Zeitschrift: Revue de linguistique romane

Herausgeber: Société de Linguistique Romane

Band: 47 (1983) **Heft:** 187-188

Artikel: Parquet polygonal et treillis triangulaire : les deux versants de la

dialectométrie interponctuelle

Autor: Goebl, Hans

DOI: https://doi.org/10.5169/seals-399743

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

PARQUET POLYGONAL ET TREILLIS TRIANGULAIRE: LES DEUX VERSANTS DE LA DIALECTOMÉTRIE INTERPONCTUELLE (¹)

0. Dialectométrie et interpoint.

Alors qu'il n'est nullement besoin de s'attarder au terme de dialectométrie (²), il semble par contre indiqué de préciser ce que l'on entend par interpoint. Tout en faisant partie du fond terminologique commun de la géométrie en particulier et des mathématiques en général, il a connu une première articulation explicite en relation avec des problèmes dialectologiques de la part de l'abbé Lalanne en 1953: « La méthode consistait à observer les interpoints où un objet changeait de vocable [...]. Sur la ligne joignant deux points d'enquête on a fait autant d'encoches que l'on notait de ces oppositions lexicales. » (Lalanne 1953, 266) (³). On déduit aisément de ce passage que l'auteur entend par

⁽¹⁾ Calculs électroniques : S. Selberherr (Vienne), cartographie automatique : W.-D. Rase (Bonn), H. Pudlatz (Münster). Tous nos travaux dialectométriques ont bénéficié (et continuent de le faire) de l'appui financier, voire administratif des organismes suivants :

⁻ Hochschuljubiläumsstiftung der Stadt Wien (Vienne),

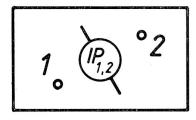
[—] Jubiläumsfonds der Österreichischen Nationalbank zur Förderung der Forschungs- und Lehraufgaben der Wissenschaft (Vienne),

[—] Fonds zur Förderung der wissenschaftlichen Forschung in Österreich (Vienne).

[—] Deutsche Forschungsgemeinschaft (Bonn),

[—] Institut de linguistique générale de l'Université de Vienne (direction : W.-U. Dressler).

Que MM. Selberherr, Rase et Pudlatz ainsi que les responsables des organismes de recherche allégués ci-dessus reçoivent ici l'expression de ma plus vive reconnaissance.


Supervision de l'aspect stylistique de notre texte : François Genton (Ratisbonne).

⁽²⁾ Cf. Séguy 1973 a, 1 et Goebl 1981 a : « Dialectométrie = géographie linguistique + taxonomie numérique ».

⁽³⁾ L'article en question de Lalanne (1953) synthétise un travail antérieur, riche en idées et fourmillant de perspectives nouvelles (Lalanne 1949).

HANS GOEBL

interpoint un point situé au milieu d'un segment de droite reliant deux points contigus d'un réseau d'atlas. Il en ressort en outre qu'un interpoint peut être défini par son appartenance à deux points du réseau d'atlas (x et y) qui, en fonction de la géométrie du réseau d'atlas considéré, lui ont été assignés comme points de repère par le géolinguiste. Tout interpoint peut revêtir deux fonctions : la fonction discriminatoire pour signaler des différences (dissemblances, dissimilarités, distances) linguistiques, et la fonction communicative pour signaler des identités (similarités, ressemblances, similitudes) linguistiques. Voir la Fig. 1.

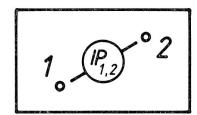
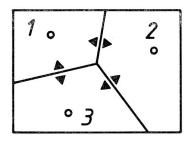


Fig. 1:


A gauche : interpoints en fonction discriminatoire (visualisant des charges linguistiques différentes aux points 1 et 2).

A droite: interpoints en fonction communicative (visualisant des charges linguistiques identiques aux points 1 et 2).

Alors que tout interpoint en fonction discriminatoire n'est rien d'autre qu'un segment d'isoglosse, il n'y a pas encore — en matière de cartographie linguistique — d'équivalent isométrique pour les interpoints en fonction communicative, et ceci du point de vue tant terminologique que conceptuel. Ce fait est d'autant plus étonnant que le principe géométrique sur lequel repose le tracement d'isoglosses (et qui présuppose une triangulation du réseau d'atlas) vaut également pour les interpoints en fonction communicative. On verra par la suite que la synthèse dialectométrique des interpoints communicatifs donne des résultats fort éloquents, qui de surcroît l'emportent à maints égards sur ceux obtenus à l'aide des interpoints discriminatoires. D'où cette négligence manifestée vis-à-vis des interpoints communicatifs ?

Il semble bien que les difficultés graphiques voire cartographiques auxquelles toutes les synthèses isoglottiques se sont heurtées jusqu'alors aient empêché les dialectologues de pousser plus avant leurs recherches relatives à l'autre versant du principe interponctuel.

Heureusement les choses ont changé de nos jours. Grâce aux progrès spectaculaires de l'informatique nous sommes désormais à même de résoudre convenablement et du même coup tant les problèmes de la constitution esthétique du figuré cartographique que ceux de la synthèse numérique des données géolinguistiques, pour disparates qu'elles puissent être. C'est à l'ordinateur qu'incombent derénavant la triangulation du réseau des points d'atlas, l'établissement du parquet polygonal (qui servira plus tard à la visualisation des interpoints discriminatoires) et le tracement des symboles linéaires à épaisseur variable. Voir la Fig. 2.

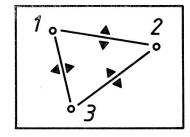


Fig. 2:

A gauche : parquet polygonal dans un réseau d'atlas à 3 points. A droite : treillis triangulaire dans un réseau d'atlas à 3 points.

L'épaisseur des segments de droite tracés entre les points 1/2, 2/3 et 1/3 peut varier en fonction de l'importance numérique des interpoints respectifs.

0.1. Bref historique de la pensée isoglottique.

Avant d'entrer dans les détails techniques de la dialectométrie interponctuelle, il convient d'évoquer brièvement les étapes les plus importantes de la pensée isoglottique. Le terme d'isoglosse a été forgé en 1892 par l'abbé A. Bielenstein (de nationalité allemande et de citoyenneté russe): cf. Freudenberg 1966, 222 et 226. A. Bielenstein ne fit d'ailleurs rien d'autre, en créant le néologisme d'isoglosse, que

d'utiliser les procédés morphologiques largement répandus à l'époque et qui faisaient tous recours au préfixe *iso*- pour dénommer des lignes isométriques de tout genre (4).

Au sein de la linguistique romane le terme d'isoglosse ne s'est répandu que très lentement. J. Gilliéron, pour citer le maître incontesté de la dialectologie de l'époque, ne l'utilisait pas. Ce n'est qu'en 1909 que J. Huber en tire tout un jeu d'isolignes d'inspiration linguistique : Isophonen, Isomorphen, Isoformen, Isofixen, Isolexen, Isoglossen et Isosyntaxen (Huber 1909, 100). Il va de soi que l'absence du terme d'isoglosse chez les auteurs du tournant du siècle n'implique nullement que la chose dénommée, à savoir une ligne joignant des points en nombre théoriquement illimité et dont le potentiel linguistique est identique, ait été inconnue. Citons parmi les romanistes qui se sont penchés très précisément sur le problème de la classification dialectale par voie isoglottique, L. Gauchat (1903), E. Tappolet (1905), A. Rosenqvist (1919) et K. v. Ettmayer (1924), ainsi que le germaniste K. Haag (p. ex. 1930 : avec application aux données de l'AIS) qui, au tournant du siècle et sur des données géolinguistiques relatives au Sud-ouest de l'Allemagne, avait élaboré une théorie fort avancée de la classification dialectale par la synthèse d'isoglosses, qui comportait en germe tous les éléments majeurs de la dialectométrie interponctuelle : traitement géométrique du réseau des points d'enquête, tracement d'isoglosses le long des côtés de polygones fictifs entourant les points d'enquête, superposition systématique d'isoglosses en vue de dégager des structures ordonnées en partant de données brutes fort disparates voire souvent carrément chaotiques (5). Malheureusement, les idées du germaniste K. Haag — et dont les vues étaient souvent fort apparentées à celles de L. Gauchat (cf. surtout Gauchat 1903) — n'ont pas eu de succès au sein de la romanistique qui, à l'époque, était encore plus ou moins sous la chape de

⁽⁴⁾ Dans son livre « Die Grenzen des lettischen Volksstammes und der lettischen Sprache in der Gegenwart und im 13. Jahrhundert » (Saint-Pétersbourg 1892), A. Bielenstein le dit lui-même : « Ich habe nach Analogie der Isothermen für die Linien auf dieser Karte den Namen Isoglosse zu erfinden gewagt. » (Cité d'après Freudenberg 1966, 226). Voir aussi le fac-similé de la carte isoglottique de Bielenstein chez Händler/Wiegand 1982, 505. 1982, 75-92 et quelques cartes hors texte) ainsi que par Händler/Wiegand (1982).

⁽⁵⁾ Les mérites de K. Haag (1860-1946) ont été illustrés récemment par J. Lang dans un ouvrage relatif à l'histoire de la géographie linguistique (cf. Lang 1982, 75-92 et quelques cartes hors texte), ainsi que par Händler/Wiegand (1982).

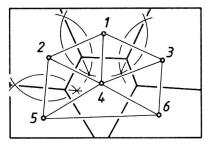
plomb du verdict de la non-existence des dialectes, rendu par les grands maîtres « typophobes » P. Meyer, G. Paris ou J. Gilliéron. Cf. à ce sujet *infra*, 3.

La discussion sur les problèmes des isoglosses a connu un regain d'intérêt à partir des années 50, et ceci le long de deux filons scientifiques indépendants tout d'abord l'un de l'autre : le filon « sudiste » avec Th. Lalanne (1949 et 1953), J. Séguy (1971, 1973 a, 1973 b), H. Guiter (1973, 1979, 1981) et A. Sarda Roqueta (1977) d'un côté, et le filon « nordiste » avec l'angliciste E. B. Atwood (1955) et le romaniste L. Remacle (1972) de l'autre (6). Les deux filons ont été réunis peu après par L. Remacle (1975/76) et sa collaboratrice M. Duchesne-Degey (1976).

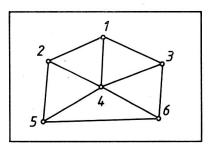
Quant au développement — pour ne pas dire : aux péripéties — de la pensée isoglottique chez les germanistes, je renvoie aux contributions soit théoriques soit récapitulatives de Grosse (1965), Lerchner (1965), Freudenberg (1966), Wiegand/Harras (1971) et surtout de Händler/Wiegand 1982. On trouvera en outre des synthèses isoglottiques fort bien réussies d'un point de vue graphique chez Stoeckicht 1931 (réimpression chez Bach 1950, 61), Veith 1970 (482, 483), Löffler 1974 (137), König 1978 (140), Lang 1982 (annexes : réimpression de quelques synthèses isoglottiques de K. Haag) et Händler/Wiegand 1982.

Les dialectologues anglicistes (et/ou anglophones) se sont penchés, eux aussi, plus d'une fois sur le problème de la classification isoglottique des dialectes. Cf. les travaux de Speitel 1969, Glauser 1974, Lance/Slemons 1976 et surtout ceux du celtologue A. R. Thomas (1977, 1980 a, 1980 b) exécutés sur des données galloises et à l'aide de l'ordinateur.

Pour méritoires que soient toutes les contributions citées ci-dessus tant par l'orientation empirique que l'effort cartographique déployé, on n'y trouve guère de réflexions théoriques susceptibles de faire avancer le problème isoglottique d'une manière décisive. Il faut chercher un peu à l'écart de la linguistique, à savoir chez les ethnologues, pour trouver cet élan méthodologique qui nous a fait si longtemps défaut. Citons à ce propos les contributions de Milke (1949), Krikman (1980) et


⁽⁶⁾ Il n'est pas dénué d'intérêt de constater que, dans la querelle typologique de la fin du 19° siècle, les tenants des positions « typophiles » — comme p. ex. J.-P. Durand et Ch. de Tourtoulon — provenaient, tout comme Th. Lalanne, H. Guiter, J. Séguy et L. Remacle, de régions latérales de la francophonie européenne où le souci différenciateur est, semble-t-il, plus développé qu'à Paris ou dans des régions plus centrales.

de Murumets (1981) qui portent sur la classification déjà tout à fait taxométrique de matériaux ethnographiques américains (Milke) et estoniens (Krikman, Murumets) (7).


Pour ce qui est de l'automatisation du secteur cartographique de l'analyse isoglottique, on n'a tenté jusqu'alors que d'automatiser le tracement d'isoglosses isolées : cf. Janssen 1974, Händler/Naumann 1976 et Pudlatz 1977. Rien encore n'a été fait en vue d'une synthèse voire synopse isoglottique automatisée. C'est ici que le terrain de recherche a été laissé complètement vierge.

- 1. Fondements théoriques de la dialectométrie interponctuelle.
- 1.1. Préparation du fond de carte.

Tout réseau d'atlas doit être soumis à un traitement géométrique particulier pour servir de support cartographique à la visualisation adéquate des résultats de l'analyse dialectométrique interponctuelle. Voir la Fig. 3.

(pavage selon la méthode de Thiessen)

(triangulation)

Fig. 3:

A gauche : construction de polygones de Thiessen (ou de Dirichlet, de Voronoï) dans un réseau de 6 points d'atlas (établissement des supports cartographiques pour les interpoints discriminatoires).

A droite : triangulation d'un réseau de 6 points d'atlas (établissement des supports cartographiques pour les interpoints communicatifs).

⁽⁷⁾ Krikman et Murumets se trouvent, en ce qui concerne le substrat ethno-

Pour l'analyse dialectométrique à l'aide d'interpoints discriminatoires, il convient d'entourer chaque point du réseau d'atlas considéré d'une aire polygonale bien définie, le long des côtés de laquelle s'étaleront, après la mise en carte des résultats de l'analyse taxométrique, les segments d'isoglosses à épaisseur variable. La méthode de construction des polygones de Thiessen (8) (ou de Dirichlet (9) ou de Voronoï (10)) est d'ailleurs fort simple (cf. aussi Goebl 1981 a, 363-365 et Goebl 1981 b, 27-28):

- 1. Triangulation des points d'atlas du réseau examiné. On veillera à ce que les côtés de triangle tracés entre les points d'atlas soient aussi courts que possible.
- 2. Les segments triangulaires (côtés de triangle) reliant les points d'atlas sont pourvus de leurs perpendiculaires (médiatrices de segments).
- 3. Fusion des médiatrices dans les points de concours. Les points de concours constituent les angles des polygones de Thiessen. Comme le point de concours des médiatrices d'un triangle est le centre d'un cercle qui passe par les trois sommets de ce triangle, et que les points de concours des médiatrices représentent les angles des polygones de Thiessen, les angles des polygones de Thiessen sont les centres de cercles circonscrits aux différents triangles inscrits dans le réseau d'atlas soumis à la polygonation.
- 4. Après l'établissement de la mosaïque polygonale disjonctive couvrant tout le réseau d'atlas, l'on doit déplacer les numéros d'ordre des points d'atlas vers le milieu des polygones respectifs pour éviter, le cas échéant, des enchevêtrements entre le tracé des côtés de polygones et celui des chiffres des numéros des points d'atlas.

Au sujet des polygones de Thiessen (de Dirichlet ou de Voronoï) cf. Thiessen 1911, Haggett 1973 (277), Rhynsburger 1973, Haggett/Cliff/Frey 1977 (436-439), Pudlatz 1977, Brassel/Reif 1979, Streit 1981 et Goebl 1981 a (364-365).

psychologique de leurs inspirations scientifiques, dans une situation analogue à celle des chercheurs « typophiles » « sudistes » et « nordistes » mentionnés ci-dessus.

⁽⁸⁾ Cf. Thiessen 1911.

⁽⁹⁾ P. G. Dirichlet-Lejeune (1805-1859), mathématicien franco-allemand.

⁽¹⁰⁾ G. F. Voronoï (1868-1908), mathématicien russe.

Pour les interpoints communicatifs la préparation du fond de carte est moins onéreuse, étant donné qu'elle ne requiert que la triangulation du réseau d'atlas (voir ci-dessus, étape 1). En regardant la Fig. 3, on peut constater qu'il y a 10 interpoints communicatifs et 9 interpoints discriminatoires. Cette différence entre le nombre des interpoints communicatifs et celui des interpoints discriminatoires s'explique par le fait qu'il n'est pas possible, à cause de l'étroitesse du champ d'observation de la Fig. 3, d'insérer un interpoint discriminatoire entre les points 5 et 6 alors que, pour l'interpoint communicatif homologue, les bords du champ d'observation ne présentent pas d'obstacle. Il y a ici un problème qu'on cherchera à éviter dans la pratique dialectométrique. Quels que soient les contours géographiques du champ d'observation donné (i. e. du réseau d'atlas examiné), on veillera à ce que le nombre des interpoints discriminatoires corresponde exactement à celui des interpoints communicatifs.

Dans notre réseau AIS il y a — sur 251 points d'atlas pris en considération — 670 interpoints (tant discriminatoires que communicatifs) : voir les Fig. 8 et 9 (11).

1.2. Traitement taxométrique des données dialectales.

Toute démarche dialectométrique revient, en dernière analyse, au traitement séquentiel de données préalablement captées par un dispositif de détection, à l'instar de ce qui se passe, par exemple, avec les images transmises par des satellites de télédétection et transformées en photographies ou clichés reproductibles par la suite. L'analyse taxométrique se présente donc comme une chaîne bien articulée dont il est important de choisir les différents maillons avec circonspection. Il est complètement aberrant, en l'occurrence, de disserter longuement sur le degré d'« objectivité » de telle transformation informationnelle. Ce qui compte ce sont le résultat et son utilité pour celui qui a mis en place le dispositif de traitement. Jamais on ne pourra se défaire du rôle d'observateur, jamais on ne percevra autre chose qu'une image de la réalité qui, elle, restera toujours à l'écart de l'observateur et ne se confondra jamais avec lui. La dichotomie ineffaçable entre observateur et objet observé en occasionne — et c'est Platon qui nous l'a enseigné

⁽¹¹⁾ Pour le réseau de l'atlas linguistique de la Wallonie (305 points d'enquête) L. Remacle (1975/76, 14-15) a construit un treillis triangulaire comprenant un total de 955 interpoints.

le premier — une autre, non moins fondamentale : à savoir celle entre le réel et l'idée que l'on en conçoit. Les résultats dialectométriques se situent sur le plan non pas du réel mais bien plutôt de l'idée. Tout dialectométricien ne pourra jamais opérer autrement qu'en bon platonicien: se faire une idée, avec des moyens appropriés et en fonction d'un point de vue bien défini, de certains aspects d'une réalité illimitée, changeante et multiforme (12). La tradition platonicienne dans laquelle baigne toute démarche dialectométrique, présuppose en outre une conscience accrue face aux problèmes de la relativité et des relations entre les objets tout court, et se situe par conséquent à l'opposé de la tradition aristotélicienne, qui ne connaît que des différences dichotomiques entre les objets de ce monde. Ici, Platon, le maître, l'emporte de loin sur Aristote, le disciple. Cette constatation n'a rien de surprenant. Tout historien des sciences sait que l'éclosion des sciences dites exactes à partir de Galilée (1564-1642) va de pair avec une remise en valeur de la pensée platonicienne aux dépens de la pensée aristotélicienne : cf. à ce sujet Lewin 1930/31. La linguistique dont l'empreinte aristotélicienne est hors de doute, et qui partant est habituée à une vue plutôt dichotomique que relationnelle des choses, n'est malheureusement pas bien placée pour accueillir de telles réorientations épistémologiques ; cf. les remarques de Lehfeldt/Altmann 1975. Quant à la classification dialectologique à proprement parler, c'est le décalage entre Platon et Aristote qui était à la base de la fameuse querelle entre P. Meyer et G. I. Ascoli autour du francoprovençal, dispute vieille désormais de plus d'un siècle. Il en sera question à la fin de cet article (3.).

1.2.1. De l'AIS à la matrice des données.

Pour les principes de métrologie observés et les détails de l'analyse taxatoire cf. Goebl 1981 a, 352-356. La matrice des données utilisée dans ce travail a les dimensions suivantes :

données dialectales brutes : vol. I, II et IV de l'AIS ;

objets (points d'atlas) : 247 points AIS et 4 points artificiels :

• P. 154: seconde enquête faite à Turin (cf. Jaberg/Jud 1928, 56-57),

⁽¹²⁾ Encore faut-il se rendre compte du rang épistémologique des théories que l'on tire de toute analyse classificatoire. De telles théories correspondent le plus souvent à des *espaces sémantiques pluridimensionnels* et à tout un jeu de *relations* qui y sont inscrites.

- P. 262 : seconde enquête faite à Milan (cf. Jaberg/Jud 1928, 69),
- P. 524: seconde enquête faite à Florence (cf. Jaberg/Jud 1928, 100-101),
- P. 999 : équivalent de l'italien standard tel qu'il figure dans les en-têtes des planches de l'AIS ;

critères discriminatoires pour l'isolement des unités taxatoires (taxats): différences lexicales et morpho-syntaxiques;

attributs (cartes analysées) (13): 256;

nombre des unités taxatoires (taxats) consignées dans la matrice des données : 1394 ;

nombre de taxats/carte analysée : 5,4453.

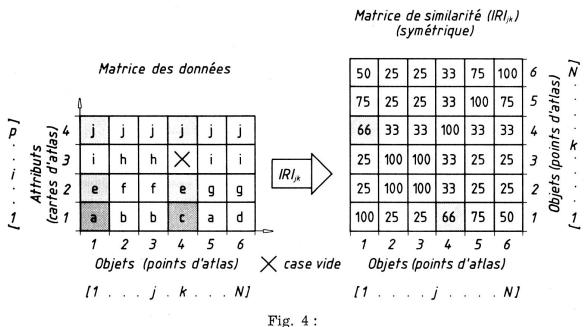
La matrice des données ne dispose que de très peu de cases vides. Etant donné le fait que les distorsions numériques qu'entraîne la présence de cases vides dans les vecteurs d'objets de la matrice lors du calcul des relations de similarité, ont des effets perturbateurs sur la syntaxe iconique des cartes à interpoints (tant discriminatoires que communicatifs), nous avons cherché à prévenir ces effets en réduisant dans la mesure du possible le nombre des cases vides et partant des attributs, sans pour autant affecter la fiabilité des résultats dialectométriques ainsi obtenus. Il n'y a, en effet, que très peu de différences entre les résultats dialectométriques basés sur le total de notre matrice AIS (696 cartes analysées: cf. Goebl 1981 a, 353-354 et Goebl 1982, 16-17) et ceux basés sur la matrice réduite (256 cartes analysées: cf. Goebl 1981 b, 28-30). Pour une confrontation tant graphique que numérique de ces deux matrices et de leur fiabilité respective cf. Goebl 1982, 20-21, 40 et surtout 81 et 83.

⁽¹³⁾ Les cartes AIS dites analysées ne correspondent pas aux cartes AIS originales. Les cartes analysées appartiennent au plan de la matrice des données, alors que les cartes originales se situent au plan des données AIS brutes. Il est souvent possible de tirer plus d'une carte analysée d'une carte AIS originale. C'est par l'analyse taxatoire que le dialectométricien tire d'une carte AIS originale une ou plusieurs cartes analysées. Voici un exemple : de la carte AIS I 9 quando mio figlio nous avons tiré deux cartes analysées, l'une portant sur les réalisations onomasiologiques du concept « figlio » (p. ex. figlio , figliolo , toso , matto , ragazzo , etc. ; analyse lexicale), l'autre sur celles de l'adjectif possessif (p. ex. mio figlio , il mio figlio , etc. : analyse morpho-syntaxique). Cf. en outre Goebl 1981 a, 354 et Goebl 1982, 15-18 et les exemples y allégués.

