Zeitschrift: Revue économique franco-suisse

Herausgeber: Chambre de commerce suisse en France

Band: 37 (1957)

Heft: 11

Artikel: Considérations sur l'automatisme industriel

Autor: Chalvet, Marcel

DOI: https://doi.org/10.5169/seals-887842

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Considérations sur

L'AUTOMATISME Industriel

par Marcel CHALVET
Ingénieur en Chef (E. P. et E. S. E.)

 $^{\prime\prime}$ AUTOMATION. — The advent of the automatic factory $^{\prime\prime}$.

M. John DIEBOLD, 1952.

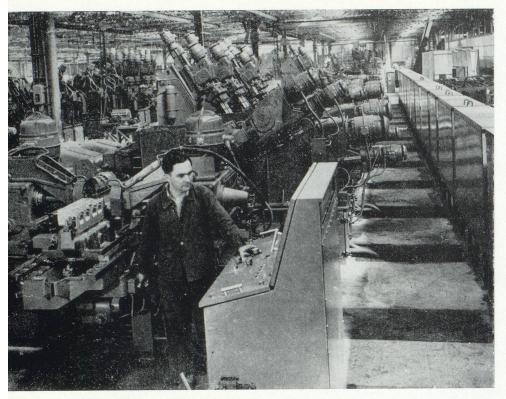
Automation fait florès. Le terme a été catapulté dans l'univers non pas par son inventeur M. Harder, Vice-Président de la Ford Motor Company, en 1947, mais par le livre au titre explosif de M. John Diebold qui valait donc bien de figurer en épigraphe de nos considérations.

Et cependant, même si nous devions demeurer seul — ce n'est heureusement pas le cas — nous fuirions ce terme pour la raison, que, même dans les pays de langue anglaise, ou américaine, il n'a pas de sens bien défini. En l'employant, on ne sait donc pas exactement de quoi l'on parle. Il devient ainsi facile — et combien tentant — de la couvrir d'une cape d'illusionniste; propre à satisfaire l'amour du mystère, ou du merveilleux, enfoui dans le cœur de tout être humain, enfant ou adulte. Cela n'a pas manqué d'être le cas.

L'occasion était trop tentante pour arrêter les envols d'une imagination outrancière. L'usine **presse-bouton**, on devrait dire usine à bouton-poussoir, menée par des robots, capable, en tout cas, de démarrer en appuyant sur un

discret bouton, de s'arrêter de même, de réparer dans une large mesure ses écarts, ou bévues, en s'autocontrôlant, hante beaucoup trop d'esprits qu'une telle perspective risque de troubler, pour ne pas employer un terme plus fort.

Or, proclamons-le net. Fin 1955, à propos d'un cas relativement simple, celui de la raffinerie du pétrole, il a été déclaré à la fin d'un Congrès, aux U. S. A. même, que cette « usine presse-bouton » n'était ni techniquement réalisable, ni économiquement désirable, et que de nombreuses mines se trouvaient encore disséminées sur la route qui y conduisait; ceci signifie que nous ne sommes pas à la veille de la voir se matérialiser.


Il fallait que ceci fut dit, d'abord, pour éviter de s'égarer sur des routes décevantes, sinon dangereuses, où il est déconseillé au technicien de s'engager.

Nous présenterons donc seulement l'automatisme industriel dans son état présent et dans sa ligne évolutionniste, laissant à d'autres la faculté de se bercer sur l'arc-en-ciel de l'automation; nous

le faisons nous-même quelquefois, peutêtre, mais non pas lorsqu'il s'agit d'informer objectivement.

Retournant aux sources, le dictionnaire, on trouve que la demi-douzaine de mots dérivés du terme-racine automate incluent l'idée fondamentale d'une machine imitant les êtres animés. Le Littré lui-même s'exprime ainsi; nous l'avons sous les yeux, de même que le Larousse. Ils ajoutent, il est vrai, que la machine se meut par ressorts. Cette prise de position est plus surprenante dans le second, qui s'intitule du XXe siècle, que dans le premier, dont les fascicules commencèrent à paraître en 1863. Mais l'idée fondamentale est bien de reproduire les actions de l'homme, en dehors de celui-ci, de le faire aussi, même dans le domaine de l'esprit; je m'en réfère au Littré, parlant d'automates pensants.

