feu, la lunette reste ainsi constamment pointée.

Essieu flexible, à ressorts, très soigneusement étudié. L'une des roues peut se trouver jusqu'à 25 cm. plus haut que l'autre et la pièce néanmoins rouler ou tirer comme si l'essieu était horizontal (Fig. 3).

Les flèches sont ancrées au moyen de bêches. Pour quitter la position on les décroche de la flèche, puis quelques coups de pioche suffisent à les déterrer.

Position de route. A l'aide d'une crémaillère, le tube est retiré en arrière sur l'affût.

Largeur des jantes. 300 mm.; la pièce peut prendre position sur terrain mou sans travaux spéciaux (lit de madriers, etc.).

Vitesse de marche. 90 km. heure. A cette allure, aucune vibration anormale.

CONCLUSION.

On admet généralement que le quotient :

Poids de l'engin en batterie portée maximum

caractérise l'efficacité du matériel, évidemment d'autant meilleur que le quotient est petit. Ce procédé permet de comparer utilement les modèles de même calibre issus d'usines concurrentes, par exemple. Pour les engins de tranchée et l'artillerie de montagne le poids est impérativement limité par la nécessité du transport à dos d'homme ou de bête, tandis que cette question peut être résolue dans de plus larges limites pour les matériels hippomobiles et surtout automobiles, ce qui ressort clairement des variations de l'ordre de grandeur du quotient (tableau ci-dessous). Pour établir la comparaison avec certains matériels intéressants de l'étranger, les calculs sont faits sur la base de la livre comme unité de poids et du yard pour les portées. Le tableau suivant illustre les progrès marqués que fait notre artillerie.

		quotient
*	Mortier de 75 inf. M2 U.S.A	0,118
	Krupp 75 mm. 1905 Suisse (canon mont.) .	0,204
*	Schneider 75 mm. 1919 France	0,166
	Skoda 75 mm. 1928	0,159
*	Vickers-Armstrong 75 mm. M. 1929	0,155
*	Obusier mont. 75 mm. Pack M1. U.S.A. (récent)	0,137
	Bofors mont. 75 mm. 1934. Suisse	0,132
*	Canon camp. 75 mm. 1897. France	0,289
	» » 1905. Suisse	0,283

				quotient
*	Canon	camp. 75	mm. Mack 1. U.S.A	0,220
	»	»	» Suisse (après modificat.)	0,187
	Canon	120 mm.	1882. Suisse	0,775
))	105 mm.	Schneider (ici décrit)	0,385
))	105 mm.	Bofors (indécrit)	0,379

Toutes les transformations qu'a subies notre canon de campagne ont été effectuées en Suisse par notre industrie.

Comme les journaux l'ont indiqué, le canon de montagne sera construit également en Suisse; nous restons naturellement tributaires de l'étranger pour les matières premières et quelques rares travaux spéciaux. Mais la presque totalité du crédit alloué restera chez nous. Il est certain qu'il en sera de même pour les canons longs.

Nous avons ainsi la légitime satisfaction d'améliorer et de moderniser de façon sensible notre parc d'artillerie, d'augmenter notablement la capacité défensive de notre armée tout en donnant du travail à l'industrie nationale.

Alors qu'autour de nous on organise la mobilisation industrielle en cas de conflit, il n'est pas sans intérêt d'expérimenter la capacité de nos usines et d'étudier l'adaptation rapide de leur outillage aux fabrications de matériel de guerre. Nous avons là une occasion excellente de faire coup double.

> Major GONARD, Officier instructeur d'artillerie.

^{*} Army Ordnance, nov.-déc. 1932.