Le bilan numérique de notre analyse taxatoire — voir le Tabl. 1 — donne une vision assez claire de la richesse onomasiologique des données de départ. Cf. aussi Goebl 1981 a, 354-355 et Goebl 1982, 20-21 (14).

N-TYP	N-KART	%-101	
1	51	19.92	
2	67	26.17	
3	31	12.11	
4	21	8.20	
5	15	5.86	
6	10	3.91	
7	3	1.17	
8	9	3.52	
9	6	2.34	
10	6	2.34	
11	5	1.95	
12	2 3	.78	
13	3	1.17	
14	6	2.34	
15	3	1.17	
16	3	1.17	
17	1	. 39	
18	2 1	.78	
19		.30	
20	1	.39	
21	1	• 39	
22	2	.78	
23	2	.78	
28	1	.39	
33	1	•39	
40	1	.39	
41	1	• 39	
50	1	•39	
	256		

Tabl. 1 : [Nombre de taxats par carte analysée.]


La première ligne de la liste est à interpréter comme suit : « De 256 cartes analysées (colonne N-KART, en bas), 51 (colonne N-KART, en haut) ou $19.92~^{0}/_{0}$ (colonne $^{0}/_{0}$ -TOT), ne disposent que d'un seul taxat (colonne N-TYP) et sont donc mononymes. »

1.2.2. La mesure de la similarité et de la distance.

Pour l'analyse dialectométrique des interpoints discriminatoires il faut mesurer la distance (dissemblance, dissimilarité, dissimilitude) réciproque entre les points d'atlas alors que, pour les interpoints communicatifs, c'est la similarité (similitude, ressemblance, identité) réci-

⁽¹⁴⁾ Ici nous renvoyons expressément à Remacle 1975/76, 12-13, où l'on trouve un bilan numérique analogue à notre Tabl. 1.

proque entre les points d'atlas qu'il faut retenir. Comme la taxonomie numérique offre, tant pour la mesure de la distance que pour celle de la similarité, un nombre quasiment illimité d'indices appropriés, il faut absolument que le dialectométricien ait mis au point ses propres visées classificatoires et son acception personnelle de distance et de similarité linguistiques, avant d'opérer son choix dans la panoplie surabondante de la taxométrie. Nous nous tenons, quant à notre propre acception de similarité et de distance linguistiques, à la définition classique de Durand (1889, 63): « Et maintenant, qu'est-ce qui constitue le degré de ressemblance qui rapproche deux langues entre elles, et le degré de dissemblance qui les éloigne l'une de l'autre? La ressemblance se mesure à la proportion des caractères communs, la dissemblance à la proportion des caractères particuliers. » Au concept de similarité ainsi défini correspond exactement le « simple matching coefficient » de la

rig. T

Génération de la matrice de similarité à partir de la matrice des données par l'application de l'Indice Relatif d'Identité (IRI_{jk}).

- A gauche (matrice des données): grisé clair : co-identités (COI) pour i = 4 (j = j), pour i = 2 (e = e), grisé sombre : co-différence (COD) pour i = 1 ($a \neq c$).
- A droite (matrice de similarité) : en gris : $IRI_{1,4} = IRI_{4,1} = 66$.

taxonomie numérique (15), appelé par nous soit « Indice Relatif d'Identité » (IRI) soit « Relativer Identitätswert » (RIW) (16). Pour l'intelligence de l'IRI voir la Fig. 4.

Pour la mesure de la similarité des vecteurs d'attributs de deux points d'atlas (j et k) l'Indice Relatif d'Identité se définit comme suit :

$$IRI_{jk} = 100. \quad \frac{\displaystyle \sum_{i=1}^{\widetilde{p}} (COI_{jk})i}{\displaystyle \sum_{i=1}^{\widetilde{p}} (COI_{jk})i} \quad (1),$$

$$\displaystyle \sum_{i=1}^{\widetilde{p}} (COI_{jk})i \quad + \quad \sum_{i=1}^{\widetilde{p}} (COD_{jk})i$$
 où
$$IRI_{jk} \quad \text{est l'Indice Relatif d'Identité},$$

$$\widetilde{p} \quad \text{est le nombre des attributs présents et dans le vecteur du point } j \text{ est une co-identité entre les points } j \text{ et } k \text{ à l'emplacement de l'attribut } i,$$

$$(COI_{jk})i \quad \text{est une co-différence entre les points } j \text{ et } k \text{ à l'emplacement de l'attribut } i,$$

$$j \quad \text{est l'indicatif du point de référence},$$

$$k \quad \text{est l'indicatif du point comparé},$$

$$i \quad \text{est l'indicatif d'un attribut}.$$

Vérification de l' IRI_{jk} pour j = 1 et k = 4 à l'aide de la Fig. 4:

- Remarquer que la présence d'une case vide dans i=3 cause la diminution de \widetilde{p} de 4 à 3.
- Nombre des co-identités entre les points 1 et 4 :

$$\sum_{i=1}^{3} (COI_{1,4})i = 2.$$

• Nombre des co-différences entre les points 1 et 4 :

$$\sum_{i=1}^{3} (COD_{1,4})i = 1.$$

⁽¹⁵⁾ Cf. Sneath/Sokal 1973, 132; Bock 1974, 51; Chandon/Pinson 1981, 74.

⁽¹⁶⁾ Cf. aussi la présentation de l'IRI dans Goebl 1981 a, 358.

• Calcul de l'IRI_{1,4} selon la formule (1):

$$IRI_{1,4} = 100. \frac{2}{2+1} = 66.6 \, ^{0}/_{0}.$$

D'après la définition de Durand mentionnée ci-dessus, similarité (s) et dissemblance (d) sont complémentaires. Cette complémentarité peut être mise en formule de la manière suivante :

$$s + d = 1 \tag{2}.$$

Nous appelons l'indice de dissemblance complémentaire à l' IRI_{jk} « Indice Relatif de Distance » (IRD_{kj}). Les rapports entre IRI_{jk} et IRD_{kj} se définissent donc comme suit :

$$IRI_{jk} + IRD_{kj} = 100$$
 (3).

C'est à l'aide de la formule (3) que l'on passe de la matrice de similarité (IRI_{jk}) à la matrice de distance (IRD_{kj}) : voir la Fig. 5.

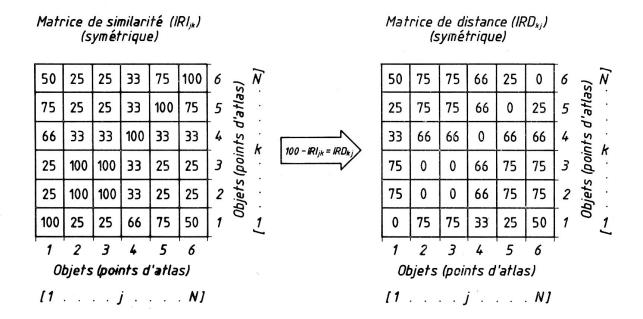


Fig. 5:

Transformation de la matrice de similarité (IRI_{jk}) en une matrice de distance (IRD_{kj}) à l'aide de la formule (3).

En combinant les formules (1) et (3) l'on obtient la formule suivante de l'IRD qui retrace d'ailleurs exactement l'acception de Durand relative au degré de dissemblance de deux langues :

$$IRD_{kj} = 100. \frac{\sum_{i=1}^{\widetilde{p}} (COD_{kj})i}{\sum_{i=1}^{\widetilde{p}} (COD_{kj})i + \sum_{i=1}^{\widetilde{p}} (COI_{kj})i}$$
(4).

Pour l'explication des termes de la formule (4) voir la formule (1).

Les dimensions tant de la matrice de similarité que de la matrice de distance sont de N^2 . Comme tous les indices calculés sont symétriques ($IRI_{jk} = IRI_{kj}$) et que les N valeurs répertoriées le long de la diagonale sont toutes de 100 (= IRI_{jj}) (ou de 0 pour l' IRD_{kk}), il est possible de scinder en deux la matrice symétrique (de similarité ou de distance) et d'en extraire une matrice asymétrique (ou triangulaire) aux dimensions suivantes :

$$\frac{N^2 - N}{2} = \frac{N}{2} \cdot (N - 1)$$
 (5),

où N est le nombre des objets (points d'atlas) observés.

C'est à partir d'une matrice asymétrique que se fera la mise en carte d'un certain nombre des distances (voir la Fig. 6) et des similarités (voir la Fig. 7) calculées.

1.2.3. Mise en carte des valeurs interponctuelles.

Tout interpoint est défini par une relation de contiguïté, à l'exclusion de toute autre relation de proximité géographique. L'observation stricte des relations de contiguïté nous amène à ne considérer, dans la matrice de similarité (ou de distance), qu'un nombre fort limité de valeurs et de négliger, bon gré mal gré, tout le reste. Ceci signifie, par exemple, que sur 31.375 scores (de distance ou de similarité) répertoriés dans la matrice de similarité calculée pour ce travail ($\frac{N}{2}$ (N — 1) = 31.375; N = 251), 670 valeurs seulement, équivalant à autant d'interpoints, seront utilisées pour la mise en carte et, partant, pour la visualisation. Ces 670 valeurs correspondent à 2,13 % du total de 31.375

scores. Le rendement taxométrique de l'analyse interponctuelle est donc

fort limité par rapport à d'autres analyses dialectométriques : voir à cela Goebl 1981 a, 381 sq. et Goebl 1982, 41 sq. L'avantage de l'analyse interponctuelle consiste avant tout dans sa simplicité tant conceptuelle que cartographique et moins dans sa capacité classificatoire. Cette mise au point est absolument nécessaire pour réduire à ses justes dimensions l'engouement des dialectologues pour des classifications isométriques de tout genre.

Pour la mise en carte des distances interponctuelles voir la Fig. 6 et pour celle des identités (ou simlarités) interponctuelles voir la Fig. 7.

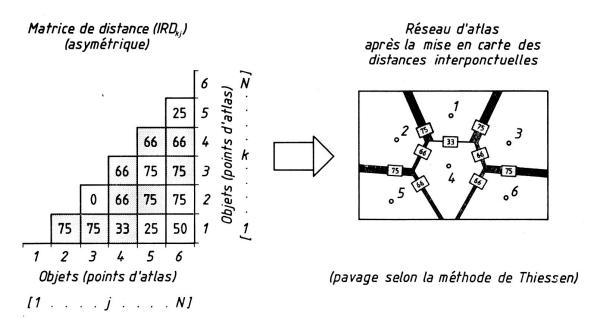


Fig. 6:
Mise en carte des distances interponctuelles.

Les données de la matrice de distance (IRD_{kj}) correspondent à celles de la Fig. 5. Pour la géométrie du pavage de Thiessen voir la Fig. 3.

En gris : valeurs interponctuelles utilisées pour la mise en carte.

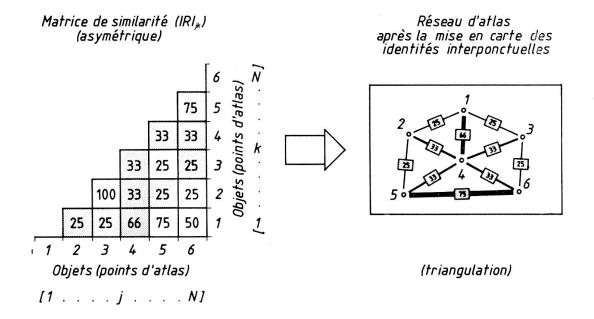


Fig. 7 :
Mise en carte des identités interponctuelles.

Les données de la matrice de similarité (IRI_{jk}) correspondent à celles des Fig. 4 et 5. Pour la géométrie de la triangulation voir la Fig. 3.

En gris : valeurs interponctuelles utilisées pour la mise en carte.

La mise en carte des valeurs interponctuelles exige le recours à des procédés cartographiques adéquats pour assurer qu'à la variabilité numérique des 670 valeurs interponctuelles corresponde une variabilité analogue du figuré iconique. La mise en carte constitue donc le dernier maillon de la chaîne dialectométrique évoquée ci-dessus (1.2.). Cependant elle n'est pas le dernier maillon de la chaîne classificatoire en tant que telle, puisque toute classification aboutit dans l'univers conceptuel du classificateur. C'est enfin le moment où commence (ou recommence) le travail théorique du dialectologue. De cette constatation il résulte que tous les procédés dialectométriques ne peuvent jamais se défaire de leur caractère instrumental.

- 2. Application concrète de la dialectométrie interponctuelle.
- 2.1. Notice servant à l'intelligence de la Fig. 8. (Voir pp. 392 et ss.)

Dans les Fig. 8 et 9 la mise en carte des 670 données numériques a été faite à l'aide de deux algorithmes d'intervallisation — MINMWMAX et MED — qui se sont révélés, au cours de nos expérimentations dialectométriques, comme étant les mieux adaptés aux objectifs fixés. L'algorithme utilisé pour l'établissement de la Fig. 8 — en abrégé: MINMWMAX — est le même auquel nous avons recouru dans bon nombre de travaux antérieurs (17). Pour la bonne compréhension de ses propriétés algébriques voir aussi le Tabl. 2.

Algorithme d'intervallisation MINMWMAX (à 12 intervalles):

- établissement de 6 paliers ordonnés au-dessous de la moyenne arithmétique,
- division par 6 de l'écart entre la moyenne arithmétique (15,610) et le minimum (5,534); il en résulte 6 paliers (ou intervalles) égaux dont la taille est de 1,6793, et à l'aide desquels l'on calcule aisément les limites d'intervalles respectives (voir les colonnes 1-3 du Tabl. 2),
- établissement de 6 paliers ordonnés au-dessus de la moyenne arithmétique,
- division par 6 de l'écart entre la moyenne arithmétique (15,610) et le maximum (48,425); il en résulte 6 paliers (ou intervalles) égaux dont la taille est de 5,46916, et qui permettent de calculer rapidement les limites des intervalles respectifs (7-12) (voir les colonnes 1-3 du Tabl. 2).

Une consultation parallèle du Tabl. 2 et des en-têtes de la Fig. 4 a permet de vérifier toutes les étapes du calcul décrit ci-dessus.

L'histogramme figurant sur la Fig. 8, à droite en bas, et qui permet aux statisticiens de contrôler rapidement certaines propriétés caractéristiques de la distribution de fréquence visualisée, est défini par la largeur et la hauteur de ses colonnes. La largeur des 12 colonnes de l'histogramme correspond à la taille respective des 12 intervalles (voir la

⁽¹⁷⁾ Cf. nos travaux de 1976, 1977 (a et b), 1978, 1980, 1981 (a et b) et 1982; cf. en particulier 1981 a, 361-363.

1		2	3	4	5	6
Intervalle	Variable	: IRD _{kj}	Taille de l' intervalle (dj) (=largeur des colonnes de l' histogramme)	Nombre d´interpoints par intervalle (nj)	Fréquence relative (pj) des nombres d'interpoints par intervalle (j) $ (p_j = \frac{n_j}{670}) $	Hauteur (hj) (en unités factices) des colonnes (j) de l' histogramme $\left(h_j = \frac{p_j}{dj}\right)$
(j)	de	à				
1	5,534 a)	7,213	1,6793	12	0,0179	0,010
2	> 7,213	8,892	1,6793	25	0,0373	0,022
3	> 8.892	10,572	1,6793	49	0,0731	0.045
4	>10,572	12,251	1,6793	106	0.1582	0,094
5	>12,251	13,931	1,6793	108	0,1611	0,095
6	>13,931	15,610 b)	1,6793	92	0,1373	0,081
7	>15,610	21,079	5,46916	204	0,3044	0.055
8	>21,079	26,549	5,46916	43	0,0641	0.011
9	>26,549	32,018	5,46916	11	0,0164	0,002
10	>32,018	37,487	5,46916	7	0,0104	0.001
11	>37,487	42,956	5,46916	7	0,0104	0,001
12	>42,956	48,425 c)	5,46916	6	0.0089	0.001
a) minim	um b) moy	enne arithm	néthique c) maximum	$\sum_{j=1}^{12} n_j = 670$	$\sum_{j=1}^{12} p_j = 1$	

Tabl. 2:

Calcul des intervalles de visualisation à l'aide de l'algorithme d'intervallisation MINMWMAX (à 12 intervalles).

Voir aussi la Fig. 8 et les en-têtes du Tabl. 4 a.

colonne 3 du Tabl. 2), alors que le calcul de la hauteur des 12 colonnes se fait à partir d'une considération combinée et du nombre d'interpoints par intervalle et de la taille de l'intervalle respectif (voir les colonnes 6, 5, 4 et 3 du Tabl. 2 et les définitions qui y figurent à l'entête).

Aux 12 intervalles numériques ainsi établis correspondent autant d'épaisseurs du symbolisme linéaire utilisé. Pour faciliter à l'œil la saisie différentielle du modelé accidenté de la Fig. 8, nous avons fait imprimer les intervalles 1 à 6 en grisé, les intervalles 7 à 12 en noir.

2.2. Notice servant à l'intelligence du Tabl. 4 a. (Voir pp. 396 et ss.)

Les 17 pages (réalisées à l'imprimante) du Tabl. 4 a disposent toutes de la même en-tête et du même agencement en 6 colonnes numériques. Des indications de l'en-ête nous ne retenons ici que celles de la première ligne (commençant par MW = 15,610) et des 3 lignes de l'algorithme MINMWMAX.

MW moyenne arithmétique (all. Mittelwert),

S écart type (all. Standardabweichung),

G coefficient de Fisher (all. Schiefe; cf. Goebl 1981 a, 394 sq.),

NZP nombre des interpoints.

Les 13 valeurs des deux premières lignes dédiées à MINMWMAX correspondent au minimum de la distribution interponctuelle considérée et aux seuils supérieurs des 12 paliers numériques calculés selon MINMWMAX (à 12 intervalles). Leur identification, dans les deux lignes de l'en-tête en question, doit être faite en zigzag. Se reporter ensuite à la colonne 2 du Tabl. 2 pour vérifier l'insertion exacte de ces 13 valeurs de l'en-tête dans les 24 cases de la colonne 2. Les 24 cases des deux moitiés de la colonne 2 du Tabl. 2 correspondent à autant de seuils de palier (ou d'intervalle). La troisième ligne de l'alinéa relatif à MINMWMAX se réfère au nombre des interpoints par intervalle : voir à cela la colonne 4 du Tabl. 2.

La lecture du corps du Tabl. 4 a est fort simple. Il servira avant tout à déterminer la valeur numérique et l'intervallisation respective d'un interpoint repéré dans la Fig. 8. Rappelons que tout interpoint dispose de deux points de repère (AP 1 et AP 2).

- AP 1 point de repère 1 (all. Atlaspunkt) (numéro de AP 1 < numéro de AP 2),
- AP 2 point de repère 2 (numéro de AP 2 > numéro de AP 1),
- AFW nombre des co-différences entre AP1 et AP2 (all. Allgemeiner Fündigkeitswert) (correspond au terme

$$\sum_{i=1}^{\widetilde{p}} (COD_{kj}) i \text{ de la formule (4))},$$

NKA nombre des attributs présents et dans le vecteur AP 1 et dans celui de AP 2 (correspond au terme \widetilde{p} et au montant du dénominateur des formules (1) et (4)),

RFW IRDAP1, AP2 (all. Relativer Fündigkeitswert),

INTERVALLE

le premier chiffre correspond à l'intervallisation selon MINMWMAX (à 12 intervalles), le deuxième chiffre à l'intervallisation selon MEDMW (à 12 intervalles), le troisième chiffre à l'intervallisation selon MED (à 12 intervalles).

En voici un exemple de repérage (voir la Fig. 8, en haut) :

- Soit l'interpoint discriminatoire situé entre les points AIS 11 et 1 (IPd_{11,1}) représenté par un segment d'isoglosse en gris.
- Invertir l'ordre des points de repère AIS pour établir la relation AP 1 < AP 2 : IPd_{11,1} \rightarrow IPd_{1,11}.
- Repérer 1 dans la colonne AP 1 du Tabl. 4 a, page 1.
- Repérer 11 dans la colonne AP 2 (ibid.).
- Repérer la valeur de l' $IRD_{1,11}$ (= $RFW_{1,11}$) dans la colonne RFW : $IRD_{1,11}$ = 5,929.
- Identifier l'intervallisation de $IRD_{1,11}$ (= 5,929) selon MINMWMAX (à 12 intervalles) dans la colonne INTER-VALLE, premier chiffre : l' $IRD_{1,11}$ (= 5,929) appartient à l'intervalle 1.

2.3. Notice servant à l'intelligence de la Fig. 9. (Voir pp. 394 et ss.)

Le figuré triangulaire (treillis) de la Fig. 9 pose, pour l'œil de l'observateur, d'autres problèmes psychologiques voire optiques que le compartimentage polygonal de la Fig. 8. Nous avons donc dû recourir

à d'autres stratagèmes de visualisation. Dans l'arsenal des algorithmes d'intervallisation expérimentés nous avons choici, pour la mise en carte des 670 interpoints communicatifs calculés, l'algorithme d'intervallisation MED (à 12 intervalles). La logique algébrique de MED diffère quelque peu de celle utilisée pour MINMWMAX. Voir le Tabl. 3.

Tout d'abord les 670 valeurs interponctuelles sont rangées par ordre croissant. Ensuite il s'agit de répartir ces 670 valeurs en 12 groupes sensiblement égaux. Comme, d'une part, la division pure et simple de 670 par 12 ne donne pas de résultat discret (670 : 12 = 55,83) et que, parmi les 670 interpoints considérés, quelques-uns ont des valeurs numériques égales, l'algorithme MED doit se contenter de former des groupes d'interpoints aussi proches de la valeur théorique (de 55,83) que possible. Voir la colonne 4 du Tabl. 3 où les nombres d'interpoints par intervalle oscillent entre 52 et 61.

De ce mode de partage il résulte des tailles d'intervalle fort variables. Voir la colonne 3 du Tabl. 3. On remarquera en outre que le seuil supérieur de l'intervalle 6 est occupé dorénavant par la médiane (= 85,490) qui, par définition, est la valeur centrale d'une distribution de fréquence ordonnée par rang de taille. Le mode de construction de l'histogramme de la Fig. 9 correspond à celui de la Fig. 8. Voir les colonnes 6, 5, 4 et 3 du Tabl. 3 et les indications données à l'en-tête.

Quant à la mise en carte des 12 paliers, nous avons dû recourir à deux sortes de grisés pour tenir bien distincts les symboles du fond de la carte (en noir) du symbolisme linéaire du treillis interponctuel (en deux niveaux : grisé clair et grisé sombre).

2.4. Notice servant à l'intelligence du Tabl. 4 b. (Voir pp. 396 et ss.)

L'agencement des en-têtes et des colonnes numériques des Tabl. 4 a et 4 b est plus ou moins identique. Le Tabl. 4 b dispose de 7 colonnes à la différence du Tabl. 4 a, qui n'en a que 6. Pour la lecture des en-têtes du Tabl. 4 b voir aussi le Tabl. 3.

Le bilan classificatoire de MED se retrouve dans les trois dernières lignes de l'en-tête du Tabl. 4 b. L'agencement des 13 limites d'intervalles (51,575; 77,344, etc.) et des 12 indications relatives aux nombres d'interpoints par intervalle, est le même que dans le Tabl. 4 a.