Pourquoi donc emprunter aux étrangers des mots nouveaux, au risque de ne plus s'entendre avec lesdits étrangers

Machines de transfert à tête électro-mécanique, en fonctionnement dans les usines Renault, à Billancourt.

qui leur donneront une autre acception? Pourquoi donc chercher un tel recours, si l'on veut bien songer que le désir d'automatiser est vieux comme le monde? et que Michel Alcan, percevant dès 1875 la portée de ces moyens, a pu écrire « la puissance de l'Automatisation est telle que ses progrès mécaniques s'étendent aussi bien dans les contrées où la main-d'œuvre est encore à vil prix, que dans les pays où le prix du travail manuel s'élève constamment ». Voilà de quoi faire méditer les prophètes du présent.

Pour nous, modeste technicien, nous tirerons de ce pèlerinage linguistique un certain nombre de conclusions pour servir de base.

Par l'automatisme, nos ancêtres cherchaient, comme nous, à se débarrasser des tâches astreignantes, nécessaires à la vie. On peut se plaire à penser que l'esclavage n'eût point existé si les Archimède et autres grands savants de l'Antiquité, eussent su animer des androïdes pour rendre des services effectifs. Ainsi donc, la soif d'automatiser se trouverait parée du désir le plus noble.

Les illusions dans la possibilité de faire des automates à l'image de l'homme durèrent longtemps. Le prestigieux Vaucanson (1709-1782), acquis à la théorie biomécanicienne des êtres vivants, fort prisée à l'époque, se ruina à vouloir résoudre le problème. Malgré ses réalisations remarquables, lesquelles influencèrent si vivement les Suisses Jaquet-Droz, il n'y parvint pas.

Il ne faudrait pas croire que la raison principale de cet échec de « l'automatisme utile » fut que les inventeurs disposaient seulement de mécanismes. Que non pas, et si dans tous les pays du monde, automatiser et mécaniser sont restés synonymes, ils le resteront toujours largement pour la simple raison que la mécanique demeurera le muscle des machines, même si l'électricité, sous la forme de l'électronique, ce levier qui soulève le monde, lui apporte l'animation spirituelle.

Pour que l'automatisme put se développer et devenir le serviteur de l'homme, il fallait trouver un moteur souple, c'està-dire susceptible d'être mis en œuvre en tout lieu, à tout moment, pour fournir telle puissance désirée.

Aucune des forces naturelles : le vent, l'eau, la gravité, la chaleur solaire, ne répondait à ces conditions fondamentales. Un « moteur artificiel » devait être créé. Tout progrès marquant de celui-ci quant à sa facilité, ou sa souplesse, de mise en œuvre, quant à ses possibilités, et quant à sa rentabilité, fait date pour notre sujet. A cet égard, je distingue, jusqu'à présent, trois étapes saillantes.

1774: James Watt construit la première machine à vapeur commerciale comme a osé l'écrire, sans fard et à juste raison, J. W. Roe, dans son ouvrage classique sur les « pionniers anglais et américains de la machine-outil », édité en 1926.

Du même coup, naquit l'industrie, très larvaire jusque-là, où les manu-

factures étaient assez peu nombreuses. Avec un siècle et demi environ d'existence, l'ère industrielle ébranle encore la toujours fragile économie humaine.

1872 : Grahm réalise le premier moteur électrique commercial; cette fois, c'est nous qui ajoutons l'épithète.

Quelle vertu cette découverte ajoutaitelle aux qualités de la machine à vapeur? Celles, toujours présentes, d'une infinie souplesse, grâce à la possibilité de fractionner la puissance autant que de besoin. grâce aussi à l'instantanéité de mise en œuvre, et à l'automatisme de fonctionnement. Ce sont là trois qualités sans égales. Au lieu d'un générateur unique, la machine à vapeur, installée dans sa salle particulière, entraînant par la ligne des arbres de transmission en cascade les machines des ateliers, chacune de ces dernières pouvait avoir son moteur propre, bientôt « presse-bouton ». Jamais cette expression à la mode ne fut mieux appropriée; il suffit maintenant d'appuyer sur un bouton pour démarrer, sur le même pour s'arrêter, sans avoir à surveiller la marche, ou d'alimenter avec un combustible quelconque.