Pour ce qui est du déchiffrage des colonnes numériques du corps du Tabl. 4 b, le lecteur se reportera aux informations, données ci-dessus

1		2	3	4	5	6
Intervalle	Variable	: IRI jk	Taille de l'intervalle	Nombre d'interpoints	Fréquence relative (pj) des	Hauteur (hj)
(j)	de	à	(dj)	par intervalle	nombres d'interpoints	(en unités factice
		(= largeur des colonnes	(nj)	par intervalle (j)	des colonnes (j	
			de l´ histogramme)		$(p_j = \frac{n_j}{670})$	de l'histogramme (hj = pj di
1	51,575 a)	77,344	25,769	54	0,0805	0,003
2	> 77,344	80,632	3,288	56	0,0835	0,025
3	> 80,632	82,677	2,045	55	0,0820	0,040
4	> 82,677	83,529	0,852	52	0,0776	0,091
5	> 83,529	84,462	0,933	61	0,0910	0,097
6	> 84,462	85,490 b)	1,028	55	0.0820	0,079
7	> 85,490	86,275	0,785	53	0,0791	0,100
8	> 86,275	87,251	0,976	59	0.0880	0,090
9	>87,251	88,189	0,938	55	0.0820	0,087
10	> 88,189	88,976	0,787	56	0,0835	0,106
11	>88,976	90,551	1,575	57	0,0850	0,054
12	> 90,551	94,466 c)	3,915	57	0,0850	0,021

Tabl. 3:

Calcul des intervalles de visualisation à l'aide de l'algorithme d'intervalles vallisation MED (à 12 intervalles).

Voir aussi la Fig. 9 et les en-têtes du Tabl. 4 b.

(cf. 2.2.). En outre des 6 colonnes numériques présentées dans le Tabl. 4 a, on trouvera une colonne supplémentaire, intitulée RNW. L'indice RNW correspond exactement à l'IRI (RNW $_{\rm jk}={\rm IRI}_{\rm jk}$).

Exemple de repérage d'un interpoint communicatif (voir la Fig. 9):

- Soit l'interpoint communicatif situé entre les points AIS 31 et 22 (IPc_{31,22}), symbolisé par une connexion interponctuelle en grisé clair.
- Invertir l'ordre des points de repère AIS pour établir la relation AP 1 < AP 2 : IP $c_{31,22} \rightarrow$ IP $c_{22,31}$.
- Repérer 22 dans la colonne AP 1 du Tabl. 4 b, page 1.
- Repérer 31 dans la colonne AP 2 (ibid.).
- Repérer la valeur de l' $IRI_{22,31}$ (= $RNW_{22,31}$) dans la colonne $RNW: IRI_{22,31} = 80,784$.
- Identifier l'intervallisation de $IRI_{22,31}$ (= 80,784) selon MED (à 12 intervalles) dans la colonne INTERVALLE (RNW), troisième chiffre : l'IRI_{22,31} (= 80,784) appartient à l'intervalle 3.

D'une comparaison des Fig. 8 et 9 et des Tabl. 4 a et 4 b il ressort en outre un certain nombre de relations de symétrie et de régularités numériques :

- Les silhouettes des histogrammes des Fig. 8 et 9 sont symétriques (18).
- Dans le Tabl. 4 b la somme des valeurs répertoriées dans les colonnes RFW et RNW correspond toujours à 100. Ce résultat satisfait à la formule (3) alléguée ci-dessus (1.2.2.).
- L'addition des résultats d'intervallisation (répertoriés dans la colonne INTERVALLE du Tabl. 4 a et dans la colonne INTERVALLE (RNW) du Tabl. 4 b) donne à quelques exceptions près toujours 13 : vérifier, ligne par ligne, en comparant les Tabl. 4 a et 4 b.
- 2.5. Interprétation géolinguistique de la Fig. 8. (Voir pp. 392 et ss.)

La visualisation des données interponctuelles répertoriées dans les colonnes du Tabl. 4 a se fait par paliers ordonnés qui ont été établis par

⁽¹⁸⁾ Voir aussi les valeurs de la première ligne des en-têtes des Tabl. 4 a et 4 b (MW, S, G) qui retracent cet état des choses sous forme numérique.

l'application d'un algorithme d'intervallisation (MINMWMAX à 12 intervalles; cf. 2.1. et le Tabl. 2). Il va de soi qu'il y a encore beaucoup d'autres procédés de visualisation avec ou sans classification (i. e. intervallisation) préalable des données numériques (19). Voir par exemple la Fig. 7 b dans Goebl 1981 b, 46-47, qui est le résultat d'une visualisation proportionnelle des données interponctuelles répertoriées dans le Tabl. 4 a.

Le principe cartographique qui est à la base d'une visualisation proportionnelle d'un certain nombre de données numériques, consiste dans l'accroissement proportionnel de l'épaisseur des segments interponctuels en fonction directe (i. e. proportionnelle) de l'accroissement des valeurs numériques à visualiser. La réussite de tels procédés de visualisation dépend de la disposition psychophysiologique de l'œil de l'utilisateur de la carte à interpoints. Ici encore, le dialectométricien se heurte au problème inéluctable du choix qui doit être fait en fonction et du but scientifique envisagé et de la disposition visuelle du classificateur.

Au vu de la Fig. 8 il n'y a plus l'ombre d'un doute : le compartimentage gradué du réseau AIS reflète exactement tous les domaines dialectaux de l'Italie septentrionale, du Tessin et des Grisons. Comme les données AIS, sur lesquelles reposent les cartes de cet article correspondent en majorité à des cartes lexicales, l'on est en droit de réfuter, une fois pour toutes, la croyance fort répandue parmi les linguistes selon laquelle l'instabilité des mots empêcherait l'utilisation du lexique pour la classification linguistique (20). Le quadrillage fort éloquent de

⁽¹⁹⁾ Soit dit en passant, les cartes 2518-2526 de l'ALG VI (Séguy 1973 b) représentent un essai de *visualisation* de données interponctuelles par voie *numérique*. De l'échec iconique qui en résulte, l'on peut juger de l'importance d'une bonne maîtrise des techniques de visualisation. Comparer en outre notre carte à interpoints (fort élémentaire, peu éloquente et exécutée à la main) dans Goebl 1981 b (hors texte) avec la Fig. 8 de cet article. Voir aussi les tentatives de visualisation faite par Milke 1949 (250), Guiter 1973 (82, 95, 98) et Remacle 1975/76 (6, 26, 28).

⁽²⁰⁾ Cf. p. ex. Gauchat 1903, 377: « Man hat sich gefragt [...], ob nicht der Wortschatz der Mundartengeographie untergelegt werden sollte. Aber man hat damit wenig gute Erfahrungen gemacht. Die Verbreitung eines Wortes wird viel mehr vom Zufall regiert als die eines Lautes, der nur durch direkte persönliche Beeinflussung weitergetragen wird. Ein wanderndes Wort gleicht dem Fremden, der sich irgendwo einnistet, wo es ihm gefällt; ein wandernder Laut klopft nur bei Verwandten an. Daher erscheint von

la Fig. 8 fait ressortir, par le jeu interférentiel de 12 espèces de « frontières linguistiques » (21), les domaines dialectaux suivants (à commencer à gauche, par l'Ouest, en allant vers la droite dans le sens des aiguilles de la montre):

- occitan (ou provençal) alpin (PP. 140, 150, etc.): avec cloisonnement interne très accusé.
- francoprovençal (Val d'Aoste et zones limitrophes).
- romanche des Grisons : la tripartition bien connue du domaine romanche (partie occidentale = sursilvain, partie centrale, partie
- orientale = engadinais) ressort fort bien; remarquer les cloisons très épaisses (degré 7) dans la partie centrale et la position exceptionnelle (cloisonnement « à tous azimuts ») du P. 35 Bivio.
- trentin : le pourtour du vieil archidiocèse de Trente est facilement repérable.
- ladin (PP. 305, 312, 313, etc.): avec cloisonnement interne très intense à l'instar de l'occitan alpin.
- frioulan: remarquer la position détachée du P. 367 Grado, dialectalement vénitien, et la cloison fort importante entre les PP. 349 (Gorizia) et 369 (Trieste).
- istriote.
 - · vénitien.
 - romagnol et émilien : la division entre romagnol et émilien ressort avec peu de netteté. Les cloisons les plus importantes, c'est-à-dire celles entre les PP. 446/458, 456/467, 466/476, oscillent entre les classes 5 et 7 alors que les différences interponc-

vornherein der Lautstand der Mundarten als das charakteristische Merkmal derselben. Ein Blick auf den monumentalen *Sprachatlas Frankreichs* von Gilliéron und Edmont zeigt, dass nach phonetischem Prinzip ein Land leichter in Provinzen einzuteilen ist als nach lexikologischem. Wie willkürlich erscheint z. B. das Auftreten des französischen Wortes *abeille*, das hie und da den mundartlichen Ausdruck *mouche à miel* oder Ableitungen von *apis* oder *musca* ersetzt hat. Lautliche Züge haben mehr Einheit, da sie erstens immer reihenweise auftreten, indem sie den ganzen Wortschatz, Substantiv wie Verb, etc., beherrschen, und zweitens unter sich in Wechselwirkung stehen. »

⁽²¹⁾ L'on pourrait parler, par analogie, de « frontières linguistiques du premier, etc. (jusqu'à 12) degré ».

tuelles vis-à-vis du domaine toscan (PP. 464/515, etc.) figurent dans l'intervalle 8.

- · marchigiano.
- toscan, florentin, italien standard (point AIS factice).
- lombard: la bipartition souvent évoquée du domaine lombard (partie occidentale centrée sur Milan, PP. 261 et 262, Côme, P. 242, partie orientale centrée sur Bergame, P. 246, et Brescia, P. 256) est fort bien visible. Remarquer en outre l'accroissement périphérique du cloisonnement interponctuel surtout vers le Nord (c'est-à-dire près de la frontière rhéto-lombarde) et la position retranchée de l'amphizone « classique » du Val Bregaglia (PP. 45 et 46) (22).
- piémontais.
- ligure.

L'algorithme de visualisation utilisé (MINMWMAX à 12 intervalles) a l'avantage de faire ressortir, d'une façon plus ou moins égale, toutes les zones de transition contenues dans notre réseau AIS, et de produire ainsi une syntaxe iconique bien articulée. C'est donc un algorithme fait pour la détection de « domaines dialectaux ». Il rend cependant de mauvais services en ce qui concerne la visualisation de valeurs extrêmes (maximum et minimum) : voir le Tabl. 4 a. Or, l'on connaît l'importance attribuée par beaucoup d'auteurs (23) à la fonction discriminatoire d'une ligne allant de La Spezia à Rimini et correspondant, grosso modo, à la chaîne de l'Apennin. A ce propos le passage de G. Rohlfs (1947, 15) est péremptoire : « Das Gebirge bildet hier zwischen der Toskana und der Emilia einen wirkungsvollen Querriegel. An keiner anderen Stelle in Italien hat sich eine so entscheidende Sprachgrenze gebildet. » En recourant aux données numériques du Tabl. 4 a et à la carte 7 b dans Goebl 1981 b (46-47, visualisation proportionnelle), on constate que l'évidence empirique est tout autre. Les cloisonnements les plus élevés (IRD $_{kj} \geqslant 43$) séparent le romanche du lombard, puis (IRD $_{\rm kj} \geqslant 30$) le francoprovençal du piémontais, et ce n'est qu'en troisième ligne (IRD $_{kj} \geqslant 25$) que suit la partie occidentale de l'Apennin (Apennin ligure) (p. ex. entre les PP. 182/193, 182/190, etc.), talonnée de près par d'autres zones de transition, situées de préférence aux franges de domaines dialectaux périphériques (Piémont/Lombardie, Tyrol du

⁽²²⁾ Cf. Wartburg 1919 et Stampa 1934.

⁽²³⁾ Wartburg 1967, 55 sq.; Vidos 1968, 322.

Sud/Vénéto, etc.). Fort de cette évidence empirique on peut dire qu'il est très dangereux, à l'ère de la dialectométrie, de spéculer sur la vertu classificatoire de quelques isoglosses superposées.

Il convient cependant de ne pas surestimer l'importance classificatoire de la dialectométrie interponctuelle. Il n'y a pas de classifications absolues, totales ou définitives. Toute classification est, par définition, une manière — parmi tant d'autres — de regarder certaines choses de la réalité qui nous entoure. Elle est comparable au trajet que le message du réel observé (i. e. l'information à traiter) doit parcourir. Or, un tel parcours n'est concevable que sous la forme d'un tracé balisé. Le choix des balises détermine le tracé du parcours. En matière de classification c'est exactement la même chose. Il faut connaître le jalonnement de la route à parcourir, c'est-à-dire les présuppositions méthodiques et méthodologiques de l'entreprise classificatoire.

Dans la panoplie de la dialectométrie telle qu'elle se présente de nos jours, l'analyse interponctuelle n'occupe que le bas de l'échelle. C'est une analyse à la portée très limitée puisqu'elle exploite mal la richesse des valeurs répertoriées dans la matrice de similarité. Sur un total de 31.375 valeurs calculées, seuls 670 indices sont pris en considération (cf. aussi supra, 1.2.3.). Tout le reste est omis, alors que les méthodes dialectométriques présentées dans la deuxième partie de notre article publié dans cette revue en 1981 (1981 a), 381 sq., recourent à l'effectif total de la matrice de similarité. Ces analyses sont donc beaucoup plus générales. Ce bilan comparatif est très important puisqu'il illustre fort bien le caractère précaire de l'analyse interponctuelle. Regardons un peu de près ce dilemme : 2,13 % des informations classificatoires disponibles commencent par nous suggérer certaines vues typologiques relatives à l'enchevêtrement de la réalité dialectale observée; dès que ces vues prennent l'envol vers des espaces typologiques plus larges, il nous manque la part du lion — c'est-à-dire 97,87 % des informations susceptibles de canaliser le cheminement de notre entendement typologique. C'est une carence capitale. Y a-t-on jamais pensé en matière de dialectologie?

Signalons encore une analogie entre la linguistique et la sociologie pour illustrer la signification « pragmatique » de la Fig. 8. Supposons que notre réseau AIS soit constitué de 251 individus ayant chacun, pour ses voisins immédiats, des « aversions » ou des « antipathies » plus ou moins marquées. Les accidents du relief linéaire de la Fig. 8 montrent bien qu'il y a des zones où règne l'« amitié », et qu'il y en a d'au-

tres où prédomine l'« animosité ». On remarquera en outre que l'implantation spatiale de l'animosité est une phénomène plutôt linéaire alors que la distribution spatiale de la sympathie réciproque se fait le plus souvent dans une forme zonale voire régionale, c'est-à-dire par plages.

Pour pouvoir cerner de plus près la répartition spatiale des relations de bon voisinage, il faut recourir à un autre principe cartographique tout en utilisant les fourchettes interponctuelles pour la mesure des similarités et non plus des distances entre les points d'atlas contigus. Des deux éléments opposés qui déterminent la cohésion interne des groupes sociaux — solidarité vers l'intérieur et opposition face à l'extérieur — nous saisissons ainsi l'élément le plus élémentaire, la solidarité (« esprit de clocher » selon F. de Saussure ; cf. aussi Wüest 1981, qui tente une application pratique du couple notionnel « intercourse » et « esprit de clocher »). Voir la Fig. 9 et le paragraphe suivant.

2.6. Interprétation géolinguistique de la Fig. 9. (Voir pp. 394 et ss.)

J. Séguy l'a exprimé d'une façon magistrale : « Nous formulons l'hypothèse suivante : la fonction des dialectes est double, et chacune des deux sous-fonctions est contradictoire à l'autre. La première est d'assurer la communication linguistique entre les groupes humains. La seconde est de permettre à ces groupes de se différencier. » (Séguy 1973 c, 27-28). En effet, des deux fonctions du langage alléguées c'est surtout la fonction communicative qui détermine la pensée classificatoire des linguistes. La fonction démarcative, par contre, est d'un maniement intellectuel très difficile et se prête mal à la classification linguistique. Cf. à ce sujet Wüest 1981. Car, au fond, tout ce qui a été dit et pensé depuis plus d'un siècle autour du problème des isoglosses n'était rien d'autre que l'émanation d'une tentative désespérée de saisir par la négative — c'est-à-dire par l'observation des différences linguistiques interponctuelles — un phénomène positif, à savoir la communication graduée de locuteurs dispersés dans l'espace. Or, l'observation de la communication présuppose l'analyse non pas de différences (dissemblances, dissimilarités, etc.) mais bien plutôt de similarités (ressemblances, identités, etc.) interponctuelles et autres. La libre évolution de la pensée classificatoire était donc la plupart du temps inhibée par la présence inaperçue du modèle communicatif dans la considération isoglottique de l'espace dialectal.

Une autre raison non moins importante consiste dans le fait que l'on maîtrisait mal le traitement tant cartographique que numérique de l'analyse interponctuelle et que, par là même, il était longtemps impossible de communiquer, d'une façon concrète, aux yeux ce que l'esprit ou bien voulait concevoir ou bien concevait déjà d'une manière tant soit peu abstraite ou floue. De nos jours, ces problèmes d'ordre purement matériel sont tous résolus.

La triangulation graduée de la Fig. 9 est fort éloquente. La présence massive, en certains endroits de la carte, de connexions interponctuelles très importantes d'un côté, et de connexions interponctuelles très exiguës de l'autre, engendre, pour l'œil de l'observateur, l'impression d'un relief accidenté. Pour assurer une certaine prépondérance optique aux épaisseurs les plus importantes (intervalles 11 et 12) ainsi qu'à leurs corollaires les plus minces (intervalles 1 et 2) il a fallu recourir à un algorithme d'intervallisation apte à opérer une telle répartition des valeurs interponctuelles par intervalles. Pour ce faire l'algorithme MED (à 12 intervalles), décrit ci-dessus (2.4.), nous a paru comme étant le plus adéquat.

De fait, on reconnaît, en regardant la Fig. 9, tous les domaines dialectaux de l'Italie septentrionale qui, eux, se définissent, cette foisci, non plus par une diminution progressive du cloisonnement interponctuel, mais par l'augmentation du degré d'interaction de certains points contigus de l'AIS par rapport à d'autres. La Fig. 9 est donc une carte qui nous renseigne sur la variabilité de la cohésion interne des variétés dialectales du réseau AIS. Elle dégage des « noyaux dialectaux » En ceci, elle ressemble beaucoup à la carte de la synopse des maxima que nous avons publiée ailleurs (voir la Fig. 17 chez Goebl 1981 a et la Fig. 26 chez Goebl 1982). La logique algébrique des deux cartes est d'ailleurs fort apparentée.

Malgré la structuration fort plausible de la Fig. 9 il est bon de ne pas en surestimer la valeur classificatoire. La syntaxe iconique de la carte renseigne sur les variations de la cohésion interponctuelle par contiguïté (mesurée à l'aide d'un indice de similarité) et ne nous dit rien quant à l'appartenance typologique de deux points AIS non contigus à tel ensemble ou groupe dialectal.

A ce propos, l'ensemble des 6 points de l'AIS qui, d'un point de vue sociolinguistique et en fonction de l'auto-évaluation des locuteurs, sont définis comme étant traditionnellement *ladins* (PP. 305, 312, 313, 314, 315 et 316) est très éloquent. La Fig. 9 — mis à part le fait qu'elle ne

peut en aucune manière servir d'appui à des arguments sociolinguistiques ou auto-évaluatives — ne renseigne que sur la cohésion interne de ces points. Elle ne dit rien sur l'appartenance typologique d'un point donné à l'ensemble des points ladins ou de l'AIS entier. Il y a donc une différence fondamentale entre l'analyse de la cohésion interne (par contiguïté) et l'analyse de l'appartenance typologique. Une remarque similaire vaut pour le P. 123 qui ne dispose que d'un lien très faible avec le point valdotain contigu (P. 122), et dont l'appartenance intrinsèque au groupe francoprovençal ne ressort pas de la Fig. 9. Cette appartenance ne peut être démontrée qu'à l'aide d'une carte de similarité faite à partir du P. 123. Ici encore on arrive rapidement aux bornes de la méthode interponctuelle dont la portée classificatoire est — nous l'avons dit plus d'une fois — fort limitée.

3. Epilogue et perspectives de recherche.

Peut-être n'est-il pas inutile de rappeler au bon souvenir des lecteurs les avatars du grand débat polémique qui opposait, il y a belle lurette, les adversaires et les partisans de la classification typologique des dialectes. Du côté des «typophobes» figuraient à l'époque de grands noms, tels que P. Meyer (1875, 1876), G. Paris (1888, 1893) ou J. Gilliéron (1883, 1884), alors que, du côté des «typophiles», qui acceptaient l'existence de dialectes en tant qu'entités construites et perçues par l'esprit classificateur de l'homme, on trouvait moins de notoriété, certes, mais — disons-le franchement — surtout les meilleurs arguments: voir les contributions, réfutations ou démonstrations de G. I. Ascoli (1876: contre Meyer 1875), de J.-P. Durand (1889: contre Meyer 1875 et Paris 1888), ou de Ch. de Tourtoulon (1890 : contre Meyer 1875 et Paris 1888). Voir aussi les présentations récapitulatives et très clairvoyantes de A. Horning (1893, critiqué par Paris 1893) et L. Gauchat (1903) qui ne le cèdent en rien à la synthèse non moins perspicace de G. Tuaillon (1972) relative aux efforts typologiques déployés autour de la notion du « francoprovençal ».

Les opinions des typophobes se caractérisaient non seulement par un rejet catégorique de tout effort de synthèse, mais aussi par le refus de reconnaître une existence quelconque à autre chose qu'aux différents traits dialectaux, facilement saisissables et reconnaissables en tant que tels dans leur individualité réelle. Le refus d'envisager, à partir d'une multiplicité souvent très déroutante de différents traits (ou attributs) dialectaux, une synthèse typologique, trouvait, de la part des typophobes et en matière de géographie linguistique, une justification fort douteuse, selon laquelle le fait qu'il était plus ou moins impossible de faire coïncider un nombre suffisamment grand d'isoglosses ou que les aires géolinguistiques des traits considérés ne se recouvraient presque jamais, empêchait toute classification rationnelle. Cet argument — que l'on rencontrait et rencontre encore à force de sciences humaines, de l'ethnologie à l'anthropologie en passant par la géographie et l'histoire — est d'une part très vieux (il remonte au Moyen Age et à la querelle dite des Universaux) (24) et d'autre part carrément pernicieux. Soit dit entre parenthèses, il rappelle étrangement le bonhomme à qui les arbres cachent la forêt ou qui, dans une ville, ne voit que les maisons.

En dialectologie, il a obnubilé, de H. Schuchardt (1870) jusqu'à nos jours (25), les esprits de tous ceux qui étaient ou sont aux prises avec toute la richesse phénoménologique du comportement langagier de l'homme.

La constance avec laquelle cet argument fallacieux est défendu est d'autant plus étonnante que tous les êtres vivants ne peuvent assurer leur survie en tant qu'individus et en tant que race qu'en faisant journellement appel à leurs capacités de perception analytique et de compréhension synthétique et, partant, typologique. Il n'est donc pas du tout étonnant de voir que ce sont les biologues qui, dans leurs efforts de systématisation de la faune et de la flore, se sont libérés les premiers de l'emprise de ce mirage argumentatif. D'où l'éclosion de la pensée linnéenne, vieille désormais de plus de deux siècles. Parmi les sciences humaines, la pensée classificatoire s'est fait jour d'abord parmi les sociologues, les psychologues et les politologues. Pour les linguistes, ou plus exactement pour les dialectologues, une comparaison interdisciplinaire des méthodologies classificatoires ayant cours dans les sciences humaines ne peut donner qu'un bilan très amer : ce sont évidemment eux qui portent la lanterne rouge en matière de classification (26). Il est donc grand temps de rattraper ce retard. C'est pourquoi la

⁽²⁴⁾ Cf. Stegmüller 1956/57.

^{(25) «} Ce réseau de correspondances interdialectales rend souvent difficile la délimitation et la description des grands ensembles dialectaux [...], il empêche [...] les classements rationnels. » (Bouvier 1979, 50).

⁽²⁶⁾ Cf. aussi l'excellent historique de la pensée classificatoire en linguistique romane fait par Y. Malkiel en 1977 qui, à maints égards, partage nos vues pessimistes.

dialectométrie ne constitue pas, en l'occurrence, une innovation méthodologique, mais bien plutôt la réparation d'un déficit épistémologique devenu, avec le temps, vraiment intolérable.

De nos jours, le terrain méthodologique est suffisamment défriché: tout manuel moderne d'analyse des données ou bien de statistique descriptive renseigne sur les concepts élémentaires de l'analyse typologique. Nous n'avons qu'à nous en servir. Qu'ici-bas il n'y ait — pour pratiquer la synthèse d'un nombre très grand de détails hétérogènes — que le recours à la voie royale des chiffres et, partant, des mathématiques (les plus élémentaires), ne devrait, peu avant la fin du deuxième millénaire et à l'ère de l'informatique, plus indisposer personne.

4. Abréviations et glossaire (termes techniques et allemands).

AFW Indice Général de Distance (all. Allgemeiner Fündig-

keitswert) (cf. 2.2.).

AP 1, AP 2 points de repère (d'un interpoint) (all. Atlaspunkt)

(cf. 2.2.).

G coefficient de Fisher (cf. 2.2.).

Graubünden Grisons (voir les Fig. 8 et 9).

Grenzsegmente interpoints (voir les Fig. 8 et 9).

Häufigkeiten fréquences (absolues) (voir les Fig. 8 et 9).

Häufigkeitsverteilung distribution de fréquence (voir les Fig. 8 et 9).

IP interpoint (cf. 2.2.).

IRI Indice Relatif d'Identité (cf. 1.2.2.).

MED algorithme d'intervallisation (cf. 2.3., la Fig. 9 et le

Tabl. 4 b).

MINMWMAX algorithme d'intervallisation (cf. 2.1., la Fig. 8 et le

Tableau 4 a).

MW moyenne arithmétique (all. Mittelwert) (cf. 2.2.)..

NKA nombre des attributs présents dans deux vecteurs (j et

k) de la matrice des données (cf. 2.2.).

nombre des interpoints (cf. 2.2.).

Punkte mit Buchstaben points d'atlas marqués par des lettres (voir les Fig. 8

et 9)

RFW Indice Relatif de Distance (all. Relativer Fündigkeits-

wert) cf. 2.2., la Fig. 8 et le Tabl. 4 a).

386

HANS GOEBL

RNW Indice Relatif d'Identité (all. Relativer Netzwert)

(cf. 2.4., la Fig. 9 et le Tabl. 4 b).

S écart type (all. Standardabweichung) (cf. 2.2.).

Südtirol Tyrol du Sud (voir les Fig. 8 et 9).

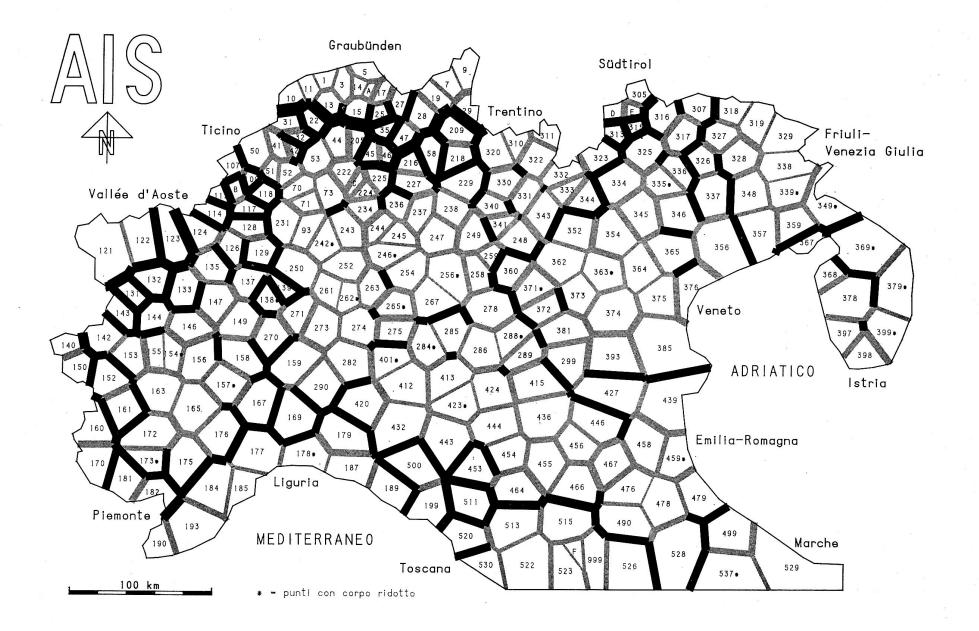
ZP-Karte carte à interpoints (voir les Fig. 8 et 9).

5. Bibliographie.

- AIS : Sprach- und Sachatlas Italiens und der Südschweiz, éd. K. Jaberg/J. Jud, vol. I-VIII, Zofingen 1928-1940.
- Ascoli, G. I.: P. Meyer e il franco-provenzale, in: Archivio glottologico italiano 2 (1876), 385-395.
- Atwood, E. B.: The phonological division of Belgo-Romance, in: Orbis 4 (1955), 365-389.
- Bach, A.: Deutsche Mundartforschung. Ihre Wege, Ergebnisse und Aufgaben, Heidelberg 1950².
- Bock, H. H.: Automatische Klassifikation. Theoretische und praktische Methoden zur Gruppierung und Strukturierung von Daten (Cluster-Analyse), Göttingen 1974.
- Bouvier, J.-Cl.: L'occitan en Provence. Le dialecte provençal, ses limites et ses variétés, in : Revue de linguistique romane 43 (1979), 46-62.
- Brassel, K. E./D. Reif: A procedure to generate Thiessen polygons, in: Geographical analysis 14 (1979), 289-303.
- Chandon, J.-L./S. Pinson : Analyse typologique. Théories et applications, Paris, New York, Barcelone, Milan 1981.
- Duchesne-Degey, M.: L'ordinateur au service de la géographie dialectale, in : Revue de l'organisation internationale pour l'étude des langues anciennes par l'ordinateur (Liège), 1976/1, 35-62.
- Durand, J.-P.: Notes de philologie rouergate (suite), in : Revue des langues romanes 33 (1889), 47-84.
- Ettmayer, K. v.: Über das Wesen der Dialektbildung, erläutert an den Dialekten Frankreichs, in: Denkschriften der Akademie der Wissenschaften in Wien, phil.-hist. Klasse, 66. Band, 3. Abhandlung, Vienne 1924, 1-56, 7 tableaux hors texte.
- Freudenberg, R.: Isoglosse: Prägung und Problematik eines sprachwissenschaftlichen Terminus, in: Zeitschrift für Mundartforschung 33 (1966), 219-232.

- Gauchat, L.: Gibt es Mundartgrenzen?, in: Archiv für das Studium der neueren Sprachen und Literaturen 111 (1903), 365-403.
- Gilliéron, J.: Compte rendu de : Ch. Joret, Des caractères et de l'extension du patois normand, Paris 1883, in : Romania 12 (1883), 393-403 et 13 (1884), 121-125.
- Glauser, B.: The Scottish-English linguistic border, Lexical aspects, Berne 1974.
- Goebl, H.: La dialectométrie appliquée à l'ALF (Normandie), in : XIV Congresso internazionale di linguistica e filologia romanza. Atti, éd. A. Vàrvaro, Naples, Amsterdam 1976, vol. II, 165-195.
- Goebl, H.: Rätoromanisch versus Hochitalienisch versus Oberitalienisch. Dialektometrische Beobachtungen innerhalb eines Diasystems, in: Ladinia 1 (1977 a), 39-71.
- Goebl, H.: Zu Methoden und Problemen einiger dialektometrischer Messverfahren (1977 b), in: Putschke 1977, 335-365.
- Goebl, H.: Analyse dialectométrique de quelques points de l'AIS (italien, standard, valdotain, provençal alpin, turinois, milanais), in : Lingue e dialetti nell'arco alpino occidentale. Atti del Convegno internazionale di Torino (1976), éd. G. P. Clivio/G. Gasca Queirazza, Turin, 1978 a, 282-294 (10 cartes hors texte).
- Goebl, H.: Dialektgeographie + Numerische Taxonomie = Dialektometrie. Anhand rätoromanischer und oberitalienischer Dialektmaterialien (AIS), in: Ladinia 4 (1980), 31-95.
- Goebl, H.: Eléments d'analyse dialectométrique (avec application à l'AIS), in : Revue de linguistique romane 45 (1981 a), 349-420.
- Goebl, H.: Isoglossen, Distanzen und Zwischenpunkte. Die dialektale Kammerung der Rätoromania und Oberitaliens aus dialektometrischer Sicht, in: Ladinia 5 (1981 b), 23-55.
- Goebl, H.: La méthode des interpoints appliquée à l'AIS (essai de dialectométrie), in : Mélanges de philologie et de toponymie romanes offerts à Henri Guiter, Perpignan 1981 c, 137-172.
- Goebl H.: Dialektometrie. Prinzipien und Methoden des Einsatzes der Numerischen Taxonomie im Bereich der Dialektgeographie, in: Denkschriften der Österreichischen Akademie der Wissenschaften, phil.-hist. Klasse, Band 157, Vienne 1982, 1-123.
- Grosse, R.: Isoglossen und Isophonen. Zur Problematik der phonetischen, phonologischen und phonometrischen Grenzlinien, in: Beiträge zur Geschichte der deutschen Sprache und Literatur (Halle) 87 (1965), 295-317.
- Guiter, H.: Atlas et frontières linguistiques, in : Les dialectes romans de France à la lumière des atlas régionaux (Colloque de Strasbourg 1971), éd. G. Straka/P. Gardette, Paris 1973, 61-109.
- Guiter, H.: Critique et limites d'une méthode, in : Mélanges à la mémoire de Louis Michel, Montpellier 1979, 261-272.

- Guiter, H.: Limites linguistiques dans la région bordelaise, in : Actes du 104° Congrès national des Sociétés savantes (Bordeaux 1979), Section de philologie et d'histoire jusqu'à 1610, tome II, Paris 1981, 59-67.
- Haag, K.: Die Sprachlandschaften Oberitaliens, in: Germanisch-romanische Monatsschrift 18 (1930), 458-478.
- Händler, H./C. L. Naumann: Zur Automatisierung der Isoglossenfindung, in: Germanistische Linguistik 3/4/76 (1976), 123-159.
- Händler, H./H. E. Wiegand: Das Konzept der Isoglosse: methodische und terminologische Probleme, in: Dialektologie. Ein Handbuch zur deutschen und allgemeinen Dialektforschung, éd. W. Besch/U. Knoop/W. Putschke/H. E. Wiegand, Berlin, New York 1982, vol. I, 501-527.
- Haggett, P.: L'analyse spatiale en géographie humaine, Paris 1973.
- Haggett, P./A. D. Cliff/A. Frey: Locational analysis in human geography, Londres 1977.
- Horning, A: Über Dialektgrenzen im Romanischen, in: Zeitschrift für romanische Philologie 17 (1893), 160-187 (aussi in: Meisterwerke der romanischen Sprachwissenschaft, éd. L. Spitzer, vol. II, Munich 1930, 264-298).
- Huber, J.: Sprachgeographie. Ein Rückblick und Ausblick, in: Bulletin de dialectologie romane 1 (1909), 89-117.
- Jaberg, K./J. Jud: Der Sprachatlas als Forschungsinstrument. Kritische Grundlegung und Einführung in den Sprach- und Sachatlas Italiens und der Südschweiz, Halle 1928.
- Janssen, P.: Ein Verfahren zur Auffindung von Isoglossen bei automatisch hergestellten Sprachkarten, in: Niederdeutsches Wort 13 (1974), 100-102, 115.
- König, W.: dtv-Atlas zur deutschen Sprache, Munich 1978.
- Krikman, A.: Towards the typology of Estonian folklore regions, Tallinn 1980 (Preprint KKI-16, Academy of Sciences of the Estonian SSR).
- Lalanne, Th.: L'indépendance des aires linguistiques en Gascogne maritime, Saint-Vincent-de-Paul (Landes), 1949.
- Lalanne, Th.: Indice de polyonymie. Indice de polyphonie, in : Le Français Moderne 21 (1953), 263-274.
- Lance, D. M./St. V. Slemons: The use of the computer in plotting the geographical distribution of dialect items, in: Computers and the Humanities 10 (1976), 221-229.
- Lang, J.: Sprache im Raum. Zu den theoretischen Grundlagen der Mundartforschung. Unter Berücksichtigung des Rätoromanischen und Leonesischen, Tübingen 1982 (Beihefte zur Zeitschrift für romanische Philologie 185).
- Lehfeldt, W./G. Altmann: Begriffskritische Untersuchungen zur Sprachtypologie, in: Linguistics 144 (1975), 49-78.


- Lewin, K.: Der Übergang von der aristotelischen zur galileischen Denkweise in Biologie und Psychologie, in: Erkenntnis 1 (1930/31), 412-466.
- Löffler, H.: Probleme der Dialektologie. Eine Einführung, Darmstadt 1974.
- Malkiel, Y.: The classification of Romance languages, in: Romance philology 31 (1977), 467-500.
- Meyer, P.: Compte rendu de: G. I. Ascoli, Schizzi franco-provenzali 1873 (in: Archivio glottologico italiano 3 (1878), 61-120), in: Romania 4 (1975), 293-296.
- Meyer, P.: Réplique à : Ascoli 1876, in : Romania 5 (1876), 504-506.
- Milke, W.: Quantitative distribution of cultural similarities and their cartographic representation, in: American anthropologist 51 (1949), 237-252.
- Murumets, S.: On measuring interregional linguistic communication, in: Symposium: Processing of dialectological data (Tallinn 1981), Tallinn 1981 (Academy of Sciences of the Estonian SSR), 43-80.
- Paris, G.: Les parlers de France [1888], in : G. Paris, Mélanges linguistiques, Paris 1909, 432-448.
- Paris, G.: Compte rendu de: Horning 1893, in: Romania 22 (1893), 604-612.
- Pudlatz, H.: Automatische Erzeugung von Isoglossen auf dem Plotter mit Hilfe von Thiessen-Polygonen, in: Putschke 1977, 245-258.
- Putschke, W. éd.: Automatische Sprachkartographie. Vorträge des internationalen Kolloquiums zur automatischen Sprachkartographie (Marburg 1977), in: Germanistische Linguistik 3-4/77 (1977), 1-395.
- Remacle, L.: La géographie dialectale de la Belgique romane, in : Les dialectes de France au Moyen Age et aujourd'hui. Domaine d'oïl et domaine francoprovençal (Colloque de Strasbourg 1967), éd. G. Straka, Paris 1972, 311-332.
- Remacle, L.: La différenciation lexicale en Belgique romane, in : Dialectes de Wallonie 4 (1975/76), 5-32.
- Rhynsburger, D.: Analytic delineation of Thiessen polygons, in: Geographical analysis 5 (1973), 133-144.
- Rohlfs, G.: Sprachgeographische Streifzüge in Italien, in: Sitzungsberichte der Bayerischen Akademie der Wissenschaften, phil.-hist. Klasse, Jahrgang 1944/46, Heft 3, Munich 1947, 1-67.
- Rosenqvist, A.: Limites administratives et division dialectale de la France, in : Neuphilologische Mitteilungen 20 (1919), 87-119.
- Sarda Roqueta, A.: Le mythe du dialecte roussillonnais, in : Revue de linguistique romane 41 (1977), 154-161.
- Schuchardt, H.: Über die Klassifikation der romanischen Mundarten [Leipzig

- 1870], cité d'après : Hugo Schuchardt-Brevier. Ein Vademecum der allgemeinen Sprachwissenschaft, éd. L. Spitzer, Halle 1928² (réimpression : Darmstadt 1976), 166-188.
- Séguy, J.: La relation entre la distance spatiale et la distance lexicale, in : Revue de linguistique romane 35 (1971), 335-357.
- Séguy, J.: La dialectométrie dans l'Atlas linguistique de la Gascogne, in : Revue de linguistique romane 37 (1973 a), 1-24.
- Séguy, J.: Atlas linguistique et ethnographique de la Gascogne, vol. V-VI (1+2), Paris 1973 b.
- Séguy, J.: La fonction minimale du dialecte, in : Les dialectes romans de France à la lumière des atlas régionaux (Colloque de Strasbourg 1971), éd. G. Straka/P. Gardette, Paris 1973 c, 27-37.
- Sneath, P. H. A./R. R. Sokal: Numerical taxonomy. The principles and practice of numerical classification, San Francisco 1973.
- Speitel, H. H.: An areal typology of isoglosses. Isoglosses near the Scottish-English border, in: Zeitschrift für Mundartforschung 36 (1969), 49-66.
- Stampa, G. A.: Der Dialekt des Bergell, I. Teil: Phonetik, Aarau 1934.
- Stegmüller, W.: Das Universalienproblem einst und jetzt, in : Archiv für Philosophie 6 (1956), 192-225 et 7 (1957), 45-81 (réimpression : Darmstadt 1965).
- Stoeckicht, O.: Dialektgeographische Spezialskizze des nordöstlichen Elsass, in: G. Wolfram/W. Gley éd., Elsass-lothringischer Atlas, Francfort 1931, 26.
- Streit, U.: Zur Methodik der Interpolation und Mittelbildung punktbezogener Daten bei räumlichen Informationssystemen, in: Klagenfurter geographische Schriften 2 (1981), 309-333.
- Tappolet, E.: Über die Bedeutung der Sprachgeographie mit besonderer Berücksichtigung französischer Mundarten, in: Aus romanischen Sprachen und Literaturen (Festschrift für Heinrich Morf), Halle 1905, 385-416 (aussi in: Sprachwissenschaft des 19. Jahrhunderts, éd. H. H. Christmann, Darmstadt 1977, 294-314).
- Thiessen, A. H.: Precipitation averages for large areas, in: Monthly weather review 39 (1911), 1082-1084.
- Thomas, A. R.: A cumulative matching technique for computer determination of speech areas, in: Putschke 1977, 275-288.
- Thomas, A.R.: Computer analysis of a dialectal transition belt, in: Computer and the Humanities 14 (1980 a), 241-251.
- Thomas, A. R.: Areal analysis of dialect data by computer. A Welsh example, Cardiff 1980 b.
- Tourtoulon, Ch. de: Communication [...] sur la classification des dialectes, in: Revue des langues romanes 34 (1890), 130-175.

- Tuaillon, G.: Le francoprovençal: progrès d'une définition, in: Travaux de linguistique et de littérature 10/1 (1972), 293-339.
- Veith, W. H.: (+ explikative, + applikative, + komputative) Dialektkartographie, in: Germanistische Linguistik 4/70 (1970), 385-497.
- Vidos, B. E.: Handbuch der romanischen Sprachwissenschaft, Munich, 1968.
- Wartburg, W. v.: Zur Stellung der Bergeller Mundart zwischen dem Rätischen und dem Lombardischen [1919], cité d'après : Meisterwerke der romanischen Sprachwissenschaft, éd. L. Spitzer, vol. II, Munich 1930, 190-206.
- Wartburg, W. v.: La fragmentation linguistique de la Romania, Paris 1967.
- Wiegand, H. E/G. Harras: Zur wissenschaftshistorischen Einordnung und linguistischen Beurteilung des Deutschen Wortatlas, in: Germanistische Linguistik 1-2/71 (1971), 1-205.
- Wüest, J.: Absence d'« intercourse » ou « esprit de clocher » ? A propos des zones frontières du domaine francoprovençal, in : Vox romanica 40 (1981), 13-21.

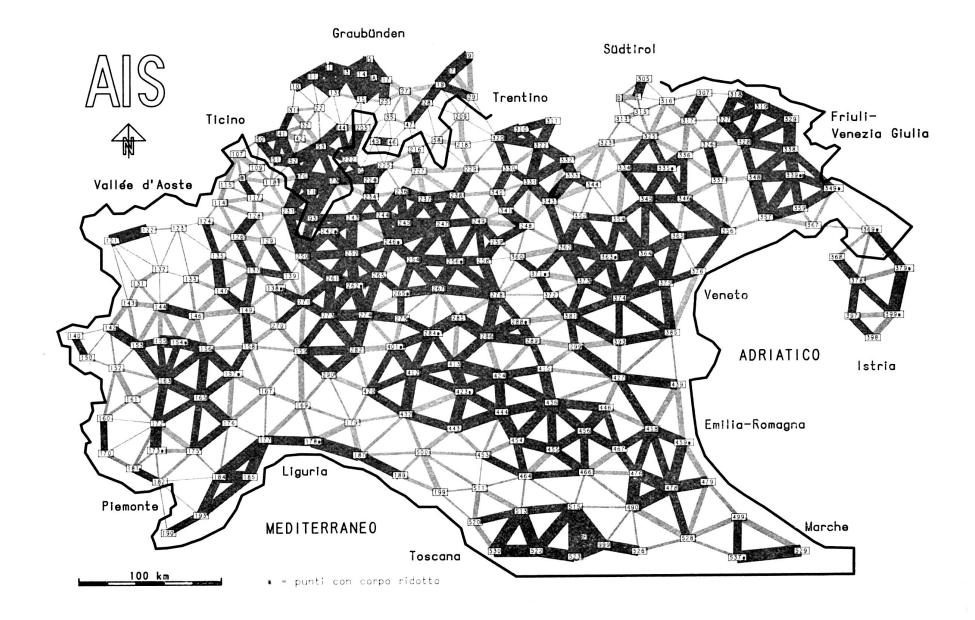
Salzbourg.

Hans GOEBL

ZP-Karte Häufigkeitsverteilung LEX -ITALIEN MINMWMAX 12-fach MINMWMAX 12-fach ZP-RED RFW 5.534 - 7.2138.892 Punkte mit Buchstaben: 10.572 A - 16 12.251 B - 116 • 13.931 C - 223 • D - 312 15.610 E - 314: F - 524 21.079 26.549 26.5 32.0 37.5 32.018 43 6- 670 Grenzsegmente 12 25 49 106 108 92 204 11 37.487 Häufigkeiten 42.956

Fig. 8:

48.425


Kartographie: W.-D. Rase

Carte à interpoints en fonction discriminatoire (isoglosses quantitatives).

- En gris : segments interponctuels au-dessous de la moyenne arithmétique (15,610).
- En noir : segments interponctuels au-dessus de la moyenne arithmétique (15,610).

Symbolisation linéaire en 12 paliers d'épaisseur (définis selon MINMWMAX à 12 intervalles).

Synopse de 256 cartes analysées (tirées de AIS I, II et IV). Voir aussi les Tabl. 2 et 4 a ainsi que 2.1.

LEX - ITALIEN

ZP-RED RN₩

Punkte mit Buchstaben:

A = 16 B = 116* C = 223* D = 312 E = 314* F = 524

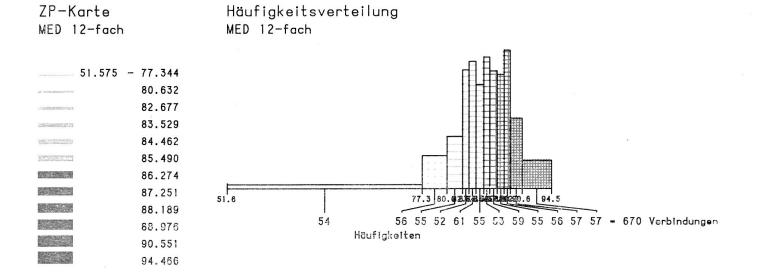


Fig. 9:

Carte à interpoints en fonction communicative.

- En grisé clair : connexions interponctuelles au-dessous de la médiane (85,490).
- En grisé sombre : connexions interponctuelles au-dessus de la médiane (85,490).

Symbolisation linéaire en 12 paliers d'épaisseur (définis selon MED à 12 intervalles).

Synopse de 256 cartes analysées (tirées de AIS I, II et IV). Voir aussi les Tabl. 3 et 4 b ainsi que 2.3.