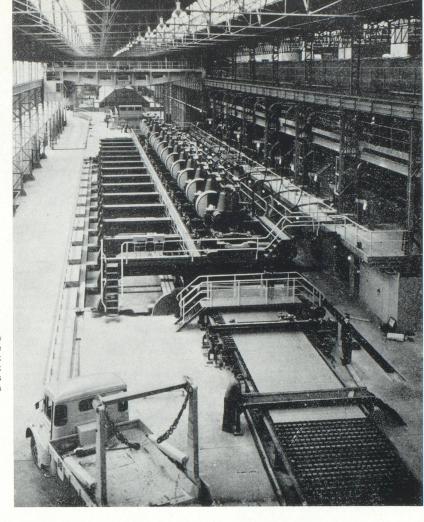
Rien de mieux. Et cependant combien d'ingénieurs, non électriciens, en sont encore à hésiter pour développer l'électrification des matériels qu'ils conçoivent, alors que l'électricité est devenue cependant un agent puissant de l'automatisme domestique; citons seulement les machines à laver, les frigorifiques, les machines à cirer et tout le matériel électrodomestique qui, de plus en plus, gagne les foyers

1907 : M. Lee de Forest, toujours vivant, offre à l'humanité les merveilles de l'électronique, en inventant la lampe à trois électrodes. En fut-il remercié sur le champ? Que non pas. Loin de là même, il se mit à deux doigts d'être condamné comme imposteur, son invention ne valant. paraît-il rien, comme appartenant plutôt au domaine de l'illusionisme.

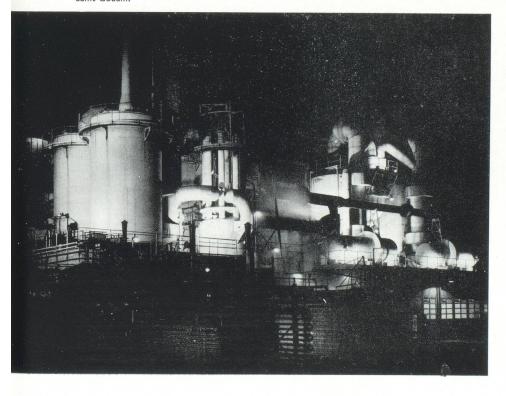
Et pourtant, ce sont les pouvoirs extraordinaires de l'électronique qui nous valent aujourd'hui le mythe de l'automation.

Après un excès, nous voici dans un autre.

Il faut donc insister sur les rapports de l'électronique souvent mal appréciés, j'entends par ceux qui ne sont pas, peu ou prou, électroniciens.


En matière d'automatisme — cela seul nous importe ici — l'électronique fait valoir deux notions, au point de les avoir introduites, en fait, dans la pratique. Il s'agit de l'amplification de puissance, d'une part; de l'automatisme mental, d'autre part.

a) Par le gain ou l'amplification de puissance, l'électronique permet de résoudre l'un des problèmes fondamentaux de l'automatisme, à savoir : obtenir qu'un arbre, ou plus généralement un organe ayant à fournir une puissance appréciable, voire élevée, reproduise exactement, en position et vitesse, les mouvements d'un arbre ou d'un organe ne développant qu'une puissance infini-


tésimale. C'est là un énoncé, typique semble-t-il, et facile à comprendre. Il en est d'autres dérivés. On peut désirer, par exemple, que la vitesse de l'arbre de puissance soit subordonnée, d'une façon ou d'une autre, au déplacement d'un organe sensible et léger. Il est inutile de multiplier les variations sur le thème. Le problème ne changerait pas pour autant de nature : c'est celui de l'asservissement, qui a de tout temps préoccupé les techniciens.

Le principe même de la solution est évident, pour la raison qu'il ne peut guère y en avoir d'autre; on utilise l'écart éventuel qui prend naissance entre l'arbre menant et l'arbre mené

La nouvelle ligne de fabrication de la glacerie de Chantereine de Saint-Gobain, dont on voit ici un aspect, est entièrement automatique depuis l'arrivée des matières premières jusqu'à la découpe des glaces.

Vue de nuit de l'installation de fabrication de l'acide sulfurique de contact de l'usine de Chauny-Saint-Gobain.

pour agir sur le moteur actionnant l'arbre mené et le ramener en position correcte. Le procédé a donc été appliqué bien avant que l'électronique ne fût majeure et capable de prouesses sans rivales. Voici où la difficulté a longtemps git. Le fonctionnement de l'organe détecteur d'écart exigeait le plus souvent une puissance non absolument négligeable, alors qu'avec adjonction de l'électronique, il s'agit d'une énergie quasi nulle; on peut dire autrement que l'amplification était très limitée. Par ailleurs, la stabilité de marche laissait à désirer; des oscillations tendaient à prendre naissance entre les deux arbres, aux changements de régime notamment. Comme conséquences, et en bref, la réponse était loin d'être instantanée et la précision d'exécution laissait à désirer; il ne fallait pas se montrer trop exigeant sur les spécifications.