MH= 15.610	S= 6	.058 G=	2.150 NZP	= 670		
XAMHMIH					549 37.487 48.	4 25
3.63			1572 13.93 106 108 92		32.013 42.956 11 7 7 6	
H ED H H	5.534	11.373	13.439 15	.625 17.	131 20.000 48.	4 25
					18.359 23.438 45 44 50 47	
HED					471 19.368 48.	25
	54	9.449 . 11. 53 58	811 13.67 55 52 53	2 15.476 55 59	17.323 22.656 55 58 57 56	
AF1	AP2	AFW	ЧKА	RFW	INTERVALLE	
1	3	21	254	8.268	2, 1, 1	
	11	15 23	253 254	5.929 11.417	1, 1, 1 4, 3, 3	
3	5	34	253	13.439	5, 5, 5	
	13	26 24	253 251	9.562	3, 2, 2 3, 1, 2	
	15	31	252	12.302		
5	14	22	251	8.765		
	16 17	30 34	25 3 25 2	11.858 13.492		
7	9	16	255	6.275	1, 1, 1	
	19 29	24 38	255 254	9.412	3, 1, 1 5, 6, 7	
9	29	39	255	15.234	6, 6, 7	
10	11	16	250	6.400	1, 1, 1	
	22 31	134	250 251	41.500 45.817	11,12,12	
11	13	26	252	10.317	3, 2, 2	
. =	22	106	252		11,12,12	
13	15	44	253	17.391	500=0 5000=000000	
	22	102 123	253 254	40.316	11,12,12	
14	15	25	251	9.960	3, 2, 2	
	16	15	252	5.952	1, 1, 1	
15	16	30	253	11.858	4, 3, 4	
	17 25	23	25 2 25 3	9.127	3, 1, 1 7, 9,1J	
	44	112	254		12,12,12	
	215	112 .		44.444	12,12,12	
16	17	32	253	12.648	5, 4, 4	
17	25 27	29 38	25 2 25 2	11.508	4, 3, 3 6, 6, 7	
19	27	40	254	15.748	7, 7, 3	
	28	32	255	12.549	5, 4, 4	
-	29	33 105	254	12.992	5, 4, 5	
22	209 31	49	253 255	41.502	11.12.12	
	32	55	254	22.347	3,11,11	
	53	. 64	255 255	25.198	3,12,12	

Tabl. 4 a: Valeurs numériques de 670 interpoints discriminatoires (IRD $_{\rm kj}$). Voir aussi le Tabl. 8 et 2.2.

LEX-ITALIEN	LISTE	ZP-RED-RNW				1
Mw= 84.390	S= 6	.058 G= -2.	150 NZ	°= 670		
MINMWMAX	51.575	62.513 73	461 04	300 07	7/0 01 10	
HINDHOAX					749 91.10 89.428	
	6	7 7 11				
MEDMW	51.575			.462 86.		
	45			85.657		
	40	47 46 46	43 51	65 65	65 66 6	5 66
MED	51.575	80.632 83	.529 85	.490 87.	251 88.97	6 94.466
	77	.344 82.67	7 84.46			
	54	56 55 52	61 55	53 59	55 56 5	7 57
API	APZ	AFW	NKA	RFW	RNW	INTERVALLE (RNV
1	3	21	254	8.268	91.732	11,12,12
	11	15	253	5.929	94.071	12,12,12
	13	29	254	11.417	td.583	9,10,10
3	. 5	34	253	13.439	86.561	8, 9, 8
	13	26	253	10.277	89.723	10,11,11
	15	24 31	251 252	9.562	90.438 87.698	10,12,11
5	14	22	251	8.765	91.235	8,10, 9
	16	30	253	11.858	88.142	9,10, 9
	17	34	252	13.492	86.508	8, 8, 8
7	9	16	255	6.275	93.725	12,12,12
	19	24	255	9.412	90.588	10,12,12
9	29	38	254	14.961	85.039	7, 7, 6
13	11	39 16	255 250	15.294	84.706	7, 7, 6
	22	104	250	6.400	93.600	12,12,12
	31	115	251	45.817	54.183	1, 1, 1
11	15	26	252	10.317	89.603	10,11,11
	22	100	232	42.063	57.937	2, 1, 1
1 3	15	44	253	17.391	62.609	6, 4, 3
	22	102	253	40.316	59.684	2 1 1
	44	123	254	48.425	51.575	2, 1, 1
14	15	25	251	9.960	90.040	10,11,11
15	16	. 15	252	5.952	94.046	12,12,12
13	16 17	30 23	253	11.858	88.142	9,10, 9
	25	44	252	9.127	90.873	10,12,12
	44	112	254	44.094	55.906	1, 1, 1
	205	112	252	44.444	55.556	1, 1, 1
16	17	32	253	12.648	07.352	8, 9, 9
17	25	29	252	11.508	66.492	9,10,10
	27	38	252	15.079	84.921	7, 7, 6
19	27	40	254	15.748	84.252	6, 6, 5
	28	2 ذ	255	12.549	87.451	8, 9, 9
	29	33 105	254	12.992	87.008	8, 9, 8
22	31	49	253 255	41.502	58.498	2, 1, 1
,	32	50	254	22.047	60.764 77.953	6, 3, 3 5, 2, 2
	44	64	255	25.098	74.902	5, 1, 1
	5 3	55	255	21.569	78.431	5, 2, 2

Tabl. 4 b: Valeurs numériques de 670 interpoints communicatifs (IRI_{jk}). Voir aussi le Tabl. 9 et 2.4.

33

LEX-ITALIEN	LIST	E ZP-RSD			
44= 15.610	5=	6.058 G=	2.150 NZP	= 670	
XAHRHAIM	5.53 1	7.213 10.	572 13.931	.510 26.549 37.487 49. L 21.079 32.718 42.956 204 43 11 7 7 6	¥ 25
н <u>то</u> м н	5.53 6	9.834 12.	351 14.34	625 17.131 20.000 48. 3 16.406 18.359 23.438 45 47 45 44 50 47	25
CEP		4 10.980 9.449 11. 4 53 58	311 13.673	510 16.471 19.368 48. 2 15.476 17.323 22.656 55 59 55 58 57 56	+ 25
AP1	AP2	AFW	NKA	RFW INTERVALLE	
25	27 35	42 58	25 3 25 3	16.601 7, 8, 9 22.925 8,11,12	
27	205 28 35	111 40 43	25 3 25 4 25 2	43.874 12,12,12 15.748 7, 7, 8 19.444 7,10,11	
28	47 47 58	41 31 79	253 253 253	16.206 7, 7, 3 12.253 5, 3, 4 31.225 9,12,12	
29	209 209	. 98 98	25 3 25 3	38.735 11.12.12 38.735 11.12.12	
31	320 32	113 38	255 255	43.137 12,12,12 14.902 6, 6, 7	
32	41 41	36 42	254 253	14.173 6, 5, 6 16.601 7, 8, 9	
	53	46 42	254 255	18.110 7, 9,10 16.471 7, 8, 9	
35	45 46 47	6J 64 45	?5 3 25 3 25 3	23.715 8,12,12 25.296 8,12,12 17.757 7, 9,13	
	2 35	32	253	36.364 10,12,12	
41	50 51	39 29 35	254 254 252	15.354 6, 6, 7 11.417 4, 3, 3 13.389 5, 5, 6	
42	52 52	32 43	253 254	12.648 5, 4, 4 16.929 7, 8, 3	
44	53 53 205	42 27 38	255 256 254	16.471 7, 8, 9 10.547 3, 2, 2 14.961 6, 6, 7	
45	222 46	3 o 3 3	255 255	14.118 6, 5, 6 12.941 5, 4, 5	
	205 222	59 54	253 254	23.320 8.11.12 25.197 8.12.12	
46	223 225 47	68 67 53	252 255 253	26.984 9,12,12 26.275 d,12,12 22.325 8,11,12	
40	216 225	71 69	253 254 255	22.325 8,11,12 27.953 9,12,12 27.059 9,12,12	
47 50	58 216 51	34 38 30	253 253 253	33.242 10,12,12 39.735 11,12,12 11.358 4, 3, 4	

 $Tabl. \ 4 \ a:$ Valeurs numériques de 670 interpoints discriminatoires (IRD $_{kj}$). Voir aussi le Tabl. 8 et 2.2.

LEX-ITALIE	N LISTE 2	P-RED-RNW				2
MW= 84.390	S= 6.0)58 G= -2.	150 NZP	- 670		
MINMWMAX	51.575	62.513 73	.451 84	.390 87.	749 91.108 94.466	
			78.92		89.428 92.787	
	6	7 7 11				
MEDMW	51.575			.462 86.		
	45	553 81.64		4 85.657 65 65	87.600 90.196 65 66 65 66	
	40	77 70 70	43 31	65 65	65 66 65 66	
MED	51.575	80.632 83	529 85	.490 87.2	251 88.976 94.466	
					88.189 90.551	
	54	56 55 52	61 55	53 59	55 56 57 57	
API	AP2	AFA	NKA	RF#	RNW INTERVAL	LE (RN
25	27	42	253	16.601	83.399 6, 5,	
	35 205	58 - 111	253 253	22.925	77.075 5, 2,	
27	28	40	254	43.874	56.126 1, 1, 84.252 6, 6,	
	35	49	252	19.444	84.252 6, 6, 80.556 6, 3,	
	47	41	253	16.206		5
28	47	3 1	253	12.253	87.747 8,10,	
	58	79	253	31.225	68.775 4, 1,	l
	209	98	253	38.735	61.265 2, 1,	
29	209	90	253	38.735	01.265 2, 1,	L
	320	110	255	43.137	56.863 1, 1, 1	
31	32	38	255	14.902	85.098 7, 7, 6	
	41	36	254	14.173	85.827 7, 8,	
32	41	42	253	16.601	83.399 6, 5,	
	4 2 5 3	46	254	13.110	81.890 6, 4,	
35	45	42 60	255	16.471	83.529 6, 5, 5	
3.7	40	64	253 253	23.715	76.285 5, 1, 1 74.704 5, 1, 1	
	47	45	253	17.787	74.704 5, 1, 1	
	205	92	253	30.364	63.636 3, 1, 1	
			200			
41	42	39	254	15.354	84.046 7, 7, 6	
	50 51	29 35	254	11.417	88.583 9,10,10	
	52	32	252	13.889	86.111 8, 8, 7 67.352 8, 9, 9	
42	52	43	254	10.929	67.352 8, 9, 9 83.071 6, 5, 4	
	53	42	255	16.471	83.529 6, 5, 5	
44	53	27	256	10.547	89.453 10,11,11	
	205	38	254	14.961	85.039 7, 7, 6	
4.3	222	36 33	255	14.118	85.882 7, 8, 7	
.,	70	33	255	12.941	87.059 8, 9, 8	
	205	59	253	23.320	76.680 5, 2, 1	
	222	64	254	25.197	74.803 5, 1, 1	
	223	68	252	25.984	73.016 4, 1, 1	
46	225	67	255	26.275	73.725 5, 1, 1	
40	47 210	5d 71	253	22.925	77.075 5, 2, 1	
	225	69	25 4 255	27.953	72.047 4, 1, 1	
47	56	84	253	33.202	72.941 4, 1, 1 66.798 3, 1, 1	
	216	96	253	30.735	61.265 2, 1, 1	
50	51	30	253	11.850	56.142 9,10, 9	

 $Tabl. \ 4 \ b:$ Valeurs numériques de 670 interpoints communicatifs (IRI $_{jk}$). Voir aussi le Tabl. 9 et 2.4.

LEX-ITALIEN	LISTE ZP-	RED				3
4M= 15.610						
XAMWHMIM					9 37.437 48.425 32.018 42.956	
				204 43 1		
KEDHH	5.534 11			625 17.13		
				16.406 45 47 4	18.359 23.438 5 44 50 47	
MED	5.534 10	980 12.6	98 14.	510 16.47	1 19.368 48.425	
	9.44	11.811	13.672	15.476	17.323 22.656	
	54 53	50 55	52 58	55 59 5	5 58 57 56	
AF1	AP2	AFH	NKA	RFW I	NTERVALLE	
50	107	50		19.608	7,10,11	
51	109	51 24	254	9.449	7,11,11	
27	109	51	253	20.158	7,11,11	
52	118 53	46 28	254	18.110	7, 9,13 4, 2, 3	
52	70	29	254	11.417	4, 3, 3	
53	118	51		20.000	7,11,11	
53	70 73	28 33		13.980	4, 2, 3 5, 4, 5	
	222			12.941	5, 4, 5	
58	209	57 52	25 3	22.619	8,11,11 7,11,11	
	218	44	254	17.323	7, 9,13	
	227	57 60	254 254	23.622	8,11,11	
70	71	24	255	3.412	3, 1, 1	
	73 118	20 42	255 255	7.843	2, 1, 1 7, 8, 3	
	231	31		12.157	4, 3, 4	
71	73	25	256	9.766	3, 1, 2	
	93 231	27 32	255 255	10.538	4, 2, 2	
73	93	29	255	11.373	4, 3, 3	
	222	35		13.725	5, 5, 6	
	223 224	35 35		13.834	5, 5, 6 5, 5, 6	
	234	41	255	16.078	7, 7, 8	
93	243 231	43 20	254 255	16.929 7.843	7, 8, 9 2, 1, 1	
73						
	242	26 33	253 253	13.043	3, 2, 2 5, 4, 5	
	250	32	255	12.549	5, 4, 4	
107	109	39 40		15.294 15.748	6. 6. 7	
	116	47	248	15.952	7,10,13	
109	116	42	247	17.504	7, 8, 9	
114	118 115	46 41	255 254	13.039 16.142	7, 9,10 7, 7, 8	
447	117	44			7, 9,10	

Tabl. 4 a:

Voir aussi le Tabl. 8 et 2.2.

LEX-	-ITALIEN	LI	S 1	Ε	ZF	- 6	E)-1	RN	W																											3			
Mw=	84.390	s •		6.	05	8	c		-	2.	. 1	5	0	1	٧Z	P	E	6	70)						-														
MINA	MWMAX	51.	97	15	6	2.	51	3		73	3.	4	51		8	4	. 3	9	0		87	7.	7	49		•	71		LO	8		9	4	. 4	6	6				
						44																																		
				6		7		7		11	L	1	43	i	20	4		9	2	1	0 8	3	l	06		4	49		2	5		1.	2							
MEDN	40	51.				0.	^			۵,	,	0	59		9	4		_	,		0 6	٠.	s .	6.1			9 0		2	,		0	_	1.	4	4				
neur	1 W	21.	21	76																												1			0	U				
				5		7							+3			1					65			55			6			5		6								
								_			-50 -50 1	_						_	_				_						_					21						
MED		51.		77																									7						6	6				
				4																				55			56			7		5								
			-			-				_					-				-					30-70					-											
A F	P1	ΔP	2				AF	H					N	ΚA	1					R	FW				1	21	i h			I	N	TE		١٧	ДΙ	LL	.ε	(;	2 N	1
																					•				•		_													
:	50	10						0						55					9.			9			7	٠.	. 3	21	2					2						
9	51		2					4						54					7.									51						2						
		10	9				5	1					2	5:	3			20	٥.	1	58	3			7	9.	8	42				6	,	2	,	2	2			
		11						6						5					٠.									90						4						
:	52		3					8						5:					1.									83						1						
		11						7						55														00						3						
5	5 3		0					8						55					· ·									20						1						
		7	3				3	3					2	56	•			12	2 .	8	91							09				8		9	,	d				
		22						3						5 5					2.						9.	7.	0	5 9 8 1						9						
5	58	20						7						52					2.			1			7	7.	3	8 1						2						
		21						2						53														47						2						
		22						7						54					7 •									59						2						
		22						ò						54														7 5						1						
7	70		1				2	4					2	5 5	,			(4	12				90	٠.	5	8 8	0		1	0,	1	2	,]	1 2				
			3					0						55					7.									57						2						
		23						2						55														29						5						
													۵	-				- 4	•	-	,,				3 1	•	0	1 -				,,	•	U	•	1				
7	71	7						Ġ						56														3 4						2						
			3					7						55														12						1						
7	7.3	23						2						56					:									27						1						
,	-	22						5						55 55					:									21 75						8						
		22	3				3	5					2	53				13		8	3 4				86		1	66				8,		8	,	7				
		22						5						56											86		3	28						8						
		23					4							55					•									22						6						
9	93	23					2	3						5 4					:									71 57						5 :						
		24	2				2	6						53														2 3						1						
		24						3					2						:									23 57						9						
		25	0				3						2						:									51						9,						
10	7	10					3	9						55				15		2	74				8 4	٠.	7	06				7,		7		6				
		11					4							54					•									52						6,						
10	9	11					4							48					:									40						5						
	51.51	11						6						55					:									51				6,		4,						
11	4	11	5				4	1					2	5 4	0													5 8				6,		5		5				
		11	7				4	4					2	54	0			17		3 2	2 3				6 2		0	77			1	6,		4		4				

Tabl. 4 b:

Valeurs numériques de 670 interpoints communicatifs (IRI_{jk}).

8						
LEX-ITALIEN	LISTE	ZP-RED				
M'+= 15.61Q	S= 6.	058 .G=	2.150 N.P	= 670		
MINEWMAX	5.534	8.892	12.251 15	.610 26.	549 37.48	7 48.425
	7	.213 13.	572 13.93	1 21.079	32.018	42.956
	12	25 49 1	.06 103 92	204 43	11 7	7 6
MEDHN	5.534	11.373	13.439 15			
	. 9	.804 12	351 14.34	3 16.406	18.359	23.438 0 47
	63	62 '0	59 71 67	49 47	47 44 5	0 47
MED			12.698 14			
	۶, 9	.449 11.	811 13.67 55 52.58	2 15.476	17.323	22.656 7 56
	54	93 93	99 92, 99	,, ,,))) ₀	, ,,
AF1	AP2	AFH	NKA	RFW	INTERVALL	E
			1.4			
114	124	51 42	255 254	20.000 16.535	7,11,11 7, 8, 9	
	126	44	256	17.188	7, 9, 9	
115	115	47	247	19.028	7,10,10	
	117	55 34	252 246	21.825	8,11,11	
116	117	42	248	16.935	7, 8, 9	
1 17	118	52	254	20.472	7,11,11	
47.1	128 231	42 40	254 254	16.535 15.748	7, 8, 9	
	231	40		13.740	7, 7, 0	
118	231	4,4	256	17.188	7, 9, 9	
121	122 131	£3 83	251 251	9.163	3, 1, 1	
	132	79	252	31.349	9,12,12	
	143	83	252	32.937	10,12,12	
122	123	56 79	249 251	22.490 31.474	8,11,11	
123	124	85	251	33.865	10,12,12	
	132	73	252	29.365	9,12,12	
	1 33	84	252	33.333	10,12,12	
	135	89	252	35.317	10,12,12	
124	126 135	37 35	25 3 255	14.625	6, 6, 7	
126	128	30	254	11.811	4, 5, 4	
m450	129	40	254	15.743	7. 7. 8	
	135 137	40 33	254 253	15.748	7, 7, 8	
128	129	39	256	15.234	6, 6, 7	
	231	445	256	17.188	7, 9, 9	
129	137	40	255	15.686	7, 7, 8	
	139	34	255	13.333	5, 4, 5	
	231	48	256	18.750	7,10,10	
131	250 132	52 44	256 255	20.313 17.255	7,11,11	
101	143	45	255	17.647	7, 9,10	
	144	49	254	19.291	7,10,10	
132	133 144	65 58	256 255		8,12,12	
	135	39	256	15.234	6, 6, 7	
133	144	48	255	18.824	7,10,10	

 $Tabl. \ 4 \ a:$ $Valeurs \ num\'eriques \ de \ 670 \ interpoints$ $discriminatoires \ (IRD_{kj}).$ $Voir \ aussi \ le \ Tabl. \ 8 \ et \ 2.2.$

LEX-ITALIEN	I LISTE ZP	-RED-RNW				4
Mw= 84.390	S= 6.05	8 G= -2.1	150 NZP=	670		
XAMWMNIM					749 91.108	
		7 7 11		86.069 92 108	89.428 92 106 49 25	1.787
		/ /	43 201	46 100	100 77 25	12
MEDMW					561 88.627	
	76.5 45 4				87.600 90 65 66 65	.196
						Andrew State
MED		30.632 83.			251 88.976	94.466
					88.189 90 55 56 57	
	*: -	0 33 32	01	,,	,, ,, ,,	<i>,</i>
AP1	APZ	AFW	NKA	RFW	RNW I	NTERVALLE (RN
114	124	51	255	20.000	80.300	6, 3, 2
114	126	42	254	16.535	80.000	6, 5, 4
	128	44	256	17.108	82.813	6, 4, 4
115	116 117	47 55	247 252	19.028	80.972 78.175	6, 3, 3 5, 2, 2
116	117	34	246	13.821	86.179	8, 8, 7
	118	42	248	16.935	83.065	6, 5, 4
117	118 128	52	254	20.472	79.528	6, 2, 2
	231	42 40	254 254	16.535 15.748	83.465	6, 5, 4
118	231	44	256			
121	122	23	256 251	9.163	82.813	6, 4, 4
	131	88	251	35.060	64.940	3, 1, 1
	132	7.9	252	31.349	68.651	4, 1, 1
122	143	83 56	252	32.937	67.C63 77.510	3, 1, 1 5, 2, 2
	132	79	251	31.474	68.526	4, 1, 1
123	124	85	251	33.865	66.135	3, 1, 1
	132	74 84	252 252	29.365	70.635 66.667	4, 1, 1
126	135	89	252		64.683	3, 1, 1
124	126 135	37 36	253 255	14.625	85.375 85.882	7, 7, 6
120	128	30	254	11.811	88.189	9,10,10
	129	40	254	15.748	84.252	6, 6, 5
	135 137	40 33	254	15.748	84.252	6, 6, 5
128	137	33	253 256	13.043	36.957 84.766	8, 9, 8
	231	44	256	17.188	82.813	6, 4, 4
129	137	40	255	15.686	84.314	6, 6, 5
	139	3 4	255	13.333	80.667	8, 9, 8
	231 250	48 52	256 256	16.750	81.250 79.688	6, 3, 3
131	132	44	255	17.255	d2.745	6, 4, 4
	143	45	255	17.647	82.353	6, 4, 3
132	144	49 65	254	19.291	80.709	6, 3, 3
134	144	58	256 255	25.391	74.609 77.255	5, 1, 1
133	135	39	256	15.234	84.766	7, 7, 6
	144	48	255	18.824	81.176	6, 3, 3

 $Tabl. \ 4 \ b:$ $Valeurs \ numériques \ de \ 670 \ interpoints$ $communicatifs \ (IRI_{jk}).$ $Voir \ aussi \ le \ Tabl. \ 9 \ et \ 2.4.$

LEX-ITALIEN	LISTE 2	P-RED				5
HW= 15.610	S= 6.0	158 G= 2	.150 NZP	= 670		
MTILLIMAN	E 571		2 254 45		F1 0 77 / 07 / 0 / 0	
HINFHMAX	5.534 7. 12	213 10.5	72 13.93	21.079 204 43	549 37.487 48.42 32.018 42.956 11 7 7 6	•
неонн	5.534	11.373 1	3.439 15.	625 17.	131 20.000 48.42	5
	63 63			3 16.406 45 47	18.359 23.438 45 44 50 47	
CEM				517 16.		5
		449 11.8 53 58 5	11 13.672 5 52 58	55 59	17.323 22.656 55 56 57 56	
AP1	AP2	AFN	NKA	RFH	INTERVALLE	
133	146	46	254	18.110	7, 9,10	
	147	44	256	17.188	7, 9, 9	
135	137	44 28	255 256	17.255	7, 9, 9 4, 2, 2	
1 37	138	42	251	16.733	7, 8, 9	
	139	35	254	13.780	5, 5, 6	
	147	38 33	255 255	14.902	6, 6, 7 5, 4, 5	
138	139	41	250	16.400	7, 7, 8	
	149	47	251	18.725	7,10,10	
	270	45	251	17.928	7. 9.10	
139	271 250	31 53	251 255	12.351	5, 4, 4 7,11,11	
- 11	271	44	254	17.323	7. 9.10	
140	142	68	249	27.309	9,12,12	
142	150 143	35 42	249 255	14.056 16.471	6, 5, 6 7, 8, 9	
	150	63	252	25.000	8,12,12	
	152	52	254	20.472	7,11,11	
	153	30	255	11.765	4, 3, 3	
143	1 44	40	255	15.686	7, 7, 8	
144	153 146	43 32	256	16.797	7, 8, 9	
144	153	42	253 255	12.648 15.471	5 • 4 • 4 7 • 8 • 9	
	154	40	253	15.810	7, 7, 5	
146	155 147	40 38	254	15.748	7, 7, 8	
140	149	38 39	25 4 25 4	14.961	6, 6, 7 6, 6, 7	
	154	37	252	14.683	6, 6, 7	
	156	37	254	14.567	6, 6, 7	
147	149	30	256	11.719	4, 3, 3	
149	156 158	43 33	255 255	15.797 12.941	7, 8, 9 5, 4, 5	
	270	39	256	15.234	6, 6, 7	
150	152	49	252	19.444	7,10,11	
152	153 160	50 48	255	19.608	7,10,11	
	161	48 39	255 254	18.824 15.354	7.19.10 6, 6, 7	
NAME OF THE OWNER O	163	49	255	19.216	7,19,10	
153	155	37	255	14.510	6, 6, 7	

Tabl. 4 a : Valeurs numériques de 670 interpoints discriminatoires (IRD $_{\rm kj}$). Voir aussi le Tabl. 8 et 2.2.

LEX-ITALIE	N LISTE	ZP-RED-RNW			5
Mw= 84.390	S= 6	.058 G= -2.1	50 NZP= 670		
MINMWMAX			451 84.390 87	.749 91.108 94.4 9 89.428 92.787	66
	6	7 7 11	43 204 92 108		
MEDMW	51.575			561 88.627 94.4	66
	45			7 87.600 90.196 65 66 65 66	
		1000 NE 80E0	13 31 03 03	05 00 05 00	
MED	51.575			251 88.976 94.4	66
	54			5 88.189 90.551 55 56 57 57	
	,,	30 33 32	01 33 33 34	33 36 37 37	
AP1	APZ	AFW	NKA RFW	RNW INTERV	ALLE (RNW
133	146	46	254 18.110	51 800	
.33	147	44	256 17.188	82.813 6, 4	
135	137	44	255 17.255	82.745 6, 4	, 4
	147	28	256 10.938	89.063 9,11	
137	138 139	42 35	251 16.733 254 13.780	83.267 6, 5	
	147	38	255 14.902	86.220 8, 8 85.098 7, 7	
	149	33	255 12.941	87.059 8, 9	
138	139	41	250 16.400	83.600 6, 6.	
	149	47	251 18.725	81.275 6, 3	, 3
	270	45	251 17.928	82.072 6, 4	
139	250	31 53	251 ~12.351 255 20.784	87.649 8,10; 79.216 6, 2;	
	271	44	254 17.323	82.677 6, 4	
1+0	142	68	249 27.309	72.691 4, 1	. 1
142	150 143	35 42	249 14.056	85.944 7, 8	
142	150	63	255 16.471 252 25.000	83.529 6, 5, 75.000 5, 1,	
	152	52	254 20.472	79.528 6, 2,	
	153	30	255 11.765	88.235 9,10	
143	144	40	255 15.686	84.314 6, 6,	. 5
	153	43	256 16.797	63.203 6. 5	4
144	153	32 42	253 12.648 255 16.471	87.352 8, 9,	
	154	40	255 16.471 253 15.810	83.529 6, 5, 84.190 6, 6,	
	155	40	254 15.748	84.252 6, 6,	
146	147	38	254 14.961	85.039 7, 7,	6
	149	39 37	254 15.354	84.646 7, 7,	
	156	37	252 14.683 254 14.567	85.317 7, 7, 85.433 7, 7,	
147	149	30	256 11.719	88.281 9,10,	10
149	150	43	256 16.797	83.203 6, 5,	
	158	33	255 12.941	87.059 8, 9,	8
150	27G 152	39	256 15.234	84.766 7, 7,	
152	153	49 50	252 19.444 255 19.608		
	160	48	255 18.824	81.176 6, 3,	
	161	39	254 15.354	84.646 7, 7,	
153	163	49	255 19.216	80.784 6, 3,	
173	155	37	255 14.510	85.490 7, 7,	7

 $Tabl. \ 4 \ b:$ Valeurs numériques de 670 interpoints communicatifs (IRI $_{jk}$). Voir aussi le Tabl. 9 et 2.4.

					-		
	LEX-ITALIEN	LISTE ZP-R	ED				6
l							
l	MH= 15.610	S= 6.058	G= 2.15	O NZP=	670		
l	M TH				10 00 -		
	HINFWHAX					9 37.487 48.425	
					21.079	32.018 42.956 1 7 7 6	
I		12 25	49 100 1	00 32 4	.03 1	. , , ,	
1	HEDNH	5.534 11.	373 13-4	39 15-6	25 17.131	20.000 48.425	
	12007					13.359 23.438	
l		63 62			45 47 45		
l		00 00					
I	MED	5.534 10.				1 19.368 48.425	
l		9.449	11.811	13. 672	15.476	17.323 22.556	
I		54 53	58 55	52 58	55 59 59	5 58 57 56	
l							
l							
I	AP1	AP2	AFW	NKA	RFW I	NTERVALLE	
	AFI	AFC		HAIL	N. W.		
	153	163	32	256	12.500	5, 4, 4	
	154	155	14	253	5.534	1, 1, 1	
		156	28	254	11.024	4, 2, 3	
		163	35		13.780	5, 5, 6	
	155	163	36	255	14.118	6, 5, 5	
	156	157	29	254	11.417	4, 3, 3	
	- pp	158	43	255	16.863	7, 8, 9	
		163	35		13.672	5, 5, 6	
		165	31		12.109	4, 3, 4	
	157	158	34	253	13.439	5, 5, 5	
		165	34	254	13.386	5, 4, 5	
l		167	39 39	254	15.354	6, 6, 7	
1		176	40	254	15.748	7, 7, 8	
1	158	159	47	255	15.431	7.10.10	
l	100	167	44		17.255	7, 9, 9	
l		270	42	255	16.471	7, 8, 9	
	159	167	45	256	17.578	7, 9,10	
ı		169	38	255	14.902	6, 6, 7	
ı		270	41	256	16.016	7, 7, 8	
1		271	42	25 5	16.471	7, 8, 9	
ı				25.6	46 657		
ı		273	37 32		14.453	6, 6, 6 5, 4, 4	
l		282	32 29	255 256	11.328	4, 2, 3	
ı	160	161	49		19.216	7,10,10	
ı		170	36		14.063	6, 5, 6	
ı		172	64		25.098	8,12,12	
ı	161	163	42	255	16.471	7, 5, 9	
ı		172	46	254	18.110	7. 9.13	
ı	1 63	165	27	256	19.547	3, 2, 2	
1		172	32	255	12.549	5, 4, 4	
ı							
ı	165	172	36	255	14.118	6, 5, 6	
ı		175	37	255	14.510	6, 6, 7	
ı	167	176	28 44	256 255	19.938 17.255	4, 2, 2 7, 9, 9	
ı	701	169 176	40	255 256	17.255	7, 7, 8	
ı		177	53		20.703	7,11,11	
ı	169	177	40		15.686	7, 7, 8	
ı		178	42		16.667	7, 8, 9	
l		179	46	255	18.039	7, 9,13	
l		290	47		18.431	7,18,10	
•							

 $Tabl. \ 4 \ a:$ $Valeurs \ num\'eriques \ de \ 670 \ interpoints$ $discriminatoires \ (IRD_{kj}).$ $Voir \ aussi \ le \ Tabl. \ 8 \ et \ 2.2.$

LEX-ITALIE	N LISTE	ZP-RED-RNW				6
MW= 84.390	S= 6.	058 G= -2.	150 NZ	P= 670		
		•				
MINMWMAX	51.575	62.513 73	.451 84	4.390 87.	749 91.108 94.46	5
	6			4 92 108	89.428 92.787 106 49 25 12	
	· ·	, ,	43 20	72 100	100 44 23 12	
MEDMW	51.575		.869 84	4.462 86.	561 88.627 94.46	5
	76	.563 81.64	1 83.59	94 85.657	87.600 90.196	
	45	47 46 46	43 51	65 65	65 66 65 66	
MED	51.575	80.632 83	.529 85	5.490 87.	251 88.976 94.466	
					88.189 90.551	•
	54	56 55 52	61 55	5 53 59	55 56 57 57	
APL	APZ	AFW	NKA	RFW	RNW INTERVAL	LE(QN
153	142	2.2	200			
153	163 155	32 14	256 253	12.500		
427	156	26	254			
	163	35	254	13.780	86.220 8, 8,	
155	163	36	255	14.118	85.882 7, 8,	7.
156	157	29	254	11.417	88.583 9,10,1	
	158	43 35	255	16.863	83.137 6, 5,	
	165	31	256 256	13.672	86.328 E, 8, 87.891 9,10,	
157	158	34	253	13.439	88.976 9,11,1 80.220 8,8, 85.882 7,0, 86.583 9,10,1 83.137 6,5, 86.328 6,8, 87.481 9,10, 80.561 8,9,	
	165	34	254	12 204		
	167	39	254	15 356	86.614 8, 9, 84.646 7, 7,	
	176	40	254	15.748	84.252 6, 6,	
158	159	47	255	18.431	81.569 6, 3,	
.000	167	44	255	17.255	82.745 6, 4,	
159	270 167	42 45	255	16.471	93.529 6, 5,	
1.7	169	38	256 255	14.578	82.422 6, 4, 85.098 7, 7,	
	270	41	256	16.016	83.784 6, 6,	
	271	42	255	16.471	63.529 6, 5,	
	273	37	256	14.423	85.547 7, 7, 87.451 8, 9,	,
	282	32	255	12.549	85.547 7, 7, 87.451 8, 9,	
	290	29	256	11.328	88.672 9,11,1	
160	161	49	255	19.210	80.784 6, 3,	
	170 172	36 64	256	14.063		7
161	163	42	255	25.098	74.902 5, 1, 83.529 6, 5,	
	172	46	254	18.110	83.529 6, 5,	
163	165	27	256	10.547	89.453 10,11,1	
	172	32	255	12.549	87.451 8, 9,	•
165	172	36	255	14.118	65.882 7, 8,	,
	175	37	255	14.510	85.490 7, 7,	
167	176	28	256	10.938	89.063 9,11,1	L
101	169 176	40	255	17.255	02.745 6, 4,	
	177	53	256 256	15.625	84.375 6, 6, 5	
169	177	40	255	15.686	79.297 6, 2, 2	
	178	42	252	16.667	83.333 6, 5, 4	
	179	46	255	20.703 15.686 16.667 18.039	81.961 6, 4,	1
	290	47	255	18.431	81.569 6, 3,	

 $Tabl.\ 4\ b:$ Valeurs numériques de 670 interpoints communicatifs (IRI $_{jk}$). Voir aussi le Tabl. 9 et 2.4.

	2 8 7 6			
LEX-ITALIEN	LISTE ZP-RED			
HY= 15.610	S= 6.058 G=	2.150 NZP=	670	
	5.534 8.892	12.251 15.	619 26.549	37.487 48.425
MINKHAX			21.079 32	
		106 108 92		7 7 6
КЕОНИ	5.534 11.373	13.439 15.	625 17.131	20.000 48.425
	9.804 1	2.351 14.343	16.406 18	359 23.438
	63 62 70	59 71 67	45 47 45	44 50 47
KED	5.934 10.980	12.698 14.	510 15.471	19.368 48.425
	9.449 1	1.811 13.672	15.476 17.	323 22.656 58 57 56
	54 53 58	55 52 58	55 59 55	90 97 96
AP1	APZ AFW	NKA	RFW INT	ERVALLE
				12.12
179	172 66 131 43			12,12
172	173 27		10.757 4	2. 2
	175 37		14.567 6	6, 7
173	181 45 175 42			9,10
173	181 49		19.522 7	19,11
	1 12 49	251	19.522 7	10,11
175	176 35 182 47			5, 6 10,10
		2,74		
	184 59	255		11,11
175	177 57 184 55			11,11
177	178 30	253	11.853 4	3, 4
	184 25	256		, 1 , 2
178	185 25 179 37	254 253		2, 2
110	187 21	253	8.300 2.	1, 1
179	187 39			6, 7
	290 52	256	29.313	11,11
	420 43			10,10
4.04	432 49 182 37	256 255		10,10
181	182 37 184 65	255		12.12
	190 73			12,12
	193 74			12.12
184	135 23			, 1, 1
185	193 34 193 32			, 5, 5 , 4, 5
187	189 32			4, 4
	432 49	256	13.141 7	10.10
	500 48		18.372 7.	10,10
189	199 43	255	16.797 7.	3. 9
4.00	530 49			10,11
190	193 35 500 38	252 253		5, 6 6, 7
722	511 54	254		11.11
	520 54	255	21.094 8	11,11
205	222 27	254	10.630 4	2, 2
	218 37	254	14,507 6.	, 6, 7

Tabl. 4 a:

Voir aussi le Tabl. 8 et 2.2.

		ZP-RED-RNW				7
MW= 84.390	S= 6.	058 G= -2	.150 NZP=	670		
MINMWMAX	51.575	62.513 7	3.451 84.	390 - 87.	749 91.10	08 94.466
		.044 67.9				
	6	7 7 1	1 43 204	92 100	106 49 3	25 12
MEDMW	51.575		2.869 - 84.			
	76 45	.563 81.6 47 46 4		85.657 65 65		90.196 55 66
	40	47 40 4	0 43 71	05. 05	65 66 6	10 00
MED	51.575	80.632 8		490 87.		
		.344 82.6 56 55 5				90.551 57 57
				,		
AP1	AP2	AFW	NKA	RFW	RNW	INTERVALLE
170	172	66	255	25.882	74.118	6 1 1
110	181	43	256	16.797	83.203	5, 1, 1 6, 5, 4
172	173	27	251	10.757	89.243	9,11,11
	175 181	37 45	254 255	14.567	85.433 82.353	7, 7, 6
173	175	42	250	15.800	83.200	6, 5, 4
	181	49	251	19.522	80.478	6, 3, 2
175	182	49 35	251 255	19.522 13.725	80.478	6, 3, 2
	182	47	254	18.504	81.496	6, 3, 3
176	184 177	54 57	255 256	21.175	78.824 77.734	5, 2, 2 5, 2, 2
1.0	184	55	256	21.484	78.516	5, 2, 2
177	178	30	253	11.856	88.142	9,10, 9
	184	25 25	256 254	9.766	90.234	10,12,11
178	179	37	253	14.625	85.375	7, 7, 6
179	187 187	39	253 256	8.300 15.234	91.700	11,12,12
179	290	52	256	20.313	79.638	7, 7, 6
			364			
	420	49	256 256	19.141	80.859	6, 3, 3
161	182	37	255	14.510	85.490	6, 3, 3
192	184	65 70	255 254	25.490 27.559	74.510	5, 1, 1
	193	74	253	29.249	72.441	4, 1, 1 4, 1, 1
184	185	23	254	9.055	90.945	10,12,12
185	193	34 32	253 251	13.439	86.561	8, 9, 8
187	189	32	256	12.500	87.500	8, 9, 9
	432	49 48	256 253	19.141	80.359	6, 3, 3
169	199	43	256	15.777	81.028	6, 3, 3
5.50	500	49	253	19.368	80.632	6, 3, 3
190 199	193 500	35 38	252 253	13.889	86.111	8, 8, 7
177	511	54	254	21.260	84.980 78.740	7, 7, 6 5, 2, 2
	520	54	256	21.094	78.906	5, 2, 2
205 209	222	27 37	254 254	10.630	85.433	9,11,11

Tabl. 4 b:

Valeurs numériques de 670 interpoints communicatifs (IRI $_{\rm jk}$).

LEX-ITALIEN	LISTE	ZP-RED				
HW= 15.610	S= 6	.058 G=	2.150 N	ZP= 670		
HINKWMAX	5.534	8.892	12.251	15.610 26.	549 37.487 48	. 4 25
				931 21.079 92 204 43	32.018 42.95 11 7 7 6	
4 ED M H		9.804 12	. 351 14.	343 16.406	131 20.000 48 18.359 23.43	
	63	62 70	59 71	67 45 47	45 44 56 47	
4 ED					471 19.368 48	
	54	53 58	55 52	58 55 59	17.323 22.65 55 58 57 56	ь
AF1	AP2	AFW	NKA	RFW.	INTERVALLE	
209	320	58	254		8,11,12	
216	225	42 34	254 254		7, 8, 9 5, 4, 5	
218	229	41	256	16.016	7, 7, 8	
222	320	60	256		8,12,12	
222 223	223	35 28	252 253		5, 5, 6 4, 2, 3	
	225	36	253	14.229	6, 5, 6	
224	225	29 30	256 255	11.328 11.765	4. 2. 3 4. 3. 3	
225	227	45	256	17.578	7, 9,13	
	234	43	255	16.863	7, 8, 9	
227	236 229	50 41	256 256	19.531 16.016	7.10.11	
	236	40	256	15.625	7, 7, 8	
	237	39	256	15.234	6, 6, 7	
229	238	42 29	256 256	16.406 11.328	7, 8, 8 4, 2, 3	
229	320	51	256	19.922	7,10,11	
	330	47	255	13.431	7,10,10	
	340	47	256		7,10,10	
231	256	29	256	11.325	4. 2. 3	
234	236 243	43 30	255 253	16.863 11.858	7, 8, 9 4, 3, 4	
	244	37	255	14.510	6, 6, 7	
236	237	28	256	10.938	4, 2, 2	
	244	30	256	11.719	4, 3, 3	
237	245 238	31. 28	255 256	12.157	4. 3. 4	
	245	20	255	10.980	4, 2, 3	
238	247	26	25+	10.236	3, 2, 2	
230	247 249	29 35	254 255	11.417 13.725	4, 3, 3	
	340	43	256	16.797	7, 8, 9	
242	243	22	252	8.730	2, 1, 1	
	250	29	254	11.417	4. 3. 3	
243	252 244	21 36	253 254	8.300 14.173	2, 1, 1	
C 43	246	37	254	14.173	6, 6, 7	

Tabl. 4 a:

 $\begin{tabular}{ll} Valeurs numériques de 670 interpoints \\ discriminatoires (IRD_{kj}). \end{tabular}$

Voir aussi le Tabl. 8 et 2.2.

LEX-ITALIE	N LISTE ZP	-RED-RNW				S
MW= 84.390	S = 6.05	B G= -2.1	50 NZP	670		
MINHWHAX	51.575 6	2.513 73.	451 84.	.390 87.7	49 91-108 94.455	
					89.428 92.787	
	6	7 7 11	43 204	92 108 1	05 49 25 12	
MEDMW	61 676 O		0.40 0.4			
neunw				462 86.5	61 88.627 94.465 87.600 90.175	
	45 4				65 66 65 66	
1000						
MED	51.575 80				51 88.976 94.466	
	54 56	55 52	84.462	86.275	88.189 90.551 55 55 57 57	
	34 30	, ,, ,,	01 33	23 24	33 36 37 37	
API	AP2	AFW	NKA	RFW	RNW INTERVAL	LE (RM
209	320	58	254	22.835	77.165 5, 2,	1
216	225	42	254	16.535	83.465 6, 5,	
	227	34	254	13.386	80.614 8, 9,	
218	229	41	256	16.015	83.984 6, 6,	
222	320 223	60 35	256 252	23.438	76.563 5, 2, 86.111 8, 8,	
223	224	28	253		86.111 8, 8, 88.933 9,11,1	
	225	36	253	14.229	85.771 7, 8,	
224	225	29	256	11.328	68.672 9,11,1	כ
	234	30	255	11.765	88.235 9,10,1	כ
225	227	45	256	17.578	82.422 6, 4,	3
	234	43	255	16.863	83.137 6, 5,	
227	229	50 41	256 256		80.469 6, 3, 3	
	236	40	256	15.625	83.984 6, 6, 5	
	237	39	256	15.234	84.375 6, 6, 8 84.766 7, 7, 6	
229	238	42		16.406	63.594 6, 6,	
229	236 320	29 51		11.328	88.672 9,11,10	
	330	47	255	19.922	80.078 6, 3, 2 81.569 6, 3, 3	
					01.707 0, 3,	,
	340	47	256	18.359	81.641 6, 4, 3	
231	250	29 43	256		88.672 9,11,10	
- 34	243	30	255 253	16.963	83.137 6, 5, 4 83.142 9,10, 9	
	244	37	255	14.510	85.490 7, 7, 7	
236	237	28	256	10.938	89.063 9,11,11	
	244	30	256	11.719	88.281 9,10,10	
237	245 238	31 28	255 256	12.157	87.843 9,10, 9	
	245	28		10.980	89.063 9,11,11 89.020 9,11,11	
	247	26				
238	247	29	254 254	10.236	89.764 10,11,11 88.583 9,10,10	
	249	35	255	13.725	66.275 8, 8, 8	
	340	43	256	16.797	63.203 6, 5, 4	
242	243	22	252	8.730	91.270 11,12,12	
	250 252	29 21	254 253	11.417	88.583 9,10,10	
243	244	36	254	8.300	91.700 11,12,12 85.827 7, 8, 7	
1000 1000	246	37	249	14.859	85.141 7, 7, 6	
	252	27	253	10.672	89.328 9,11,11	

Tabl. 4b:

 $\begin{tabular}{ll} Valeurs numériques de 670 interpoints \\ communicatifs (IRI_{jk}). \end{tabular}$

		-				
LEX-ITALIEN	LISTE ZP-RE	:0				9
MH= 15.610	S= 6.058	G= 2.150	N ZP=	670		
MINHWHAX		92 12.25			9 37.487 48	
				21.079	32.018 42.95 1 7 7 6	•
HEDNH	5.534 11.3	173 13.43	39 15.6	25 17.13:		. 4 25
		12.351 70 59 7		16-486	18.359 23.43	8
	20.00					. 4 25
MED	5.534 10.9 9.449		13.672	15.476	17.323 22.65	
	54 53	58 55 5	52 58	55 59 5	5 58 57 56	
AF1	AP2 A	FH	NKA	RFH II	NTERVALLE	
244	245 246	24 26	255 250	9.412	3, 1, 1	
245	246	22	249	8.835	2, 1, 1	
	247	27	253	10.672	4. 2. 2	
246	247	23	248	9.274	3, 1, 1 6, 5, 6	
	252 254	35 26	249 250	10.400	3, 2, 2	
	263	34	250	13.600	5, 5, 5	
247	249	33	253	13.043	5 . 4 . 5	
	254	24	253	9.486	3, 1, 2	
	256	27	248	10.887	4, 2, 2	
248	249 259	37	254 255	14.567 13.333	6, 6, 7 5, 4, 5	
	331	43	254	16.929	7, 8, 9	
	341	27	251	10.757	4, 2, 2	
	343	39	254	15.354	6, 6, 7	
	360	51	253	20.158	7,11,11	
249	362 256	49 35	253 249	19.368	7,10,11 6, 5, 6	
249	258	35	254	13.780	5, 5, 6	
	259	31	255	12.157	4, 3, 4	
	340	38	255	14.902	6, 6, 7	
250	341	43	251	17.131	7, 9, 9 4, 3, 4	
250	252 261	31 27	255 256	12.157	4, 3, 4	
	271	44	255	17.255	7, 9, 9	
252	261	23	255	9.020	3, 1, 1	
	262	24	250	9.600	3, 1, 2	
251	263	32	255	12.549	5, 4, 4	
254	256		.250	10.000	3, 2, 2	
	263	43	255	16.863	7. 8. 9 5, 5, 5	
	265 26 7	34 25	251 255	13.546 9.804	3, 2, 2	
256	258	28	249	11.245	4, 2, 3	
	267	18	250	7.200	1, 1, 1	
	278	31	256	12.400	5, 4, 4	
258	259	25	255	9.804	3, 2, 2	
258	259 278	25 29	255	11.373	4, 3, 3	
258	259	25				

Tabl. 4 a:

Voir aussi le Tabl. 8 et 2.2.