L'électronique a apporté non seulement les appareils détecteurs les plus sensibles et un pouvoir amplificateur presque sans limite, mais elle a introduit un mode de penser et de raisonner nouveau ayant eu la plus heureuse répercussion sur la conception de tous les servomécanismes, qu'ils l'utilisent ou non.

b) Passons à l'automatisme mental, c'est-à-dire aux machines électroniques; elles sont indifféremment et simulta-

nément, logiques, ordinatrices et calculatrices; pour elles, c'est tout un. Pour supprimer toute idée de mystère, nous aimons toujours présenter l'affaire en la rattachant au tri automatique le plus

simple.

Supposons donc que l'on se propose de classer en deux catégories — la bonne et la mauvaise — les arbres sortant d'un tour; le critère utilisé est la valeur limite du diamètre au-dessus de laquelle le rebut s'impose. On fera passer les pièces sous un comparateur; si l'aiguille indicatrice de la mesure dépasse un certain trait rouge, l'arbre correspondant est éliminé. Ceci peut se faire automatiquement, il suffit que la susdite aiguille commande un contact actionnant un aiguillage sur la goulotte à deux voies, où la pièce s'engage après avoir été gabariée.

Eh bien, une telle machine fait un choix, résoud une alternative, parce que la consigne nécessaire a été inscrite sur un de ses organes. La machine électronique à raisonner ne fait pas autre chose, sauf que, sans fatigue, elle arrive à bout d'une suite de décisions alternatives pouvant s'élever à plusieurs milliers : il suffit d'inscrire les clés du choix, pour chacun d'eux, sur un organe prévu à cet effet; cet organe est, malheureuse-

ment, appelé mémoire.

A ce point de notre raisonnement, observons qu'il existe des trieuses automatiques beaucoup plus compliquées que celle à quoi nous nous sommes raccrochés; elles départagent les objets soumis à leur examen en une douzaine de catégories, ou plus même, opérant non pas d'après une, mais sur plusieurs dimensions. On en trouve de telles dans les machines de cartoucherie. Ce sont de véritables ordinatrices. Elles ne doivent rien à l'électronique.

On ne pourrait cependant pas prétendre que les calculatrices logiques modernes ne sont pas issues de l'électronique, sans laquelle elles n'auraient jamais pu être conduites à terme. Ici, c'est non seulement la souplesse qui intervient, la facilité de combiner les circuits de base; c'est plus encore la tendance à la miniaturisation, qui permet d'obtenir des tubes électroniques ou des transistors, des résistances, des condensateurs, des bobines d'inductance, des organes de liaison, etc., de plus en plus minuscules, tout en étant robustes et d'un fonctionnement sûr. Une machine électronique de l'espèce logique en arrive à être constituée par un assemblage de cellules, de fonction individualisée, à l'instar du cerveau humain.

De telles machines peuvent rendre des services immenses, aussi bien dans l'atelier, dans le bureau d'études, au laboratoire de recherches, que dans les services administratifs d'une entreprise, où certains semblent vouloir les confiner.

Voici les sources fécondes de l'automatisme. Elles ont jailli, drues, en moins de deux cents ans. Chacune d'elles a, non pas relayé, mais épaulé et fortifié l'autre. Elle a manifesté ses effets progressivement, lentement même, puisque cinquante ans après la découverte de M. Lee de Forest, l'électronique industrielle est encore à l'état naissant, à peine ébauchée dans l'ensemble. Du même coup, d'anciennes techniques se sont trouvées revigorées. Ne parlons pas ici de la mécanique qui trouve en chaque innovation un nouveau tremplin; songeons plutôt à l'hydraulique et au pneumatique, revenus en vedette.

Voilà pourquoi, de quelque nom qu'on l'appelle, l'automatisme est un mouvement continu, progressif, en fait, c'està-dire accéléré. La constatation vaut sur le plan économique, à suivre l'histoire

moderne, au moins.