LEX-ITALIE	N LISTE ZP	-RED-RNW				9	
MW= 84.390	S= 6.05	8 G= -2.	150 NZP=	670			
XAMWMNIM	51.575 6 57.0	2.513 73	451 84.	390 87. 86.069	749 91.10 89.428	8 94.466 92.787	
		7 7 11	43 204	92 108	106 49 2	5 12	
MEDMW	51.575 8	0.000 82	869 84.	462 '86.	561 88.62 87.600	7 94.466	
	45 4		43 51	65 65	65 66 6	5 66	
MED	51.575 8	0.632 83	.529 85.	490 87.	251 88.97		
	77 • 3 54 5	6 55 52	7 84.462 61 55	86.275 53 59	88.189 55 56 5	90.551 7 57	
API	AP2	AFW	NKA	RFW	RNW	INTERVALLE (RN	w)
	245	24	255	9.412	90.588	10,12,12	
244	246	26	250	10.400	89.600	10,11,11	
245	246 247	22 27	249 253	8.835	91.165	11,12,12	
246	247	23	248	9.274	90.726	10,12,12	
	252 254	35 26	249 250	14.056	85.944 89.600	7, 8, 7 10,11,11	
	263	34	250	13.600	86.400	8, 8, 8	
247	249 254	33 24	253 253	9.486	86.957 90.514	8, 9, 8 10,12,11	
	256	27	248	10.887	89.113	9,11,11	
248	249	37	254	14.567	85.433	7, 7, 6 8, 9, 8	
	259 331	34 43	255 254	13.333	86.667 83.071	6, 5, 4	
	341	27	251	10.757	89.243	9,11,11	
	343	39	254	15.354	84.646	7, 7, 6 6, 2, 2	
	360 362	51 49	253 253	20.158	80.632	6, 3, 3	
249	256	35	249	14.056	85.944	6, 3, 3	
	258	35	254	13.780	86.220	8, 8, 7	
	259	31	255	12.157	87.843	9,10, 9	
	340 341	38 43	255 251	14.902	85.098	7, 7, 6	
250	252	31	255	12.157	87.843	9,10, 9	
	261	27	256	10.547	89.453	10,11,11	
252	271 261	23	255 255	17.255	82.745	6, 4, 4	
252	262	24	250	9.600	90.400	10,12,11	
	263	32	255	12.549	87.451	8, 9, 9	
254	256	25	250	10.000	90.000	10,11,11	
	263	43 34	255	16.863	83.137	6, 5, 4 8, 8, 6	
	265 267	25	255	9.804	90.196	10,12,11	
256	258	28	249	11.245	88.755	9,11,10	
	267	18	250	7.200	92.800	12,12,12	
3.50	278	: 31	250	12.400	87.600	8,10, 9	
258	259 278	29	255 255	9.804	90.196	9,11,10	
	360	59	253	23.320	76.680	5, 2, 1	
259	360	49	254	19.291	60.709	6, 3, 3	

Tabl. 4b:

 $\begin{tabular}{ll} Valeurs numériques de 670 interpoints \\ communicatifs (IRI_{jk}). \end{tabular}$

LEX-ITALIEN	LISTE ZP	-250			10
HH= 15.610	S= 6.05	8 G= 2	.150 NZP	= 670	
HINHHHAX				610 26.549 37.4	
		13 10.5	72 13.93	21.079 32.418	
	12 2	5 49 10	6 1 78 92	204 43 11 7	7 6
					10 49 435
HEDMH				625 17.131 20.00 3 16.406 18.359	
	63 6	70 5	74 67	45 47 45 44 5	50 47
	63 6	2 .0 5	9 1 6	45 47 45 44 3	,, 4,
HED	5-534 1	D. 980 1	2.698 14	510 16.471 19.30	58 48-425
1125				15.476 17.323	
	54 5	3 58 5	5 52 58	55 59 55 58 5	57 56
AP1	AP2	AFH	NKA	RFW INTERVAL	LE.
261	262	16	251	6.375 1, 1, 1	
	271	32	255	12.549 5, 4,	
	273	30	256	11.719 4, 3,	
262	263	22	251	8.765 2, 1,	
	273	28	251	11.155 4, 2,	
267	274	23	251	9.163 3, 1,	
263	265 274	35. 31	251 255	13.944 6, 5, 6 12.157 4, 3, 6	
265	267	29	251	11.554 4, 3,	
205	274	41	250	16.400 7, 7,	
	214	41	270	101400 7, 7,	•
	275	35	249	14.056 6, 5, 6	5
267	275	52	253	20.553 7,11,1	i
	278	30	255	11.765 4, 3,	
	284	45	252	17.857 7, 9,10	
	285	41	25%	16.142 7. 7.	3
278	271	36	255	14.118 6, 5, 1	5
271	273	32	255	12.549 5, 4,	•
273	274	25	255	9.804 3, 2,	
	282	23	255	11.373 4, 3,	
274	275	32	252	12.698 5, 4,	5
					_
	282	27	254	10.630 4, 2,	
	401	43	252	17.063 7, 8,	
275	284	34	250	13.600 5, 5, 5	
270	401	40	250	16.000 7, 7,	
278	285 286	41 28	255 256	16.078 7, 7, 8 10.938 4, 2, 3	
	288	35	254	13.790 5, 5, 6	
	360	51	254	20.079 7,11,11	
	371	41	251	16.335 7.7.	
	372	50	255	19.608 7,10,1	
282	298	30	255	11.765 4, 3, 3	5
	401	39	252	15.476 6, 6, 8)
	4 20	43	255	16.563 7, 8, 9	
284	285	20	252	7.937 2, 1, 1	
	481	32	251	12.749 5, 4,	
	412	32	253	12.648 5. 4. 4	
	413	35	253	13.834 5, 5,	
285	286	24	255	9.412 3, 1,	
246	413	46	255	15.686 7. 7. 8	
286	288	18	254	7.087 1, 1, 1	•

 $Tabl. \ 4 \ a:$ $Valeurs \ numériques \ de \ 670 \ interpoints$ $discriminatoires \ (IRD_{kj}).$ $Voir \ aussi \ le \ Tabl. \ 8 \ et \ 2.2.$

LEX-ITALIE	N LISTE ZP	-RED-RNW				10
Mw= 84.390	S= 6.05	8 G= -2.15	O NZP=	670		
XAMEMNIM	51.575 6	2.513 73.4	51 84.	390 87.74	9 91.108 94.4	66
	57.0	44 67.982	78.921	86.069		
	6	7 7 11	43 204	92 108 10	6 49 25 12	
HEDMW	51.575 8	0.000 82.8	69 84.	462 86.56	1 88.627 94.4	66
	76.5		83.594		87.600 90.196	
	45 4	7 46 46	43 51	65 65 6	5 66 65 66	
MED	51.575 8	10.632 83.5	29 85.	490 87.25	1 88.976 94.4	56
	77.3				88.189 90.551	70.7
	54 5	6 55 52	61 55	53 59 5	5 56 57 57	
AP1	APZ	AFW	NKA	RFW	RNW INTERV	ALLE (RNW
261	262	16	251	6.375	93.625 12,12	
	271	32	255	12.549	87.451 8, 9	
262	273 263	30 22	256 251	8.765	88.281 9,10 91.235 11,12	
202	273	28	251	11.155	88.845 9,11	
	274	23	251	9.163	90.837 10,12	.12
263	265	35	251	13.944	86.056 7, 8	
265	274 267	31 29	255 251	12.157	57.843 9,10 88.446 9,10	
207	274	41	250	16.400	83.600 6, 6	
	275	35	249	14.056	85.944 7, 8	, 7
267	275	52	253	20.553	79.447 6, 2	
	278 284	30 45	255 252	11.765 17.857	88.235 9,10 82.143 6, 4	
	285	41	254	16.142	83.858 6, 6	
270	271	36	255	14.118	85.882 7, 8	
271	273	32	255	12.549	87.451 8, 9	
273	274 282	25 29	255 255	9.804	90.196 10,12	
274	275	32	252	12.698	87.302 8, 9	
	202	27	254	10 / 20	00 370 0 11	
	282 401	27 43	254 252	10.630	89.370 9,11	
275	284	34	250	13.600	86.400 8, 8	
	401	40	250	16.000	84.000 6, 6	
278	285 286	41 28	255 256	16.078	83.922 6, 6, 89.063 9,11	
	288	35	254	13.760	86.220 8, 8	
	360	51	254	20.079	79.921 6, 2	2
	371	41 50	251	16.335	83.665 6, 6	
~	372	50	255	19.608	80.392 6, 3	
282	290	30	255	11.765	88.235 9,10	
	401	39	252	15.476	84.524 7, 7	
284	420 285	43 20	255 252	7.937	83.137 6, 5, 92.063 11,12	
-01	401	32	251	12.749	87.251 8, 9	
	412	32	253	12.646	87.352 8, 9	9
	413	35	253	13.834	86.166 8, 8,	
205						
285	286 413	40	255 255	9.412	90.588 10,12	

Tabl. 4 b : Valeurs numériques de 670 interpoints communicatifs (IRI $_{\rm jk}$). Voir aussi le Tabl. 9 et 2.4.

1							
1	LEX-ITALIEN	LISTE 7P-R	50				11
1							
1							
1	MH= 15.610	S= 6.058	G= 2.15	0 NZP=	670		
1							
1	HINHWHAX	5.534 8.	892 12.2	51 15.6	510 26.549	37.487 48.42	5
1						2.018 42.956	
1		12 25	49 106 1	98 92 3	204 43 11	. 7 7 6	
1	n who are seen of	2 2 3 7 3 7 4				Contract Management Association	
ı	H ED H H		373 13.4				5
1			12.351			8.359 23.438	
ı		63 62	70 59	71 67	45 47 45	44 50 47	
1	MED	5.534 10.	980 12.6	98 14.5	510 16.471	19.368 48.42	. !
1	11.20					7.323 22.656	,
1			58 55			58 57 56	
1						, ,, ,,	
1							
1							
ı	AF1	AP2	AFW	NKA	RFW IN	ITERVALLE	
1		-					
1	286	289	29	255	11.373	4, 3, 3	
1		513	31	256	12.109	4. 3. 4	
1	200	424	37	254	14.567	6, 6, 7	
1	288	289 372	23 48	253 253	11.462	4, 3, 3	
1		381	38	254	18.972	7,10,10 6, 6, 7	
1	289	299	39	255	15.294	6, 6, 7	
!		381	48	255	18.824	7,13,10	
1		415	37	255	14.510	6, 6, 7	
ł		424	43	25 3	16.996	7, 8, 9	
1							
1	290	420	42	256	16.406	7, 8, 8	
1	299	381	34	256	13.281	5, 4, 5	2
1		393	38	254	14.961	5, 6, 7	
1		415	40	256	15.625	7. 7. 8	
1	305	427 312	29 50	254 250	11.417	4, 3, 3	
1	309	314	30	240	12.500	7,11,11 5, 4, 4	
1		316	79	25û	31.600	9,12,12	
1	307	316	52	256	20.313	7,11,11	
ı	7.7	317	31		12.302	5, 3, 4	
1						.,	
1		318	60	256	23.438	8,12,12	
1		327	53	254	20.866	7,11,11	
1	310	311	- 33		12.992	5, 4, 5	
1		320	21	255	8.235	2, 1, 1	
1		322	35	254	13.789	5, 5, 6	
1	311 312	322 313	30 60	254 251	11.811	4, 3, 4	
1	315	314	37	241	23.904	8,12,12	10
1		315	54	251	21.515	8.11.11	
1	313	315	41		16.400	7, 7, 8	
1			,	, - ·			
1		323	50	251		7,10,11	
1	6	325	55	251	21.912	3,11,11	1
1	314	315	47	240		7,10,11	
1		316	61	241	25.311	8,12,12	
1	315	316	51	25 5		7,11,11	
1	744	325	46			7. 9.10	
1	316	317	42			6, 6, 8	
1	317	325 325	39			7, 8, 8	
1	317	326	41	252		6, 6, 8 7, 7, 8	
1			•		2002.0	7 / 9 0	
1	* " /	and the second					

 $Tabl. \ 4 \ a:$ Valeurs numériques de 670 interpoints discriminatoires (IRD $_{kj}$). Voir aussi le Tabl. 8 et 2.2.

LEX-ITALIEN	LISTE	ZP-RED-KNW				. 11
MW= 84.390	S= 6	.058 6= -2	.150 NZP=	670		
MINMWMAX	51.575	62.513 7	3.451 84.	390 87.7	749 91.108	94.466
		7.044 67.9	82 78.921	85.069	89.428 92.	787
	6	7 7 1	1 43 204	92 108 1	106 49 25	12
MEDMW	E1 576	80.000 8	2.869 84.	462 86.5	61 88.627	94.466
neuna				85.657	87.600 90.	
	45			65 65		66
MED	51.575	60.632 8	3.529 85.	490 87.2	251 88.976	04 465
1100					88.189 90.	
		56 55 5				
AP1	APZ	AFW	NKA	RFW	RNW IN	TERVALLE(RN
256	289	29	255	11.373		9,11,10
	413	31	256	12.109		9,10, 9
288	239	37 29	254 253	14.567		7, 7, 6 9,10,10
200	372	40	253	18.972	81.028	5, 3, 3
	381	38	254	14.901	85.039	7. 7. 6
289	299	39	255	15.294	84.706	7, 7, 6
	381	48	255	18.824	81.028 85.039 84.706 81.176 85.490	, 3, 3
	415	37	255	14.510	85.490	7, 7, 7
	424	43	253	16.996	83.004	5, 5, 4
290	420	42		16.406		6, 6, 5
299	381	34 38	256	13.281	86.719	9, 8
	415	40	256	15.625	84.375	7, 7, 6
	427	29	254	11.417		7,10,10
305	312	50	250	20.000	80.000	3, 2
	314	30	240	12.500	87.500	3, 9, 9
307	316 316	79 52	250	31.600	68.400	, 1, 1
301	317	31	250	12 303	79.000	3,10, 9
	15.5		272	12.302	07.040	1,10, 9
	318	60		23.438		5, 2, 1
310	327	53	254	20.866		, 2, 2
310	320	.33	254	12.992 8.235	67.008 8 91.765 11	3, 9, 8 1,12,12
	322	35	254	13.780	86.220	7
311	322	30	254	11.811	88.189	,10,10
312	313	60	251	23.904	76.096	, 1, 1
	314	37	241	15.353	84.647 7	7, 6
313	315 315	54 41	251 250	13.780 11.811 23.904 15.353 21.514 16.400	78.486	2, 2
	5.55		290	10.400		, 6, 5
	323 325	5 Q 5 5	251 251	19.920		3, 2
314	315	47	240	19.583		3, 2, 2
6565	316	61	241			, 1, 1
315	310	51	255	25.311 20.000 18.039	80.000	, 3, 2
224	325	46	255	18.039	81.961 6	, 4, 3
316	317 325	39	252	15.476 16.406 15.476	84.524 7	7, 6
317	325	42 39	256 252	15 476	83.594 6	, 6, 5
	326	41	252	13.410	04.024 7	7, 6

 $Tabl.\ 4\ b:$ Valeurs numériques de 670 interpoints communicatifs (IRI $_{jk}$). Voir aussi le Tabl. 9 et 2.4.

																	- 10.5					
LEX-ITALIEN	LIS	TE Z	P-RE	: D																	12	
MW= 15.610	S=	6.0	158	G=	2.1	51	N Z	P=	67)												
MINHWHAX	5.5	34	8.8	92	12.	251	1	5.6	10		26.	54	a	3	7.	487	7	6	8.	25		
BIGGROWY	,,,	7.	213	11.	572	13	3.9	31	2:	١.	073	3	32	. 1	18		42	. 9	56	,,,		
		12		49 1							43				7		7		6			
HEDHM	5.5	34	11.3	73	13.	439	1	5.6	25		17.	13	1	2	0.	000	0	4	8.	25		
			804				+ • · · · 6		45					• 5		50	2 3	. 4				
		63	62	13	59	71	0	. /	45		• /	4	9	4	*	31	U	4				
MED	5.5	34	10.9	30	12.	698	1	4.5	10		16.	47	1	1	9.	368	В	4	8.	+ 25		
	-	9.	443	11.	811	13	3. €	72	1	5.	476	5	17	. 3	23	:	22	. 6	56			
		54	53	58	55	52	5	8	55	1	59	5	5	5	8	5	7	5	6			
AF1	AP2	0	Δ	FW		N	KA.		οţ	- W		I	NT	ER	VΑ	LL	3					
												_	- 4				-0.0					
317	327			54			52		21.						1,							
	336			39			52		15						6,							
318	319			20			56		7.						1,							
	327			29			54		11.						3,							
319	327			29 36			54		14	. 4	1 '			,		6						
	328			19			55		7	4	22				1,							
320	322			35			55		13.						5,							
	330			36			55		14						5,							
322	330			44		25	54		17.	. 3	23		7	,	9,	10						
											_				_							
	331			29			54		11.				4	*	3,	3						
323	332			27 44			55 56		17						2, 9,							
323	332			38			56		14.						6,	7						
	333			42			56		16						8,	8						
	334			42			56		16.				7	,	8,							
	344			44			55		17				7	•	9,	9						
325	334			35			56		13						5,							
	335			36			53		14.					•		6						
	338			42		2:	56		16	. 4	06		1	9	8,	8						
326	3 27			39		20	54		15	. 3	54		6		6,	7						
525	328			40			56		15						7,							
	336			47			56		18.				7	,1	0,	13						
	337			31			54		12.						3,							
3 2 7	328			27			54		10						2,							
328	329			31 43			56 54		12.						3, 8,							
	338			32			55		12						4,							
	348			35			55		13.						Š,	6						
329	338			16			55				75			•		1						
															_							
330	331			35			54		13.				5	•	5,	6						
774	340			31			55		12				4	•	3,	4						
331	332			30 48			55		11.						3,							
	341			35			51		13.						5,							
	343			27			54		10						ź,							
332	333			28		25	56		10.	.9	38		4	,	2,	2						
	343			40			55		15						7,							
333	343			26			55		10						2,							
	344			32		25	55		12.	. 5	49		5	9	4,	4						

Tabl. 4 a : Valeurs numériques de 670 interpoints discriminatoires (IRD $_{\rm kj}$). Voir aussi le Tabl. 8 et 2.2.

LEX-ITALIE	N LISTE ZP-	-RED-RNW				12
MW= 64.390	S= 0.05	6 -2.1	50 NZP	= 670		
MINMWMAX	51.575 62	2.513 73.	451 84	.390 87.7	49 91.108 94.	466
	57.0	44 67.982	78.92	1 85.069	89.428 92.787	
		7 7 11		92 108 1		
MEDMW	51.575 80	0.000 82.	059 84	.462 86.5	61 88.627 94.	466
		3 81.641	83.59	4 85-657	87.600 90.196	
	45 4		43 51		65 66 65 66	
MED	51.575 80	0.632 83.	529 85	.490 87.2	51 88.976 94.	466
					86.189 90.551	
					55 56 57 57	
AP1	AP2	AFW	NKA	RFW	RNW INTER	VALLE (RNW)
				N 1 #		
317	327	54	252	21.429	78.571 5,	2, 2
	336	39	252	15.476	84 524 7.	7, 6
318	319	20	256	7.813	92.188 11.4	
	327	29	254	11.417	88.583 9,1	0,10
319	327	29	254	11.417		0,10
317	328	36	256	14.063		8, 7
	329	19	256	7.422	92.578 11,12	
320	322	35	255			
320	330	36	255	13.725	85.682 7,	3, 8
322	330	44	254	17.323		4, 4
322	330	44	254	11.323	82.611 6,	4, 4
	331	29	254	11.417	. 68.583 9,10	
	332	27	255			
323	325	44	256	10.588	89.412 9,11	
323	332			17.188	62.813 6,	
	333	38	256	14.844	85.156 7,	
	334	42 42	256	16.406	83.594 6, 6	
	344		256	16.406	93.594 6, 6	
325		44	255	17.255	82.745 6, 4	
323	334 335	35	256	13.672	86.326 8, 8	
		36	253	14.229	85.771 7, 8	
	336	42	256	10.406	83.594 6, 6	5, 5
326	327	39	25/	15 25/		
320	327	40	254	15.354	84.646 7, 7	
	336	47	256	15.625	84.375 6, 6	
	337	31	254	18.359	61.641 6, 4	
327	328	27	254	12.205	87.795 9,10	
328	329		256	10.030	89.370 9,11	
320	337	43		12.109	87.891 9,10	
	337	32	254	16.929	83.071 6, 5	
	348		255	12.549	67.451 8, 9	, 9
329	338	35	256	13.672	86.328 8, 8	
367	330	16	255	6.275	93.725 12,12	112
330	331	35	254	12 700	06 220 0 0	
330	340	31	255	13.780	86.220 8, 8	
331	332	30		12.157	87.843 9,10	
231	340	40	255	11.765	88.235 9,10	10
	341	35	255	18.824	61.176 6, 3 66.056 7, 8	, 3
	343	27	251	13.944		
332	333	28	254	10.630	89.370 9,11	
332			256	10.938	89.063 9,11	
333	343	40	255	15.686	84.314 6, 6	
333	343	26	255	10.196	89.804 10,11	
	344	32	255	12.549	87.451 8, 9	, 9

 $Tabl.\ 4\ b:$ $Valeurs\ numériques\ de\ 670\ interpoints$ $communicatifs\ (IRI_{jk}).$ $Voir\ aussi\ le\ Tabl.\ 9\ et\ 2.4.$

LEX-ITALIEN	LISTE ZE	-RED				13
MW= 15.618	S= 6.05	58 G= 2	150 NZP=	670		
HINKHHAX	5.534				49 37.487 48.	+ 25
	7.3	13 10.57			32.018 42.956 11 7 7 6	
	12 2	25 49 100	138 92	204 43	11 7 7 6	
HEDHW				625 17.1		25
			71 67	45 47	18.359 23.438 45 44 50 47	
	5.5					
HED	5.534	10.980 11	2.695 14	510 16.4	71 19.368 48.1 17.323 22.656	2 5
			52 58		55 58 57 56	
				9990400		
AP1	AP2	AFH	NKA	RFW	INTERVALLE	
334	335	32	253	12.648	5, 4, 4	
	344	44	255	17.255	7, 9, 9 5, 5, 5	
	345 354	34 39	253 255	13.439 15.294	5, 5, 5 6, 6, 7	
335	336	25	253	9.881	3, 2, 2	
	345	32	25 2	12.698	5, 4, 5 4, 3, 4	
336	346 337	30 41	248 254	12.097 16.142	7, 7, 8	
300	346	36	251	14.343	6, 6, 6	
337	346	41	249	16.466	7, 8, 8	
	348	44	254	17.323	7, 9,10	
	356	38	254	14.961	6, 6, 7 1, 1, 1	
338	339 348	18 26	252 255	7.143 10.196	3, 2, 2	
	349	37	255	14.510	6, 6, 7	
339	348	24 33	253 253	9.486	3. 1. 2 5. 4. 5	
	349 357	28	253	11.067	4, 2, 3	
~ 77.00	359	32	253	12.648	5. 4. 4	
340	341	35	252	13.889	5, 5, 6	
343	344	38	254	14.961	6, 6, 7	
	352 362	40 34	25 5 25 3	15.686 13.439	7, 7, 8 5, 5, 5	
344	352	53	255	20.784	7,11,11	
	354	56	254	22.047	8,11,11	
345	346 354	31 35	249 252	12.450 13.889	5, 4, 4 5, 5, 6	
	364	34	249	13.655	5, 5, 5	
520 h0 vc31	365	33	253	13.043	5. 4. 5	
346	356	29	251	11.554	4, 3, 3	
	365	43	251	17.131	7, 9, 9	
348	356	52	256	20.313	7,11,11	
349	357 359	23 31	256 256	8.984 12.109	3, 1, 1 4, 3, 4	
J - 7	367	49	254	19.291	7,10,10	
750	369	58	250	23.200	5,11,12	
352	354 362	37 25	255 254	14.510 9.843	6, 6, 7 3, 2, 2	
	363	28	251	11.155	4, 2, 3	

Tabl. 4 a: Valeurs numériques de 670 interpoints discriminatoires (IRDkj). Voir aussi le Tabl. 8 et 2.2.