Les problèmes posés par l'automatisation sont eux-mêmes constants. Ils sont aussi nombreux. En ces pages, nous pouvons seulement signaler les principaux d'entre eux, les plus typiques à vrai dire, sans nous y attarder, avant de considérer leurs pratiques dans les diverses branches d'activité.

- a) La première manifestation de notre sujet est la machine elle-même, puisque son existence même vise à décharger l'homme du fardeau travail. Dans l'expression machine, nous englobons tout outil mécanisé: machine-outil à façonner le métal, ou une quelconque autre matière première, machine agricole, machine de terrassement, machine de levage et de transport; allant plus loin encore, nous étendons le sens aux unités de l'industrie chimique, enceintes où s'accomplit une réaction.
- b) Que son moteur soit externe ou interne, la machine doit être conduite pour donner le produit de qualité désirée. Jadis, ce soin était confié à l'homme. Maintenant les dispositifs de régulation automatique, ceux de commandeprogramme les seconds valables surtout pour les processus cycliques y pourvoient. Les deux ne sont cependant pas exclusifs; ainsi une machine-outil automatisée, possédant son appareillage du contrôle des pièces finies, peut être autorégulée; il existe peu encore de ces phénix.
- c) L'alimentation automatique est un autre souci. Elle est facile, lorsque la matière est fluide, auquel cas la régulation d'un débit s'en charge; elle l'est presque autant lorsque la matière est pondéreuse, auquel cas l'on s'adressera souvent à des systèmes de pesage et convoyage automatiques. Elle est délicate, et seulement résolue pour la grande série, « grosso modo » au moins, lorsque la mise en forme est le travail essentiel. Les dispositifs sont souvent connus, mais trop dispendieux pour la moyenne et la petite séries. Peut-être les techniques de formologie, préconisées par un inventeur français, apporteront-elles un jour une solution.

Les circonstances précédentes, jointes à la difficulté d'autocontrôler les machines-

outils, font que l'on n'est pas à la veille de voir proliférer ces chaînes de machines en cascade s'alimentant mutuellement, dans lesquelles certains voient un des summums de « l'automation ».

d) Et puis, il y a la nécessité de préparer une machine à la tâche précise qu'on lui assigne. Dans cette question, jusqu'à présent, non seulement l'automatisme n'a pas encore pris pied, mais on perd généralement un temps considérable. La première tâche est de le réduire. Après, on pourra étudier les cas, où la machine électronique traduisant les ordres en carte perforée, pourra servir utilement. Nous n'en sommes pas à ce stade car il reste le plus souvent à créer l'équipement annexe indispensable, entendons l'instrument de mesure, ou d'analyse, à la fois robuste, rapide et précis. Ce n'est pas une mince affaire.

Les principaux problèmes de la production ayant été ainsi évoqués, brossons, à gros traits, l'état actuel de l'automatisme dans les différentes branches d'activités industrielles, les principales s'entend, puisqu'elles sont si nombreuses, au total.

Certaines industries sont difficiles à automatiser profondément; telles sont notamment les industries extractives, les industries textiles, les industries agricoles, pour lesquelles les efforts sont constants. Chaque progrès y est bénéfique.

De même, est désirable une plus grande automatisation des industries de construction, qui marquent pour ainsi dire le pas, et des industries métallurgiques, si harassantes.

L'automatisme est fort développé dans le groupe des industries productrices d'énergie, sous forme de gaz, de carburant ou d'électricité. Mais, là encore, on ne peut que se réjouir; la demande croît constamment dans un monde industrialisé; chacun connaît le principe, qui demanderait peut-être vérification, selon lequel les besoins d'énergie électrique doublent tous les dix ans. C'est en tout cas une indication. Elle permettra d'observer à quel degré les centrales thermiques, prises comme exemple parce que les problèmes y sont apparemment plus difficiles, ont pu être perfectionnées : l'alimentation continue par gravité des grilles en charbon granulé, les régulations de son débit et de celui de l'air carburant. citées comme principales améliorations ont permis d'arriver à un automatisme tel que, dans les chaufferies, on ne trouve plus ces diables noirs de jadis dont le métier était de paria; à l'occasion, on peut n'y plus trouver personne, pas même un surveillant à demeure, quand a été installé un réseau d'alarme. En même temps, la combustion complète étant mieux assurée, l'économie et le rendement se trouvent accrus.