LEX-ITALIE	N LIST	E ZP-RED-R	IN b										13	
Mw= 84.390	S= 0	6.058 G=	-2.150	NZP=	670)								
XAMWKNIM		5 62.513											66	
77 * 100 00 00 00 00 00 00 00 00 00 00 00 00		57.044 67	7.982 78	.921	86	.06	9 89	9.4	28	9	2.7	87		
		6 7 7	11 43	204	92	108	106	4	9	25	1,	2		
MEDMW		5 80.000											66	
		76.563 81	.641 83	.594	85	.65	7 87	7.6	00	9	0.19	96		
	4	5 47 46	46 43	51	65	65	65	6	6	65	66	5		
MED		5 80.632											66	
		77.344 82	2.677 84	.402	86	.27	5 88	3.1	89	ç	0.55	51		
	5	4 56 55	52 61	55	53	59	55	5	6	57	5	7		
*														
		A.E.,	NI					2 14				1		,
API	APZ	AFw	NK	. A		RFW		RN	W		INI	ĖRV	ALLE (R	(N)
334	335	32		3	12.	648	E		352				, 9	
200	344	44	25	5	12. 17. 13.	255	8		745		6,	, 4	, 4	
	345	34 39	25 25		13.				561 706		۵,	7	, 8	
335	336	25	25			881			119				,11	
	345	32	25	2	12.	698	8	37.	302	2	8,	, 9	, 9	
336	346 337	30	2 4 2 5	8	12.	097	8		903				, 9	
330	346	41 36		1	16. 14. 16.	343	8		858				, 7	
337	346	41	24	9	16.	466	8						, 5	
	348	44		4	17.	,,,	8 8 9 8		477	•		4	, 4	
	356	38	25	4	14.	961	ě	5.	039	,			, 6	
338	339	18	25	2	7.	143	9	2.	857	1	12,	. 12.	,12	
	348	26 37	25 25	<u>خ</u>	10.	196	8	9.	804				, 11	
339	349	24	25	3	9.	486	9	0.	514				,11	
and the second of the	349	33	25								8,	, 9	, 8	
	357 359	28 32	25 25		11.				933				,10	
340	341	35	25		13.				111				, 7	
											- 19			
343	344 352	38 40	25	5	15.	961	8		039			, 7		
	362	34	25	3	13.	439	ė		561			, 9		
344	3 2 2	53	25	5	20.	784	7	9.	210	,	6,	, 2	, 2	
345	354 346	56 31	25 24		22.				953 550			, 2,		
347	354	35			13.				111			8		
	364	34	24	9	13.	655	8	6 .	345		8,	. 8	, 8	
.346	365 356	33 29	25 25		13.				957 446			10,		
340	370	47	23	1	11.)) +	0	٥.	440		Ψ,	10,	,10	
1211 2	365	43	25		17.				869			5 ,		
348	356 357	52 23	2 5 2 5		20.				688			2,		
349	357	31			12.				891			12,		
© ⊆ loginec	367	49	25	4	19.	291	8	0.	709		6,	, 3,	, 3	
162	369	5 b	25		23.				800		5,	. 2,	, 1	
352	354 362	37 25	25 25		9.				490 157		7,	7,		
	303	28			11.				845			11		
354	303	34	25		13.				400			8,		

Tabl. 4 b: Valeurs numériques de 670 interpoints communicatifs (IRI $_{jk}$). Voir aussi le Tabl. 9 et 2.4.

LEX-ITALIEN	LISTE	ZP-RED				1
45 646			- 450 W			
MH= 15.610					× 20 20	
HINHWHAX					549 37.487 48.4 32.018 42.956	25
				92 204 43		
HEDHN	5.534	11.373	13.439	15.625 17.	131 20.000 48.4	25
					18.359 23.438	
not	5(5)					
MED	5.534	13.980	12.698 A11 13.	14.510 16. 672 15.476	471 19.368 48.4 17.323 22.656	25
	54	53 58	55 52	58 55 59	55 58 57 56	
AF1	AP2	AFW	NKA	RFM	INTERVALLE	
354	364	22	251		2, 1, 1	
356	357 365	46 34	256 255		7, 9,10 5, 4, 5	
	376	36	255	14.118	5, 5, 6	
357	359 367	29 40	256 254		4, 2, 3 7, 7, 3	
359	367	49	254		7,10,10	
360	362	39	252	15.476	6, 6, 8	
362	371 363	35 21	250 250		6. 5. 6 2. 1. 1	
				50.5	5 500 05	
	371 373	34 21	249 254	13.655 8.268	5, 5, 5 2, 1, 1	
363	364	25	247	10.121	3, 2, 2	
	373	20	251		2. 1. 1	
364	374 365	25 29	248 251	11.290 11.554	4, 2, 3	
307	374	22			2, 1, 1	
	375	21	251 251	8.367	2, 1, 1	
365	375 376	3ú 50	25 4 25 4	8.367 11.811 19.685	4, 3, 4 7,10,11	
	-		-0.00		0/ 1000/010000	
367 368	369 369	55 44	248 245	22.177 17.959	8,11,11 7, 9,10	
300	378	31	246	12.602	5, 4, 4	
369	378	44	244 250	18.033	7, 9,10	
774	379	34	250 250	13.600	5, 5, 5	
371	372 373	39	251	13.600 15.538	5, 5, 5 6, 6, 8	
372	373	46	255		7, 9,13	
	381	29	255	11.373	4, 3, 3	
373	374	29	25 3	11.462	4, 3, 3	
374	381	35	256		5, 5, 6	
374	375 381	27 33	253 253		4, 2, 2 5, 4, 5	
	385	35	251		6, 5, 6	
	393	36	251		6, 6, 6	
375	376	35	254		5, 5, 6	
376	385 385	29 37	25 3 25 3		4, 3, 3 6, 6, 7	
378	379	41	250		7, 7, 8	

Tabl. 4 a:

Voir aussi le Tabl. 8 et 2.2.

LEX-ITALIE	LISTE	ZP-RED-RNW				14
MW= 84.390	S= 6.	058 G= -2.	150 NZP:	670		
XAMWMMIM	51.575	62.513 73	.451 84	390 87.7	49 91.108	94.466
	57	7 7 11			89.428	
	= 0					
HEDMW		80.000 82 .563 81.64				
	45			65 65		
MED	61 676	80.632 83	520 G5	400 97 2	51 99 074	04 444
HED		.344 82.67				
	54	56 55 52	61 55	53 59	55 56 57	57
API	AP2	AFW	NKA	RFW	RNW	INTERVALLEG
354	364	22	251	8.765	91.235	11,12,12
356	357	40	256	17.969	82.031	6, 4, 3
	365 376	34 36	255 255	13.333	86.667	8, 9, 8
357	359	29	256	11.328	88.672	9,11,10
	367	40	254	15.748	84.252	6, 6, 5
359	367	49	254	19.291	80.709	6, 3, 3
360	362 371	39 35	252 250	15.476	84.524	7, 7, 6 7, 8, 7
362	363	21	250	8.400	91.600	11,12,12
	371	34	249	13.655	86.345	8, 8, 8
	373	21	254	8.268		11,12,12
363	304	25	247	10.121		10,11,11
	373	20	251	7.968	92.032	11,12,12
304	374 365	28 29	248 251	11.290	88.710 88.446	9,11,10
304	374	22	251	8.765	91.235	11,12,12
	375	21	251	8.367	91.633	11,12,12
365	375	30	254	11.811	88.189	9,10,10
	376	50	254	19.685	80.315	6, 3, 2
367	369	55	248	22.177	77.823	5, 2, 2
368	369	44	245	17.959	82.041	6, 4, 3
369	378 378	31 44	246	12.602	67.398 81.967	8, 9, 9
307	379	34	250	13.600	86.400	8, 8, 8
371	372	34	250	13.600	86.400	8, 8, 8
	373	39	251	15.538	64.462	7, 7, 6
372	373	46	255	18.039	81.961	6, 4, 3
373	381 374	29 29	255 253	11.373	88.538	9,11,10
31,5						
374	381	35	256	13.672 10.672 13.043	86.328	8, 8, 6
3/4	375 381	27 33	253 253	10.672	86.957	9,11,11 8, 9, 8
	385	35	251	13.944	86.056	7, 8, 7
	393	36	251	14.343	85.657	7, 8, 7
375	376	35	254	14.343		8, 8, 7
	3 8 5	29	253	11.462	88.538	9,10,10
376 378	385 379	37	253	14.625	85.375	7, 7, 6

Tabl. 4 b:

Valeurs numériques de 670 interpoints communicatifs (IRI $_{\rm jk}$).

LEX-ITALIEN	LISTE	7P=P=0				15
		L. K.15				19
NY= 15.610	S= 6.	058 G= 2.	150 NZP	= 679		
XAMMUNIM	5.534	3.892 12	.251 15	.610 26.5	49 37.487 48.42	25
	12	.213 10.57 25 49 106	2 13.93	204 43	32.718 42.956 11 7 7 6	
HEDNW	E 674	11.373 13				
HIJON W	9	. 804 12.35	1 14.34	3 16.406	18.359 23.438	.5
	63	62 70 59	71 67	45 47	45 44 50 47	
H SD					71 19.368 48.42	25
	54	.449 11.31 53 58 55	1 13. E7 52 53	2 15.476 55 59	17.323 22.656 55 58 57 56	
AP1	AP2					
		AFW	NKA	RFW	INTERVALLE	
378 373	399 399	5.4 23	247 253	13.765	5, 5, 6 3. 1. 1	
381	393	30	254	11.811	4, 3, 4	
305	393 427	32 48	252 252	12.698	5, 4, 5	
	439	50	250	19.048	7,10,10 7,11,11	
393 397	427	43	253	16.996	7, 8, 9	
397	398 399	35 40	256 25 3	13.672	5, 5, 6 7, 7, 8	
398	333	39	253	15.415	6, 6, 7	
401	412	22	253	8.696	2, 1, 1	
412	420 413	36 31	253 256	14.229	6, 5, 6	
	420	37	255	14.453	6, 6, 6	
	423	33 27	252 256	13.095 10.547	5, 4, 5 3, 2, 2	
413	423	19	252	7.540	2, 1, 1	
415	424	21 33	254	3.268 12.992	2, 1, 1	
	427	44	254	17.323	5, 4, 5 7, 9,10	
	436	28	254	11.024	4, 2, 3	
420	432	33	256	12.891	5, 4, 5	
	434	22 39	250	8.800	2, 1, 1	
	443	27	252 252	15.476 10.714	6, 6, 8	
	444	34	251	11.952	4, 3, 4	
	436	34 29	252 253	13.492	5, 5, 5	
	436	43	253	11.462 17.063	4, 3, 3 7, 8, 9	
	439	29	250	11.600	4, 3, 3	
	446	48	252	15.873	7, 7, 8	
	458 443	34 35	253 256	13.439 13.672	5, 5, 5	
	500	43	253	16.996	7, 5, 9	
	444	29	253	11.462	4, 3, 3	
	446 454	30 29	252 254	11.905 11.417	4, 3, 4	
	455	32	254	12.598	5, 4, 4	
	456	30	254	11.311	4. 3. 4	
439	458	37	251	14.741	6, 6, 7	

Tabl. 4 a:

Voir aussi le Tabl. 8 et 2.2.

		7.77				
LEX-ITALIE	N LISTE ZP-	RED-RNW				1.5
Mw= 84.390	5= 6.058	G= -2.1	50 NZP	670		
MINHWHAX		.513 73.		390 87.7		
	57.04		78.92			2.787 12
	•	, 11	13 201	72 100 1	00 49 23	12
MEDMW	51.575 80			462 86.5		94.466
	76.56				87.600 90	
	45 47	46 46	43 51	65 65	65 66 65	66
MED	51.575 80	.632 83.	529 85	490 87.2	51 88.976	94.466
					88.189 90	
	54 56	55 52	61 55	53 59	55 56 57	57
AP1	AP2	AFW	NKA	RFW	RNW I	INTERVALLE (RNW)
1						
378	399	34	247	13.765	86.235	8, 8, 7
379 381	399 393	23 30	253 254	9.091	90.909	10,12,12
385	393	32	252	12.698	87.302	8, 9, 9
• • • •	427	48	252	19.048	80.952	6, 3, 3
	439	50	250	20.000	80.000	6, 3, 2
393 397	427 398	43 35	253 256	16.996	83.004	6, 5, 4
341	399	40	253	13.672	86.328	6, 6, 5
398	399	39	253	15.415	84.585	7, 7, 6
401	412	22	253	8.696		11,12,12
412	413	36 31	253 256	14.229	85.771 87.891	7, 8, 7 9,10, 9
	420	37	256	14.453	85.547	7, 7, 7
	423	33	252	13.095	86.905	8, 9, 8
	432	27	256	10.547	89.453	10,11,11
413	423	19 21	252 254	7.540 8.268	92.460	11,12,12
415	424	33	254	12.992	87.008	8, 9, 8
	427	44.	254	17.323	82.677	8, 9, 8
						2 3 2 2 2
420	430 432	28 33	254 256	11.024	88.976	9,11,11
423	424	22	250	8.800	91.200	11,12,12
	432	39	252	15.476	84.524	7, 7, 6
	443	27	252	10.714	89.286	9,11,11
424	444	30 34	251 252	11.952 13.492	86.508	9,10, 9 8, 8, 8
, . ,	444	29	253	11.462	88.538	9,10,10
427	430	43	252	17.063	82.937	6, 5, 4
	439	29	250	11.600	88.400	9,10,10
	446	40	252	15.673	64.127	6, 6, 5
	458	34	253	13.439	86.561	8, 9, 8
432	443	35	256	13.672	86.328	8, 8, 8
434	500	43	253	16.996	83.004	6, 5, 4
436	444	29 30	253 252	11.462	88.095	9,10,10
	454	29	254	11.417	88.095	9,10,10
	455	32	254	12.598	87.402	8, 9, 9
	456	30	254	11.811	88.189	9,10,10
439	458	27	251	14.741	85.259	7, 7, 6

Tabl. 4b:

Valeurs numériques de 670 interpoints communicatifs (IRI_{jk}).

	# (# (# (# (# (# (# (# (# (# (# (# (# (#				
LEX-ITALIEN	LISTE ZP-RE	o .			16
MW= 15.610	S= 6.058	G= 2.150 N	ZP= 670		
HINHHMAX		13.572 13.	15.610 26.549 931 21.379 32 92 204 43 11		5
MEONN	5.534 11.3 9.804	73 13.439 12.351 14.	15.625 17.131 343 16.405 18		5
MED	63 62 5.534 10.9		67 45 47 45 14.510 16.471	44 50 47 19.363 48.42	5
		11.811 13. 58 55 52	672 15.476 17 58 55 59 55	.323 22.656 58 57 56	
AP1	AP2 A	FN NKA	RFW INT	ERVALLE	
439	459	37 25 0	14.800 6	. 6, 7	
443	444	28 255 43 254	10.980 4 16.929 7	, 2, 3	
444	453	40 253 44 253 23 255	17.391 7 9.020 3	7, 7, 3 7, 9,10 1, 1, 1	
446	458	24 254 40 253 36 253	15.810 7	1, 2 2, 7, 8 3, 5, 6	
453	454	40 254 36 254	15.748 7	, 7, 8	
	500 511	46 251 62 252	18.327 7 24.603 8	, 9,10 ,12,12	
454		30 256 33 256		, 3, 3 , 4, 5	
455	456 464	31 256 38 256	12.109 4 14.844 6	3, 4 3, 6, 7 3, 4	
456	4 66	31 256 33 256 32 255	12.891 5	4, 5	
458		29 253 33 254		, 3, 3	
459	478	34 255 34 253 29 252	13.439 5	, 4, 5 , 5, 5	
464	479 466	37 254 37 256 54 254	14.567 6 14.453 6	6, 7 6, 6 11,11	
	513	58 256 58 256	22.656	,11,12 ,11,12	
466	476	38 255 44 256	17.183 7	• 6• 7 • 9• 9	
		47 256 56 256		,10,13 ,11,11	
467	476	35 255	13.725 5	, 5, 5	
476		16 254 24 256		. 1. 1	
478	479	25 254 20 254	9.843 3	2, 2	
		34 253		, 5, 5	

Tabl. 4 a : Valeurs numériques de 670 interpoints discriminatoires (IRD $_{\rm kj}$).

LEX-ITALIE	N LISTE 2	P-RED-RNW				16
MW= 84.390	S= 6.0	58 G= -2.	150 NZP	- 670		
KAMWMMIN	51.575	62.513 73	.451 84	.390 87.7	749 91.108 94.4	66
					89.428 92.787	00
	6	7 7 11		92 108 1		
MEDMW	51.575			.462 86.5	87.600 90.196	66
		47 46 46		65 65	65 66 65 66	
	.,			0, 0,	0, 00 0, 00	
MED	51.575	80.632 .83	.529 85	.490 87.2		50
					88.189 90.551	
	54	56 55 52	61 55	53 59	55 56 57 57	
API	AP2	AFW	NKA	RFW	RNW INTERV	5 / 9 ×
		A	110 #	N.F.W.	NAM INICKV	
439	459	37	250	14.800	85.200 7, 7	
443	444	28	255	10.980	89.020 9,11	
	453 500	43 40	254 253	16.929	83.071 6, 5,	
444	453	44	253	15.813 17.391	84.190 6, 6, 82.609 6, 4,	
	454	23	255	9.020	90.980 10,12	
446	456	24	254	9.449	90.551 10,12,	
	458	40	253	15.810	84.190 6, 6,	
	467	36	253	14.229	85.771 7, 8,	
453	454	40	254	15.748	84.252 6, 6,	5
	464	36	254	14.173	85.827 7, 8,	. 7
	500	46	251	18.327	81.673 6, 4,	
22.	511	62	252	24.603	75.397 5, 1,	1
454	455 464	30	256	11.719	88.281 9,10,	
455	456	33 31	256 256	12.591	87.109 8, 9, 87.891 9,10,	
	404	38	256	14.844	85.156 7, 7,	
	466	31	256	12.109	67.891 9,10,	
456	466	33	256	12.891	87.109 8, 9,	8
	467	32	255	12.549	87.451 8, 9,	9
458	459	29	253	11.462	88.538 9,10,	10
.,,	467	33	254	12.992	87.008 8, 9,	
	476	34	255	13.333	86.567 8, 9,	
00000000	478	34	253	13.439	86.561 8, 9,	
459	478	29	252	11.508	86.492 9,10,	
464	479 406	37 37	254	14.567	85.433 7, 7,	
704	511	54	256 254	14.453	85.547 7, 7, 78.740 5, 2,	
	513	58	256	22.656	78.740 5, 2, 77.344 5, 2,	
	515	58	256	22.656	77.344 5, 2,	
466	467	38	255	14.902	85.098 7, 7,	6
	476	44	256	17.188	82.813 6, 4,	4
	490	47	256	18.359	81.641 6, 4,	
467	515 476	56 35	256 255	21.875	78.125 5, 2,	
476	478	16	255	13.725	86.275 8, 8, 93.701 12,12,	
	490	24	256	9.375	93.701 12,12, 90.625 10,12,	
478	479	25	254	9.843	90.157 10,11,	
	490	20	254	7.874	92.126 11,12,	
	528	34	253	13.439	86.561 8, 9,	A

 $Tabl.\ 4\ b:$ Valeurs numériques de 670 interpoints communicatifs (IRI $_{jk}$). Voir aussi le Tabl. 9 et 2.4.

LEX-ITALIEN	LISTE	ZP-RED				17
HH= 15.610	S= 6.	58 G= 2	.150 NZP:	= 670		
MIN PHHAX	5.534	8.892 1	2.251 15	610 26.	549 37.487 48.4	25
	12	25 49 10	5 108 92	204 43	32.718 42.956 11 7 7 6	
HEDHW	5.534	11.373 1	3.439 15	625 17.1	131 20.000 49.4	25
	63	62 70 5	9 71 67	45 47	18.359 23.438 45 44 50 47	
MSD		10.980 1		510 16.4	71 19.368 48.4	25
	54	53 58 5	11 13.67	2 15.476 55 59	17.323 22.656 55 58 57 56	
AP1	AP2	AFW	NKA	RFW	INTERVALLE	
479	499 528	43 42	256 255	16.797 16.471	7, 8, 9 7, 8, 9	
490	515	52	256	20.313	7,11,11	
	5 26 5 28	52 39	254 255	20.472	7,11,11 6, 6, 7	
499	999 528	51 41	256 255	19.922	7,19,11 7, 7, 8	
	5 29 5 3 7	39 33	254 255	15.354	6, 6, 7	
540	511	45	253	17.787	7, 9,10	
511	513 520	40 41	254 254	15.748	7, 7, 9	
513	515	34	256	16.142 13.281	7. 7. 8 5. 4. 5	
	520 522	36 23	25 6 25 5	9.020	6, 5, 6 3, 1, 1	
515	530 522	24 26	25 4 25 5	9.449	3, 1, 2	
7.27	523	27	255	10.196	3, 2, 2	
	524 999	25 30	25 4 25 6	11.719	4, 2, 3	
520	530	41	254	16.142	7, 7, 3	
522	5 2 3 5 3 0	27	254	10.630	4, 2, 2	
523	524	23 16	253 254	9.091 6.299	3, 1, 1 1, 1, 1	
	999	29	255	11.373	4. 3. 3	
5 24 5 26	999 528	22 49	254 253	8.661 19.368	2, 1, 1 7,10,11	
	999	29	254	11.417	4, 3, 3	
5 28 5 29	537 537	46 23	254 253	9.091	7, 9,10 3, 1, 1	

Tabl. 4 a:

Voir aussi le Tabl. 8 et 2.2.

LEX-IIALIE	W LIZIE	ZP-RED-RNW				17
MW= 84.390	S= 6.	058 G= -2.	150 NZP	670		
MINMWMAX						94.466
	57 6				89.428 92. 100 49 25	78 7 12
MEDMW	51.575				561 88.627	
	. 76	.563 81.64	1 83.594	85.657	87.600 90.	196
	45			65 65		
MED					88.189 90.5	
	54	56 55 52	61 55	53 59	55 56 57	57
AP1	AP2	AFW	NKA	RFW	RNW IN	TERVALLE (F
479	499	43	256	16.797		6, 5, 4
	526	42	255	16.471		5, 5, 5
490	515	52	256	20.313		5, 2, 2
	526 528	52 39	254 235	20.472		7, 7, 6
	949	51	256	19.922	80.078	6, 3, 2
499	526	41	255	16.078		6, 6, 5
	529 537	39 33	254 255	15.354		7, 7, 6 3, 9, 8
500	511	45	253	17.787		4, 3
511	513	40	254	15.748		6, 6, 5
513	520 515	41 34	254 256	16.142		9, 6, 5
713	520	36	256	14.063		7, 8, 7
	522	23	255	9.020	90.980 10	0,12,12
515	530	24	254	9.449		12,12
213	522 523	2 b 2 7	255 255	10.196	89.804 10	9,11,11
	524	28	254	11.024		,11,11
	999	30	256	11.719	86.281 9	,10,10
520	53C	41	254	16.142	83.858 6	, 6, 5
522	523	27	254	10.630	89.370	,11,11
523	530	23	253	9.091	90.909 10	
523	524 999	16 29	254 255	6.299		2,12,12
524	999	. 22	254	8.661		,12,12
526	528	4.9	253	19.368		, 3, 3
528	999 537	29 46	254 254	11.417		,10,10
529	537	23	253	9.091		1, 4, 3

Tabl. 4 b:

Valeurs numériques de 670 interpoints communicatifs (IRI $_{\rm jk}$).