Du côté des générateurs électriques, les problèmes ont été apparemment plus simples; grâce aux progrès faits en matière de régulation, d'enregistrement et de télétransmissions, les commandes sont centralisées sur un pupitre où se

tient l'opérateur véritable chef d'orchestre.

Un mot sur les industries alimentaires, pour dire seulement que plus elles ont été automatisées, et plus elles le seront encore, mieux sera assurée la nourriture des humains dont de récentes enquêtes font savoir qu'elle laisse fort à désirer pour une grande fraction des 2,5 milliards de vivants peuplant le globe.

Restent en face de nous, à peu près seules comme chefs de file, les industries chimiques et les industries mécaniques. C'est à elles surtout que l'on pense, davantage même sans doute aux secondes, quand on parle d'automatisme. Tachons de voir ce qu'il en advient.

lo Les usines de produits chimiques sont de vastes établissements. Telle compagnie britannique occupe 16.000 ouvriers, consomme dans l'année environ 1.000.000 de tonnes de charbon, dans ses seuls bouilleurs, et 100 MW (1 MW = 1 mégawatt = 1.000.000 dewatts) d'énergie électrique. Dans les autres pays industriels, on trouve des ensembles comparables.

De telles entreprises produisent, en cascade pour ainsi dire, un nombre élevé de produits distincts. Dans la fabrication de chacun d'eux, l'automatisme est poussé assez loin, en sorte que l'on arrive comme aux usines Saint-Gobain, de Chauny, à produire 25 tonnes de superphosphates par heure avec deux hommes ou, avec un seul à surveiller la fabrication de 600 tonnes par mois d'un produit entrant comme constituant d'un plastique. Le résultat est remarquable; il n'en a pas fallu moins pour donner à l'industrie chimique l'essor voulu.

Mais il faut bien s'entendre.

Ce que l'on automatise ainsi, c'est un procédé comme on l'a fait remarquer, entendons une distillation, une réaction donnée. Grâce à l'emploi de régulateurs judicieusement disposés, quelquefois couplés, veillant sur la température, les pressions, les niveaux, les débits, on sort un corps de composition déterminée, à des tolérances connues près, pourvu que du côté entrée les constituants soient eux-mêmes constants en composition comme en débit. On est d'ailleurs tenu de vérifier par analyses, plus ou moins fréquentes, la qualité du produit, qu'il est impossible de modifier par voie automatique. Sorti de certaines limites, dans les caractéristiques déterminant le fonctionnement, l'automatisme faut; on doit alors recourir aux réglages manuels.

Enfin, chaque production est automatisée pour elle-même, sans pratiquement interaction entre elles. De là, nécessité de pratiquer des stockages intermédiaires.

Telle est la situation présente, très grossièrement brossée. Pour aller plus loin, il faudrait disposer d'appareils de mesures ou d'analyses, non encore commerciaux, et de calculatrices électroniques spécialement conçues; celles-ci, non plus, n'ont pas vu le jour. Il y a, bien entendu, d'autres conditions; nous les considérons ici comme accessoires, celles indiquées suffisant pour conclure que l'usine chimique automatique n'est pas pour un proche demain.

2º En raison de la diversité considérable des industries mécaniques, dans lesquelles nous incluons toutes les industries électroniques, les choses sont peut-être un peu plus compliquées pour elles. De toute façon, elles sont bien différentes; on ne s'adresse pas ici à des fluides, ou à des substances pondéreuses comme dans les industries chimiques, mais à des éléments solides, le plus souvent assez volumineux, et des silhouettes plus ou moins tourmentées. Les questions de manutention s'en trouvent fort affectées. Aux problèmes de composition dosée se substituent des problèmes de mise en forme, et ces derniers ne sont pas plus aisés à traiter.

Lorsque l'on parle de fabrications mécaniques, l'on songe d'abord à l'automobile. Elle excite l'esprit; elle imprègne aussi les autres industries, qu'elle entraîne dans son envolée.

La plus belle manifestation de l'automatisme se trouve dans les machines transfert du genre de celles que fait et utilise Renault souvent cité en exemple à l'étranger, et considéré par certains anglo-saxons comme l'usine la plus automatisée au monde. Considérons donc la plus récente, celle à usiner, de A jusqu'à Z, le bloc-cylindres de la Frégate; elle vient d'être mise en service. En réalité, elle est formée d'une succession, ou chaîne de trois groupes, comportant chacun dans une série de trois ou quatre machines-outils transfert. Les blocscylindres sont transférés automatiquement du début à la fin de cette immense suite, pivotant quand il le faut pour changer leur présentation, passant d'un montage à l'autre sans intervention humaine par desserrage, pivotage et bridage automatiques.

Pour une des machines-transfert élémentaires la durée opératoire à chaque poste doit avoir sensiblement même valeur, une minute par exemple; le débit est alors de 60 pièces par heure. Quand les opérations demandent deux minutes, on les exécute sur une autre machine transfert élémentaire dont le débit est seulement moitié; il en faut alors prévoir deux en parallèle et diriger les blocscylindres alternativement sur l'une et l'autre; ce genre d'aiguillage est également automatique. Bref, aucune main humaine ne touche les blocs-cylindres sur la ligne d'usinage, où s'opère également le contrôle sur le poste final.

On peut donc affirmer que tout le processus opératoire est automatique, depuis la sortie de fonderie jusqu'à la sortie du bloc-cylindres fini. Éh bien, ce robot comme certains l'écriraient, Eh bien, cette machine pleinement automatique emploie environ 25 personnes; celles-ci sont occupées au poste de chargement, aux postes de déchargement, à la surveillance des postes de contrôle, jugés trop importants pour être abandonnés, au changement des outils usés. Si un tel complexe était remplacé par des machinesoutils conventionnelles, il y faudrait quatre fois plus de monde.

On sait bien automatiser le changement d'outils. Si Renault n'applique pas cette technique, c'est qu'il ne la juge pas économique, car la considération de rentabilité doit guider la marche vers un automatisme plus poussé; de ce faitmême, la progression se trouve ralentie. Elle va pas à pas, avec une sage lenteur.

Nous avons bien vu comment on pouvait prétendre avoir automatisé la fabrication de certaines pièces détachées. Mais il faut monter celles-ci pour obtenir un produit fini. Or, lorsque ce dernier est volumineux, compliqué ou de précision élevée, comme une automobile, un frigidaire, une machine à laver, un moteur électrique, une montre, etc., il est exclu pendant longtemps encore, d'en mécaniser l'assemblage.

Au demeurant, nous n'avons considéré jusqu'ici que les fabrications de grande série. Les laudateurs de l'automatisme pour l'automatisme paraissent assez souvent prêts à abandonner les autres, celles de moyennes et de petites séries, sous le prétexte que seules les premières concourent à l'augmentation du niveau de vie puisque, seules, elles intéressent tout le monde. C'est au moins ce que nous croyons comprendre. Halte-là! car comment réaliserait-on l'automatisme sans machines-outils, sans instruments de mesure les plus individualisés, sans moteurs, électriques ou non, diversifiés en capacité? J'en passe de ces matériels construisibles seulement chacun en quantités limitées, et ceci sous toutes les latitudes.

Ne faudrait-il pas automatiser ces fabrications? Bien sûr que si. Mais, pour y parvenir, on se heurte aux réticences des constructeurs de matériels d'équipement, comme à celles de leur clientèle. On commence bien à utiliser les machinestransfert pour usiner des pièces homologues dans les industries des moteurs, des compteurs, de la robinetterie, etc. On prend quelque intérêt aussi aux machines-outils à commande programme. Bref, l'intérêt s'éveille pour les machines automatiques adaptées aux productions de petite série. Mais pour elles, même aux U. S. A., il faut créer l'état d'esprit. Et la conversion est généralement lente. Comptons une génération.

Et puis, lorsque tout ceci sera fait, on aura automatisé la fabrication. Or, dans une entreprise, il est un cerveau : ses lobes sont les laboratoires, les services de recherches, les bureaux d'études, plus la direction. A tous ceux-ci, les ordinatrices logiques apporteront les plus précieux secours, en permettant aux uns et aux autres de résoudre des problèmes essentiels, négligés jusqu'à présent.

Là encore, il faut du temps. Il faut surtout posséder beaucoup plus d'ouvriers de valeur, de cadres, d'ingénieurs, car l'automatisme exige une formation plus poussée. De cela, il s'agit de convaincre la foule. L'usine automatique, qu'il faut d'abord bien définir, a, plus que tout autre, besoin d'étincelle spirituelle, apa-

nage de l'homme.

Voici pourquoi, comme nous l'avons annoncé, elle n'est pas pour demain.